JP2004360062A - Tool member having excellent high temperature strength property, and its production method - Google Patents

Tool member having excellent high temperature strength property, and its production method Download PDF

Info

Publication number
JP2004360062A
JP2004360062A JP2003327038A JP2003327038A JP2004360062A JP 2004360062 A JP2004360062 A JP 2004360062A JP 2003327038 A JP2003327038 A JP 2003327038A JP 2003327038 A JP2003327038 A JP 2003327038A JP 2004360062 A JP2004360062 A JP 2004360062A
Authority
JP
Japan
Prior art keywords
tool member
tool
grain size
oxide
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003327038A
Other languages
Japanese (ja)
Other versions
JP4277264B2 (en
Inventor
Kimita Kataoka
公太 片岡
Eiji Nakatsu
英司 中津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2003327038A priority Critical patent/JP4277264B2/en
Publication of JP2004360062A publication Critical patent/JP2004360062A/en
Application granted granted Critical
Publication of JP4277264B2 publication Critical patent/JP4277264B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tool member which has excellent high temperature strength, and in which crystal grains are fined, and to provide its production method. <P>SOLUTION: The tool member is the one subjected to quenching and tempering, and consists of a tool steel comprising, by mass, 0.1 to 3.0% C and 1.0 to 18.0% Cr. Oxides with a grain size of ≤25 nm are dispersed into the structure by ≥750 pieces per μm<SP>3</SP>, and also, the maximum crystal grain size by old austenitic grain boundaries is ≤10 μm. Preferably, the maximum grain size of the oxides dispersed into the structure is ≤25 nm. In the method of producing the tool member, a powdery mixture of tool steel powder and oxide powder mixed so that the content of C is controlled, by mass, to 0.1 to 3.0%, Cr to 1.0 to 18.0% and oxides to 0.3 to 5.0% is subjected to mechanical milling, is thereafter subjected to compacting and forming, and is quenched and tempered. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、プレス金型、ダイカスト金型、押出し工具、切削工具、パンチおよびダイスといった多種の工具部材に最適な、高温強度を改善させた工具部材およびその製造方法に関するものである。   The present invention relates to a tool member having improved high-temperature strength, which is optimal for various types of tool members such as a press die, a die casting die, an extrusion tool, a cutting tool, a punch, and a die, and a method of manufacturing the same.

従来、温熱間工具や切削工具等の分野には、JIS鋼種であるSKD61系の合金工具鋼やSKH2系の高速度鋼が用いられていた。通常、このような工具部材は、その工具鋼素材を焼きなまし(低硬度)状態で製品形状に機械加工し、その後に焼入れ焼戻しして硬さ調整が行なわれ、仕上げ加工を経て製品工具にされる。(プリハードン鋼の場合は焼入れ焼戻し状態で製品形状に機械加工・仕上げ加工を経て製品工具にされる。)   Conventionally, JIS steel grade SKD61-based alloy tool steel and SKH2-based high-speed steel have been used in the field of warm tools and cutting tools. Usually, such a tool member is machined into a product shape in an annealed (low-hardness) state of the tool steel material, and then quenched and tempered to adjust the hardness, and is finished into a product tool after finishing. . (In the case of pre-hardened steel, the product is machined and finished to the product shape in a quenched and tempered state and turned into a product tool.)

そして、このような部材において、例えば高速度鋼の機械的性質を改善する手法が提案されている(特許文献1参照)。この提案は炭化物径および結晶粒径を微細化して室温強度を上昇させるという点で優れたものである。
特開2002−105513号公報
In such members, for example, a technique for improving the mechanical properties of high-speed steel has been proposed (see Patent Document 1). This proposal is excellent in that the carbide diameter and the crystal grain diameter are reduced to increase the room temperature strength.
JP-A-2002-105513

上述した特許文献1に開示される手法は、室温強度を上昇させる点では有利であるものの、高温強度の点では、強度を担う炭化物が高温で成長し強度を維持できなくなることが懸念される。工具を用いて製造する製品のコストを低減するためには、使用する工具の長寿命化を達成し、高負荷化に耐える工具部材を開発する必要があり、その上で上記の高温強度の向上は大きな課題となる。   Although the technique disclosed in Patent Document 1 described above is advantageous in that the strength at room temperature is increased, in terms of high-temperature strength, there is a concern that carbides that carry the strength grow at high temperatures and cannot maintain the strength. In order to reduce the cost of products manufactured using tools, it is necessary to develop tool members that can extend the life of the tools used and withstand high loads, and then improve the high-temperature strength described above. Is a big challenge.

本発明の目的は、従来の技術に対し、強度を担う炭化物が高温で成長し強度を維持できなくなるという問題を解決して、さらに結晶粒を微細化して強度(高温強度含む)を向上させた工具部材およびその製造方法を提供することである。   An object of the present invention is to solve the problem that the carbides responsible for strength grow at a high temperature and cannot maintain the strength, and further improve the strength (including the high-temperature strength) by refining the crystal grains as compared with the conventional technique. An object of the present invention is to provide a tool member and a manufacturing method thereof.

本発明者は、強度を担う粒子として主に導入されていた炭化物が、高温で成長し強度を維持できなくなるという問題を検討し、高温でも安定であまり成長しない酸化物を微細に分散させることを採用した。そして、最適組成および製造方法を鋭意研究することによって、炭化物量を減少させても強度(高温強度含む)および靭性を大きく改善できることを見いだし本発明に到達した。   The present inventor studied the problem that carbides, which were mainly introduced as particles bearing strength, grow at high temperatures and cannot maintain strength, and disperse oxides that are stable and do not grow much at high temperatures finely. Adopted. The present inventors have intensively studied the optimum composition and manufacturing method, and found that strength (including high-temperature strength) and toughness can be greatly improved even when the amount of carbide is reduced, and the present invention has been achieved.

