JP2004360051A - Metal electrolytic winning method - Google Patents

Metal electrolytic winning method Download PDF

Info

Publication number
JP2004360051A
JP2004360051A JP2003163026A JP2003163026A JP2004360051A JP 2004360051 A JP2004360051 A JP 2004360051A JP 2003163026 A JP2003163026 A JP 2003163026A JP 2003163026 A JP2003163026 A JP 2003163026A JP 2004360051 A JP2004360051 A JP 2004360051A
Authority
JP
Japan
Prior art keywords
gas
anode
anolyte
metal
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003163026A
Other languages
Japanese (ja)
Inventor
Soichi Kawada
宗一 川田
Hiroshi Sato
浩 佐藤
Nobumasa Iemori
伸正 家守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2003163026A priority Critical patent/JP2004360051A/en
Publication of JP2004360051A publication Critical patent/JP2004360051A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal electrolytic winning method of generating gas from an anode where, even in the case suction equipment for gas is stopped by trouble or the like, the liquid face of an electrolytic cell can be held constant, and also, influence is not exerted on the concentration of nickel in the liquid and the balance of the liquid within the system. <P>SOLUTION: In the method of electrolytically winning metal from an electrolyte of a metal salt aqueous solution while an anode liquid and gas within an insoluble anode box are exhausted in a sucking way from an exhaust tube, in the generation of gas from an anode, electrolysis is performed so that the height H1 (mmH<SB>2</SB>O) of piping from the face of the anode liquid in the exhaust tube and the absolute value P1 (mmH<SB>2</SB>O) of the negative pressure of the exhaust tube satisfy H1>3P1. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、陽極からガスを発生する金属電解採取法に係り、より詳しくはガスおよび陽極液の吸引が停止しても電解液の排出を防止する金属電解採取方法に関する。
【0002】
【従来の技術】
従来から、例えばニッケルを採取する方法として、Niを主成分とするニッケルマットを粉砕した後、塩化物溶液にリパルプして塩素ガスを吹込み、ニッケルを含む金属を浸出し、その浸出液から銅、コバルト、鉄等を化学的処理によって除去した後、得られた塩化ニッケル水溶液から、不溶性陽極(以下陽極と略称する)を用いる電解法によって陰極のニッケル板上にニッケルを電着採取する方法が行われている。
【0003】
このような金属塩化物溶液からの電解採取方法においては、陽極側において塩素ガスが発生するので、この塩素ガスを陽極の周囲を囲むようにして設けた陽極ボックス内で捕集