すなわち、本発明は、焼入れ焼戻しされた工具部材であって、質量%でC:0.1〜3.0%、Cr:1.0〜18.0%を含む工具鋼からなり、組織中には粒径25nm以下の酸化物が1μmあたり750個以上分散しかつ、旧オーステナイト粒界による結晶粒径が最大10μm以下である高温強度特性に優れた工具部材である。好ましくは、組織中に分散する酸化物の粒径は最大で25nm以下である。 That is, the present invention is a tool member that has been quenched and tempered, and is made of tool steel containing 0.1 to 3.0% by mass of C and 1.0 to 18.0% of Cr by mass%. Is a tool member excellent in high-temperature strength characteristics in which oxides having a particle size of 25 nm or less are dispersed at 750 or more per 1 μm 3 and the crystal grain size due to the prior austenite grain boundary is 10 μm or less at maximum. Preferably, the particle size of the oxide dispersed in the tissue is at most 25 nm or less.

そして、本発明の高温強度特性に優れた工具部材の製造方法は、質量%でC:0.1〜3.0%、Cr:1.0〜18.0%かつ、酸化物が0.3〜5.0体積%になるように混合された工具鋼粉末と酸化物粉末の混合粉末をメカニカルミリングした後、固化成形し、焼入れ焼戻しすることを特徴とするものである。また、必要に応じて本発明の工具部材の製造方法は、焼入れ焼戻しの前に、機械加工することができ、所定の形状の工具部材に加工するものである。   And the manufacturing method of the tool member excellent in the high temperature strength characteristic of the present invention is as follows: C: 0.1 to 3.0%, Cr: 1.0 to 18.0%, and 0.3% of oxide by mass%. The mixed powder of the tool steel powder and the oxide powder mixed so as to have a volume of up to 5.0% by volume is mechanically milled, then solidified, and then quenched and tempered. Further, if necessary, the method of manufacturing a tool member according to the present invention is capable of performing machining before quenching and tempering, and processing into a tool member having a predetermined shape.

本発明によれば、工具部材の結晶粒を非常に微細化でき、かつ高温強度特性を飛躍的に改善することができる。よって、製品コスト低減のために、使用する工具の長寿命化・高負荷化に耐える工具部材の実用化にとって欠くことのできない技術となる。   ADVANTAGE OF THE INVENTION According to this invention, the crystal grain of a tool member can be made very fine and the high temperature strength characteristic can be improved remarkably. Therefore, in order to reduce the product cost, the technology is indispensable for practical use of a tool member that can withstand a longer life and a higher load of a tool to be used.

上述したように、本発明の重要な特徴は、工具部材の強度、とりわけ高温強度の向上手段として、その組織中に酸化物を微細に分散させる手法を採用したことにある。   As described above, an important feature of the present invention is that a technique for finely dispersing an oxide in its structure is employed as a means for improving the strength of a tool member, particularly, high-temperature strength.

最初に本発明の根幹をなす酸化物を微細に分散させる理由について説明する。酸化物を微細に分散させることによって、母材の結晶粒成長を効果的に抑制することができる。結晶粒を微細に維持することで、結晶粒微細化強化を利用することができ、従来材で強度を担っていた炭化物による析出強化を代替することができる。析出強化を利用して強度を上昇させると靭性が劣化する傾向にあるのに対して、本発明の結晶粒微細化強化では靭性をあまり損なわないかまたは改善できる作用があるため、工具部材の靭性改善にとっては有効である。   First, the reason why the oxide forming the basis of the present invention is finely dispersed will be described. By finely dispersing the oxide, crystal grain growth of the base material can be effectively suppressed. By keeping the crystal grains fine, it is possible to utilize the strengthening of the crystal grain refinement, and it is possible to replace the precipitation strengthening by carbide which has been responsible for the strength of the conventional material. When the strength is increased by using precipitation strengthening, the toughness tends to deteriorate.On the other hand, the grain refinement strengthening of the present invention does not significantly impair or improve the toughness. It is effective for improvement.

さらに、イットリウム系(Y)やチタン系(TiO)、アルミ系(Al)といった酸化物は、通常、工具部材中に形成される炭化物に比べて、その高温での熱処理中や使用中でもあまり成長しないことから、従来材では炭化物の成長が起こって析出強化量が著しく減少するような高温域でも、結晶粒微細化強化を利用でき、飛躍的に高温強度を高めることができる。 Further, oxides such as yttrium-based (Y 2 O 3 ), titanium-based (TiO 2 ), and aluminum-based (Al 2 O 3 ) are usually subjected to heat treatment at a higher temperature than carbides formed in a tool member. Because it does not grow much during or during use, it is possible to use crystal grain refinement strengthening even in the high temperature range where carbide growth occurs and the amount of precipitation strengthening decreases significantly in conventional materials, and it is possible to dramatically increase high temperature strength. it can.

よって、上述の効果を有効に利用するためには、組織中に分散させる酸化物の大きさおよび個数密度を同時に調整することが重要となる。本願発明の工具部材の場合、その酸化物の分散状態は粒径25nm以下の酸化物を1μmあたり750個以上分散させるものであり、好ましくは酸化物自体の最大径が25nm以下となるようにする。特に好ましくは、酸化物の最大径が15nm以下で1μm中に20000個以上となるようにする。 Therefore, in order to effectively utilize the above effects, it is important to simultaneously adjust the size and the number density of the oxide dispersed in the tissue. In the case of the tool member of the present invention, the dispersed state of the oxide is such that 750 or more oxides having a particle size of 25 nm or less are dispersed per 1 μm 3 , and preferably the maximum diameter of the oxide itself is 25 nm or less. I do. It is particularly preferable that the maximum diameter of the oxide be 15 nm or less and 20,000 or more per 1 μm 3 .

なお、酸化物の分散状態の評価は、透過型電子顕微鏡を用いた薄膜観察の結果から行なえば良い。該手段によって組織中に酸化物が分散していることが確認でき、例えば40万倍の暗視野像(図1)および元素分布マッピングを行ないFeの透過電子線のみで結像したエレメントイメージ(図2)をそれぞれ1視野用いることで、酸化物の大きさ(最大径)および個数密度を得ることができる。Feのエレメントイメージを用いることで酸化物の個数を精度良く観察できる。   Note that the dispersion state of the oxide may be evaluated from the result of thin film observation using a transmission electron microscope. By this means, it can be confirmed that the oxide is dispersed in the tissue. For example, a 400,000-fold dark field image (FIG. 1) and an element image obtained by performing element distribution mapping and forming an image only with a transmission electron beam of Fe (FIG. 1) By using one field of view in 2), the size (maximum diameter) and number density of the oxide can be obtained. By using the element image of Fe, the number of oxides can be accurately observed.

すなわち、暗視野像中の酸化物の最長方向の長さを計り、ASTMの切断法から公称粒径を求めてそれを粒径とすれば良く、最も大きな酸化物の最長方向の長さについてその公称粒径を最大径とすれば良い。また、Feのエレメントイメージ中の直径2mm以上に写っている酸化物の個数を数えて、それを観察体積(観察面積×薄膜試料厚さ)で割って酸化物の個数密度とすれば良い。なお、図1,2の電子像は、後の(実施例1)で評価した供試材Aの、500℃で焼戻したときのものである。   That is, the length of the longest direction of the oxide in the dark-field image is measured, the nominal particle size may be obtained from the ASTM cutting method, and the nominal particle size may be determined as the particle size. What is necessary is just to let a nominal particle diameter be the maximum diameter. Further, the number of oxides having a diameter of 2 mm or more in the Fe element image may be counted, and the number may be divided by an observation volume (observation area × thin film sample thickness) to obtain an oxide number density. Note that the electronic images in FIGS. 1 and 2 are obtained when the test material A evaluated in later (Example 1) was tempered at 500 ° C.

以下に、本発明の効果を最大限に活用するのに好ましい、工具部材の成分や結晶粒径を限定した理由について詳細に説明する。   Hereinafter, the reasons for limiting the components and the crystal grain size of the tool member, which are preferable for maximizing the effects of the present invention, will be described in detail.

CやCrは焼入れ性を高める元素であり、本発明の根幹をなす焼入れ焼戻しされた工具部材を製造する上で非常に重要である。このような焼入れ性を高める元素は、本発明の工具部材として成立させるために、必ず十分な焼入れ性が確保できるように成分調整される必要がある。   C and Cr are elements that enhance quenchability and are very important in producing a quenched and tempered tool member that forms the basis of the present invention. Such an element that enhances the hardenability must be adjusted so that a sufficient hardenability can be ensured in order to realize the tool member of the present invention.

・C:0.1〜3.0質量%
Cは、一部が基地中に固溶して強度を付与し、一部は炭化物を形成することで耐摩耗性や耐焼付き性を高める重要な元素であることから、本発明の対象を温熱間工具や切削工具といった工具部材とする場合には、特に本発明の有用性を向上させる。また、固溶した侵入型原子であるCは、CrなどのCと親和性の大きい置換型原子と共添加した場合、I(侵入型原子)−S(置換型原子)効果;溶質原子の引きずり抵抗として作用し高強度化する作用も期待される。ただし、含有量が0.1質量%未満では工具部材として十分な硬さ、耐摩耗性を確保できなくなる。他方、過度の添加は靭性や熱間強度の低下を招くため上限を3.0質量%とする。
C: 0.1 to 3.0% by mass
C is an important element that enhances abrasion resistance and seizure resistance by partially dissolving in the matrix and imparting strength and partially forming carbides. In the case of using a tool member such as an intermediate tool or a cutting tool, the utility of the present invention is particularly improved. In addition, when C, which is a solid solution interstitial atom, is co-added with a substitutional atom having a high affinity for C such as Cr, an I (interstitial atom) -S (substitutional atom) effect; drag of a solute atom It is also expected to act as resistance and increase strength. However, if the content is less than 0.1% by mass, sufficient hardness and wear resistance as a tool member cannot be secured. On the other hand, an excessive addition causes a decrease in toughness and hot strength, so the upper limit is made 3.0% by mass.

・Cr:1.0〜18.0質量%
Crは焼入れ性を高めて、また、炭化物を形成して基地の強化や耐摩耗性を向上させる効果を有することから、本発明の対象を温熱間工具や切削工具といった工具部材とする場合には、特に本発明の有用性を向上させる元素であり、少なくとも1.0質量%添加する必要がある。ただし、過度の添加は焼入れ性や熱間強度の低下を招くため、上限を18.0質量%とする。
Cr: 1.0 to 18.0% by mass
Since Cr has the effect of enhancing hardenability and forming carbides to strengthen the matrix and improve wear resistance, when the object of the present invention is a tool member such as a hot tool or a cutting tool, , Particularly an element that improves the usefulness of the present invention, and must be added at least 1.0% by mass. However, excessive addition causes a decrease in hardenability and hot strength, so the upper limit is 18.0% by mass.

・旧オーステナイト粒界による結晶粒径が最大10μm以下
焼入れ焼戻しされて使用される工具部材にとって、本発明の酸化物の導入による結晶粒微細化効果は、その焼入れ焼戻し後の“旧オーステナイト粒界による結晶粒径”に反映されている。通常の工具部材の場合、その旧オーステナイト粒界による結晶粒径は小さくても20μm程度であるが、結晶粒微細化による強化量が大きくなるのは平均結晶粒径10μm以下の領域である。結晶粒微細化強化を利用して強化を図るため、本発明にかかる工具部材の結晶粒径は最大10μm以下とする。好ましくは5μm以下、さらに好ましくは1μm以下とする。
The crystal grain size due to the prior austenite grain boundary is 10 μm or less at most. For a tool member which is used after quenching and tempering, the effect of introducing the oxide of the present invention makes the grain refinement effect by the “old austenite grain boundary after quenching and tempering”. Crystal grain size "is reflected. In the case of a normal tool member, the crystal grain size due to the former austenite grain boundary is at least about 20 μm, but the strengthening amount by the refinement of the crystal grain becomes large in a region having an average crystal grain size of 10 μm or less. In order to strengthen by utilizing crystal grain refinement strengthening, the crystal grain size of the tool member according to the present invention is set to 10 μm or less at the maximum. Preferably it is 5 μm or less, more preferably 1 μm or less.

なお、本発明の旧オーステナイト粒界による結晶粒径の評価は、透過型電子顕微鏡を用いた薄膜観察の結果(例えば4万倍の暗視野像を4視野)から行なえばよい。すなわち、暗視野像中のもっとも大きな結晶粒の最長方向の長さを計り、ASTMの切断法から公称粒径を求めて、それを最大粒径とすればよい。図3に示す暗視野像は、後の(実施例1)で評価した供試材Aの、500℃で焼戻したときのものである。   The evaluation of the crystal grain size based on the prior austenite grain boundary in the present invention may be performed based on the results of thin film observation using a transmission electron microscope (for example, a 40,000-fold dark field image with four visual fields). That is, the length of the largest crystal grain in the dark field image in the longest direction is measured, the nominal grain size is obtained from the ASTM cutting method, and the nominal grain size is determined as the maximum grain size. The dark-field image shown in FIG. 3 is obtained when the test material A evaluated in later (Example 1) is tempered at 500 ° C.

また、本発明の工具部材の成分組成は、質量%でC:0.1〜3.0%、Cr:1.0〜18.0%を含む以外には、例えば必要に応じてMo,W,V,Ni,Coなどを添加することができ、JISに記載されるような工具鋼組成の適用が可能である。   In addition, the component composition of the tool member of the present invention may contain, for example, Mo, W if necessary, except that it contains C: 0.1 to 3.0% and Cr: 1.0 to 18.0% by mass%. , V, Ni, Co, and the like can be added, and a tool steel composition as described in JIS can be applied.

次に、本発明の工具部材の製造方法について述べる。
本発明の微細な結晶粒組織を有した工具部材の達成には、例えばメカニカルミリング法で作製した粉末を固化成形する手法が適用でき、これは最終的には焼入れ焼戻しされることで結晶粒の成長が起こり得る工具部材の製造方法に好ましい手法である。すなわち、質量%でC:0.1〜3.0%、Cr:1.0〜18.0%かつ、酸化物が0.3〜5.0体積%になるように混合された工具鋼粉末と酸化物粉末の混合粉末をメカニカルミリングした後、固化成形し、焼入れ焼戻しする工具部材の製造方法であり、必要に応じてその焼入れ焼戻しの前に機械加工することで、所定の形状の工具部材とすることができる。
Next, a method for manufacturing a tool member according to the present invention will be described.
In order to achieve a tool member having a fine grain structure of the present invention, for example, a method of solidifying and forming a powder produced by a mechanical milling method can be applied, and this is finally achieved by quenching and tempering the crystal grains. This is a preferable method for manufacturing a tool member in which growth can occur. That is, C: 0.1 to 3.0% by mass%, Cr: 1.0 to 18.0%, and tool steel powder mixed so that the oxide becomes 0.3 to 5.0% by volume. This is a method for manufacturing a tool member that is subjected to mechanical milling of a mixed powder of a metal powder and an oxide powder, then solidified and formed, and then quenched and tempered. It can be.

従来、アトライタやボールミル等の装置によるメカニカルミリング法は、そのミリングに供される原料粉末の結晶粒径を微細にできる手段として使用されており、工具鋼の分野でも提案されている(特許文献1参照)。本発明も、このメカニカルミリング法による処理後粉末を固化成形するものであるが、ここで本発明の場合、メカニカルミリング前の原料粉末としてさらに酸化物粉末を混ぜた混合粉末とし、原子レベルまで機械的に混合することで、高温でも安定した酸化物粒子による結晶粒微細化強化と分散強化を達成できる。   Conventionally, a mechanical milling method using an apparatus such as an attritor or a ball mill has been used as a means for reducing the crystal grain size of a raw material powder used for the milling, and has also been proposed in the field of tool steel (Patent Document 1). reference). In the present invention, the powder after the treatment by the mechanical milling method is also solidified and formed.Here, in the case of the present invention, a mixed powder further mixed with an oxide powder is used as a raw material powder before the mechanical milling, and the powder is machined to an atomic level. By performing the mixing, crystal grain refinement enhancement and dispersion enhancement by oxide particles that are stable even at high temperatures can be achieved.

・酸化物:0.3〜5.0体積%
酸化物は高温でも熱的に安定なため、工具部材の熱処理時や高温での使用時の結晶粒成長を効果的に抑制する上で重要な物質であり、微細粒組織を維持するために最低0.3体積%は必要である。しかし酸化物の量が多すぎると固化成形時の成形性が悪くなることに加えて、工具部材の靭性劣化を招くため、上限を5.0体積%とする。
Oxide: 0.3 to 5.0% by volume
Oxides are thermally stable even at high temperatures, so they are an important substance in effectively suppressing grain growth during heat treatment of tool members and use at high temperatures. 0.3% by volume is required. However, if the amount of the oxide is too large, the moldability at the time of solidification molding is deteriorated, and the toughness of the tool member is deteriorated. Therefore, the upper limit is set to 5.0% by volume.

次に、メカニカルミリング法によって処理された粉末は固化成形するが、粉末を固化成形し、後工程では焼入れ焼戻しする際の熱処理によって、結晶粒は成長する。つまり、本発明によって作製される工具部材の結晶粒径を微細にするためには、その原料となるメカニカルミリング法で作製した粉末の結晶粒径は微細であることが望ましい。そのため、メカニカルミリング法による粉末の結晶粒の超微細化は好ましくは平均で100nm以下、さらに好ましくは50nm以下である。   Next, the powder processed by the mechanical milling method is solidified and formed. The solidified powder is formed, and in a later step, the crystal grains grow by a heat treatment at the time of quenching and tempering. That is, in order to make the crystal grain size of the tool member produced according to the present invention fine, it is desirable that the powder produced by the mechanical milling method as the raw material has a fine crystal grain size. Therefore, the ultrafine refining of the crystal grains of the powder by the mechanical milling method is preferably 100 nm or less on average, more preferably 50 nm or less.

なお、固化成形手段には例えば焼結やHIP、温熱間圧延、温熱間押出し等の高温固化が適用でき、HIPや温熱間圧延、温熱間押出しが完全に緻密な材料を得易い点で好ましい。そして、その固化成形された素材については、後は必要であれば通常の鍛造・圧延工程、焼きなまし状態での機械加工を適用し、焼入れ焼戻しして工具部材に仕上げる。   In addition, high-temperature solidification such as sintering, HIP, hot rolling, and hot extrusion can be applied to the solidification molding means, and HIP, hot rolling, and hot extrusion are preferable because a completely dense material is easily obtained. The solidified material is then subjected to a normal forging / rolling process and machining in an annealed state, if necessary, and then quenched and tempered to complete a tool member.

また、本発明の工具部材が焼入れ焼戻しのできる素材であることは、高温強度特性に優れた工具部材を製造する上でも非常に重要である。すなわち、高合金系の工具部材や、大きな工具にも十分に対応できるだけの、体積寸法が大きい工具部材を効率的に製造するためには、上記の固化成形時の温度が高いほど良い。しかし、900℃を超えるような高温域では、鉄系の材料ではほとんどの成分系で相変態が起こり、結晶粒が成長してしまう。しかも、昇温時と降温時の二回の相変態が起こることによって、極端に大きな結晶粒サイズになってしまう。この点、焼入れできる素材の場合、結晶粒成長が起こる相変態は昇温時の一回のみとなり、降温時に結晶粒成長は起こらないことから微細な結晶粒サイズを維持でき、結晶粒微細化強化を利用できる。   Further, it is very important that the tool member of the present invention is a material that can be quenched and tempered in order to manufacture a tool member having excellent high-temperature strength characteristics. That is, in order to efficiently manufacture a tool member having a large volume dimension that can sufficiently cope with a high alloy type tool member or a large tool, it is preferable that the temperature at the time of solidification molding is higher. However, in a high-temperature region exceeding 900 ° C., phase transformation occurs in almost all component systems of iron-based materials, and crystal grains grow. In addition, an extremely large crystal grain size results from the two phase transformations at the time of temperature increase and at the time of temperature decrease. In this respect, in the case of a material that can be quenched, the phase transformation in which crystal grain growth occurs occurs only once when the temperature is raised, and the crystal grain growth does not occur when the temperature is lowered, so that the fine grain size can be maintained and the grain refinement strengthened Can be used.

表1に示した供試材Aは、ガスアトマイズ法で作製した合金粉末と市販のY酸化物粉末の混合粉末を遊星型ボールミル装置を用いて回転数2300rpmで100時間のメカニカルミリング処理によって作製した粉末である。組成はSKD61に相当し、これにY酸化物が全体積の3%になるよう添加されている。 Specimen A shown in Table 1 was prepared by subjecting a mixed powder of an alloy powder produced by a gas atomizing method and a commercially available Y 2 O 3 oxide powder to mechanical milling at 100 rpm for 2 hours at 2300 rpm using a planetary ball mill. It is a prepared powder. The composition corresponds to SKD61, to which Y 2 O 3 oxide is added to be 3% of the total volume.

メカニカルミリングの条件は、その処理後粉末の平均結晶粒径が100nm以下になるよう装置因子を調整しており、透過型電子顕微鏡を用いた観察(10万倍の暗視野像を1視野)およびX線回折法による半価幅を利用して算出した供試材Aの処理後粉末の平均結晶粒径は約30nmであった。   The conditions of the mechanical milling were adjusted by adjusting the device factors so that the average crystal grain size of the powder after the treatment was 100 nm or less, observation using a transmission electron microscope (100,000-fold dark field image in one field) and The average crystal grain size of the powder after the treatment of the test material A, calculated using the half width by X-ray diffraction, was about 30 nm.

つぎに、供試材Aの上記処理後粉末を金属製の容器に入れて1000℃で圧延することで固化成形したのち、比較材として表1に別に準備したSKD61溶製材と共に、SKD61の標準的な焼入れ焼戻し温度である1020℃での焼入れ処理と、500℃および550℃での焼戻しを行った。そして、その焼入れ焼戻し後の旧オーステナイト粒径の最大結晶粒径、粒径25nm以下の酸化物については、その最大径および単位体積当たりの個数、そして焼入れ状態および焼戻し後の硬さを測定した。結晶粒径の評価は透過型電子顕微鏡を用いた薄膜観察の結果(4万倍を4視野)から行った。酸化物の評価は透過型電子顕微鏡を用いた薄膜観察の結果(最大径:40万倍の暗視野像を1視野、単位体積あたりの個数:40万倍のFeのエレメントイメージを1視野)から行った。硬度測定はマイクロビッカース硬度計を用いて測定した。結果を表2に示す。   Next, after the above-mentioned powder of the test material A was placed in a metal container and solidified by rolling at 1000 ° C., a standard material of SKD61 was prepared together with a melted SKD61 material prepared separately in Table 1 as a comparative material. A quenching treatment at 1020 ° C., which is a quenching and tempering temperature, and a tempering at 500 ° C. and 550 ° C. were performed. Then, the maximum crystal grain size of the prior austenite grain size after quenching and tempering, the oxide having a grain size of 25 nm or less, the maximum diameter and the number per unit volume, the quenched state and the hardness after tempering were measured. The evaluation of the crystal grain size was performed based on the results of thin film observation using a transmission electron microscope (40,000 magnifications, 4 visual fields). The evaluation of the oxide is based on the results of thin film observation using a transmission electron microscope (maximum diameter: 400,000-fold dark field image per field, number per unit volume: 400,000 element image of Fe, 1 field). went. The hardness was measured using a micro Vickers hardness tester. Table 2 shows the results.

供試材Aの焼戻し組織は、焼戻し温度に関わらず、およそ0.1〜0.5μmのサイズの旧オーステナイト結晶粒からなっており、その測定による最大の結晶粒径は0.5μmであった。一方、溶製法で作製したSKD61の焼戻し組織も焼戻し温度に関わらず、旧オーステナイト粒径は平均で22μmであり、その一般的な粒径である約20μmと比べて、本発明の結晶粒径は極めて微細である。また、供試材Aの500℃焼戻し材の酸化物の最大径は9.4nmで1μm当り123577個存在し、供試材Aの550℃焼戻し材の酸化物の最大径は9.8nmで1μm当り118904個存在した。なお、両供試材の組織中に粒径25nmを越える酸化物は確認されなかった。 The tempered structure of the test material A was composed of old austenite crystal grains having a size of about 0.1 to 0.5 μm, regardless of the tempering temperature, and the maximum crystal grain size measured was 0.5 μm. . On the other hand, regardless of the tempering temperature, the tempered structure of SKD61 produced by the melting method has an average austenite grain size of 22 μm on average, and the crystal grain size of the present invention is smaller than the general grain size of about 20 μm. Extremely fine. The maximum diameter of the oxide of the tempered material at 500 ° C. of the test material A was 9.4 nm, and there were 123,577 particles per 1 μm 3. The maximum diameter of the oxide of the tempered material at 550 ° C. of the test material A was 9.8 nm. There were 118,904 per 1 μm 3 . Note that no oxides having a particle size exceeding 25 nm were found in the structures of both test materials.

一方、溶製法で作製したSKD61の焼戻し材の組織中には1μmを越える大きな酸化物(アルミナ系など)が極わずかに存在したが、粒径25nm以下の酸化物は今回の手法では観察されなかった。   On the other hand, in the structure of the tempered material of SKD61 produced by the melting method, very large oxides (such as alumina-based) exceeding 1 μm were present, but oxides having a particle size of 25 nm or less were not observed by this method. Was.

そして、本発明材は、結晶粒微細化に起因して焼入れ硬さが非常に高く、さらに温熱間工具がよく使用される温度域でもある500℃および550℃で焼戻しても硬さはほぼ維持されており、高硬度かつ高温強度に優れている。これに対して、比較材は焼戻し後に硬さがかなり低下していることがわかる。本発明材の場合、その焼入れ時の組織も調べたところ、およそ0.1〜0.5μmのサイズの結晶粒(大角粒)であった。酸化物が非常に微細かつ多数存在することによって、高温での固化成形および焼入れ過程での結晶粒の成長抑制に加えて、焼戻し過程(使用過程)での結晶粒の成長も抑制できていた。   The material of the present invention has a very high quenching hardness due to the refinement of crystal grains, and the hardness is substantially maintained even when tempered at 500 ° C. and 550 ° C., which are the temperature ranges where warm tools are often used. It has excellent hardness and high-temperature strength. On the other hand, it can be seen that the hardness of the comparative material is considerably reduced after tempering. In the case of the material of the present invention, when the structure at the time of quenching was also examined, it was found to be crystal grains (large-angle grains) having a size of about 0.1 to 0.5 μm. Due to the existence of very fine and numerous oxides, the growth of crystal grains during the tempering process (use process) as well as the growth of crystal grains during the solidification molding and quenching processes at high temperatures could be suppressed.

表3に示した供試材Bは、ガスアトマイズ法で作製した合金粉末と市販のY酸化物粉末の混合粉末を遊星型ボールミル装置を用いて回転数2300rpmで100時間のメカニカルミリング処理によって作製した粉末である。組成は一次炭化物をほとんど含まない高速度鋼(以下マトリクス高速度鋼と記す)に相当し、これにY酸化物が全体積の3%になるよう添加されている。メカニカルミリングの条件設定は(実施例1)に従うものであり、透過型電子顕微鏡を用いた観察(10万倍の暗視野像を1視野)およびX線回折法による半価幅を利用して算出した供試材Bの処理後粉末の平均結晶粒径は約20nmであった。 Specimen B shown in Table 3 was obtained by subjecting a mixed powder of an alloy powder produced by a gas atomization method and a commercially available Y 2 O 3 oxide powder to mechanical milling at a rotation speed of 2300 rpm for 100 hours using a planetary ball mill. It is a prepared powder. The composition corresponds to a high-speed steel containing almost no primary carbide (hereinafter referred to as a matrix high-speed steel), to which Y 2 O 3 oxide is added so as to be 3% of the total volume. The condition setting of the mechanical milling is in accordance with (Example 1), and is calculated using observation using a transmission electron microscope (one dark field image of 100,000 magnification) and the half width by X-ray diffraction. The average crystal grain size of the powder after the treatment of the test material B was about 20 nm.

つぎに、供試材Bの上記処理後粉末を、金属製の容器に入れて1000℃で圧延することで固化成形したのち、比較材として表3に別に準備したマトリクス高速度鋼の溶製材と共に、該マトリクス高速度鋼の標準的な焼入れ焼戻し温度である1140℃での焼入れ処理と、500℃および550℃での焼戻しを行った。そして、(実施例1)に同様にその焼入れ焼戻し後の旧オーステナイト粒径の最大の結晶粒径、粒径25nm以下の酸化物については、その最大径および単位体積当たりの個数と、焼入れ状態および焼戻し後の硬さを測定した。結果を表4に示す。   Next, after the above-mentioned powder of the test material B was placed in a metal container and solidified by rolling at 1000 ° C., the powder was mixed with a matrix high speed steel prepared separately as shown in Table 3 as a comparative material. The matrix high speed steel was quenched at 1140 ° C., which is a standard quenching and tempering temperature, and tempered at 500 ° C. and 550 ° C. In the same manner as in (Example 1), the oxide having the largest grain size of the prior austenite grain size after the quenching and tempering and the grain size of 25 nm or less, the maximum size and the number per unit volume, the quenched state and The hardness after tempering was measured. Table 4 shows the results.

供試材Bの焼戻し組織は、焼戻し温度に関わらず、およそ0.1〜0.4μmのサイズの旧オーステナイト結晶粒からなっており、その測定による最大の結晶粒径は0.4μmであった。一方、溶製法で作製したマトリクス高速度鋼の焼戻し組織も焼戻し温度に関わらず、旧オーステナイト粒径は平均で22μmであり、その一般的な粒径である約20μmと比べて、本発明の結晶粒径は極めて微細である。また、供試材Bの500℃焼戻し材の酸化物の最大径は10.2nmで1μm当り109971個存在し、供試材Bの550℃焼戻し材の酸化物の最大径は9.5nmで1μm当り114357個存在した。なお、両供試材の組織中に粒径25nmを越える酸化物は確認されなかった。 The tempered structure of the test material B was composed of old austenitic crystal grains having a size of about 0.1 to 0.4 μm, regardless of the tempering temperature, and the maximum crystal grain size measured was 0.4 μm. . On the other hand, regardless of the tempering temperature, the tempered structure of the matrix high-speed steel produced by the smelting method has an average austenite grain size of 22 μm on average, which is smaller than the general grain size of about 20 μm. The particle size is very fine. The maximum diameter of the oxide of the sample B tempered material at 500 ° C. is 10.2 nm, and there are 109971 per 1 μm 3 of the oxide. The maximum diameter of the oxide of the sample B 550 ° C. tempered material is 9.5 nm. There were 114357 per 1 μm 3 . Note that no oxides having a particle size exceeding 25 nm were found in the structures of both test materials.

一方、溶製法で作製したマトリクス高速度鋼の焼戻し材の組織中には1μmを越える大きな酸化物(アルミナ系など)が極わずかに存在したが、粒径25nm以下の酸化物は今回の手法では観察されなかった。   On the other hand, in the structure of the tempered material of the matrix high-speed steel manufactured by the smelting method, very large oxides exceeding 1 μm (such as alumina-based) were present, but oxides having a particle size of 25 nm or less were not used in this method. Not observed.

そして、本発明材は、結晶粒微細化に起因して焼入れ硬さが非常に高く、さらに温熱間工具がよく使用される温度域でもある500℃および550℃の焼戻し後にはむしろやや上昇している。これに対して、比較材は焼戻し後に硬さがかなり低下していることがわかる。なお、供試材Bの場合も、その焼入れ時の組織はおよそ0.1〜0.4μmのサイズの結晶粒(大角粒)からなっていた。   The material of the present invention has a very high quenching hardness due to the refinement of crystal grains, and further rises slightly after tempering at 500 ° C. and 550 ° C., which is also a temperature range where warm tools are often used. I have. On the other hand, it can be seen that the hardness of the comparative material is considerably reduced after tempering. In addition, also in the case of the test material B, the structure at the time of quenching was composed of crystal grains (large-angle grains) having a size of about 0.1 to 0.4 μm.

本発明によって、工具部材の結晶粒を非常に微細化し、かつ高温強度特性を飛躍的に改善することによって、従来材よりも非常に長寿命になるだけでなく、従来材では耐えられないような高負荷環境にも適用できる。   According to the present invention, by extremely refining the crystal grains of the tool member and dramatically improving the high-temperature strength characteristics, not only the life becomes longer than the conventional material, but also the conventional material cannot withstand. Applicable to high load environments.

本発明の工具部材の組織を示す、透過型電子顕微鏡写真(暗視野像)である。It is a transmission electron micrograph (dark-field image) which shows the structure of the tool member of the present invention. 本発明の工具部材の組織を示す、透過型電子顕微鏡写真(Feのエレメントイメージ)である。It is a transmission electron micrograph (Fe element image) which shows the structure of the tool member of this invention. 本発明の工具部材の組織を示す、透過型電子顕微鏡写真(暗視野像)である。It is a transmission electron micrograph (dark-field image) which shows the structure of the tool member of the present invention.

Claims (4)

焼入れ焼戻しされた工具部材であって、質量%でC:0.1〜3.0%、Cr:1.0〜18.0%を含む工具鋼からなり、組織中には粒径25nm以下の酸化物が1μmあたり750個以上分散しかつ、旧オーステナイト粒界による結晶粒径が最大10μm以下であることを特徴とする高温強度特性に優れた工具部材。 A quenched and tempered tool member comprising tool steel containing 0.1 to 3.0% by mass of C and 1.0 to 18.0% by mass of Cr, and having a grain size of 25 nm or less in the structure. A tool member excellent in high-temperature strength characteristics, characterized in that 750 or more oxides are dispersed per 1 μm 3 and the crystal grain size due to prior austenite grain boundaries is 10 μm or less at maximum. 組織中に分散する酸化物の粒径は最大で25nm以下であることを特徴とする請求項1に記載の高温強度特性に優れた工具部材。 The tool member having excellent high-temperature strength characteristics according to claim 1, wherein the particle size of the oxide dispersed in the structure is 25 nm or less at the maximum. 質量%でC:0.1〜3.0%、Cr:1.0〜18.0%かつ、酸化物が0.3〜5.0体積%になるように混合された工具鋼粉末と酸化物粉末の混合粉末をメカニカルミリングした後、固化成形し、焼入れ焼戻しすることを特徴とする高温強度特性に優れた工具部材の製造方法。 C: 0.1 to 3.0% by mass, Cr: 1.0 to 18.0%, and tool steel powder mixed so that the oxide is 0.3 to 5.0% by volume and oxidation. A method for producing a tool member having excellent high-temperature strength characteristics, comprising mechanically milling a mixed powder of material powders, solidifying and then quenching and tempering. 工具鋼粉末と酸化物粉末の混合粉末をメカニカルミリングした後、固化成形、機械加工して、焼入れ焼戻しすることを特徴とする請求項3に記載の高温強度特性に優れた工具部材の製造方法。 The method according to claim 3, wherein the mixed powder of the tool steel powder and the oxide powder is mechanically milled, then solidified, machined, and quenched and tempered.
JP2003327038A 2003-05-13 2003-09-19 Tool member with excellent high-temperature strength characteristics and method for producing the same Expired - Fee Related JP4277264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003327038A JP4277264B2 (en) 2003-05-13 2003-09-19 Tool member with excellent high-temperature strength characteristics and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003133882 2003-05-13
JP2003327038A JP4277264B2 (en) 2003-05-13 2003-09-19 Tool member with excellent high-temperature strength characteristics and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004360062A true JP2004360062A (en) 2004-12-24
JP4277264B2 JP4277264B2 (en) 2009-06-10

Family

ID=34067154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003327038A Expired - Fee Related JP4277264B2 (en) 2003-05-13 2003-09-19 Tool member with excellent high-temperature strength characteristics and method for producing the same

Country Status (1)

Country Link
JP (1) JP4277264B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119722A1 (en) * 2006-04-11 2007-10-25 Hitachi Metals, Ltd. Process for producing steel material
JP2007297703A (en) * 2006-04-05 2007-11-15 Hitachi Metals Ltd High-strength tool excellent in softening characteristic and surface finish acceptance and its production method
JP2010031366A (en) * 2008-06-26 2010-02-12 Hitachi Metals Ltd Die having high temperature strength and excellent surface finish property, and method for producing the same
JP2013028863A (en) * 2011-06-24 2013-02-07 Hitachi Metals Ltd Method for manufacturing high strength die having excellent high temperature softening resistance
CN104388819A (en) * 2014-10-31 2015-03-04 苏州莱特复合材料有限公司 Powdered metallurgic material for cutting tools and preparation method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297703A (en) * 2006-04-05 2007-11-15 Hitachi Metals Ltd High-strength tool excellent in softening characteristic and surface finish acceptance and its production method
WO2007119722A1 (en) * 2006-04-11 2007-10-25 Hitachi Metals, Ltd. Process for producing steel material
EP2006398A1 (en) * 2006-04-11 2008-12-24 Hitachi Metals, Limited Process for producing steel material
KR101074297B1 (en) 2006-04-11 2011-10-17 히타치 긴조쿠 가부시키가이샤 Process for producing steel material
JP5088633B2 (en) * 2006-04-11 2012-12-05 日立金属株式会社 Steel manufacturing method
EP2006398A4 (en) * 2006-04-11 2013-06-19 Hitachi Metals Ltd Process for producing steel material
JP2010031366A (en) * 2008-06-26 2010-02-12 Hitachi Metals Ltd Die having high temperature strength and excellent surface finish property, and method for producing the same
JP2013028863A (en) * 2011-06-24 2013-02-07 Hitachi Metals Ltd Method for manufacturing high strength die having excellent high temperature softening resistance
CN104388819A (en) * 2014-10-31 2015-03-04 苏州莱特复合材料有限公司 Powdered metallurgic material for cutting tools and preparation method thereof
CN104388819B (en) * 2014-10-31 2016-06-29 新昌县大市聚镇海房机械厂 A kind of powdered metallurgical material for cutting tool and preparation method thereof

Also Published As

Publication number Publication date
JP4277264B2 (en) 2009-06-10

Similar Documents

Publication Publication Date Title
JP6974607B2 (en) Laminated modeling hot tool and its manufacturing method, and metal powder for laminated modeling hot tool
RU2324576C2 (en) Nanocristallic metal material with austenic structure possessing high firmness, durability and viscosity, and method of its production
Auger et al. Microstructure and mechanical behavior of ODS and non-ODS Fe–14Cr model alloys produced by spark plasma sintering
TW201037092A (en) Iron vanadium powder alloy
GB2248454A (en) Sintered materials
Zheng et al. Achieving enhanced strength in ultrafine lamellar structured Al2024 alloy via mechanical milling and spark plasma sintering
WO2005092543A1 (en) Nano crystalline white cast iron powder having high hardness and nano crystalline white cast iron bulk material having high hardness, high strength and high toughness, and method for production thereof
JP5590496B2 (en) Mold with excellent high-temperature strength and surface finish characteristics and method for producing the same
JP5212774B2 (en) Hot tool steel excellent in toughness and high temperature strength and method for producing the same
JP2018508652A (en) Corrosion-resistant article and manufacturing method
JP2009185328A (en) Iron-based sintered alloy and production method therefor
JP2004360062A (en) Tool member having excellent high temperature strength property, and its production method
Chang et al. Mechanical properties and microstructures of Mo2C strengthened Vanadis 4 Extra alloy steel by powder metallurgy and heat treatments
JP5088532B2 (en) High-strength tool with excellent softening and surface finish characteristics and manufacturing method thereof
JP2019116688A (en) Powder high speed tool steel
JP5896296B2 (en) Manufacturing method of high-strength mold with excellent high-temperature softening resistance
KR20170030567A (en) Corrosion resistant article and methods of making
JP4281857B2 (en) Sintered tool steel and manufacturing method thereof
JP6378717B2 (en) Iron-based sintered alloy and method for producing the same
KR20160071619A (en) Method for manufacturing fe-based superalloy
CN110607487B (en) ODS-Fe3Al alloy, alloy product and preparation method thereof
Dunstan et al. Feasibility of using titanium machine turnings in powder metallurgy processes
Khalil et al. Application of Al-Si semi-solid reaction for fabricating harmonic structured Al based alloy
JP2004143596A (en) Tenacious metallic nano-crystalline bulk material with high hardness and high strength, and its manufacturing method
JP6930590B2 (en) Alloy steel powder for powder metallurgy and iron-based mixed powder for powder metallurgy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4277264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees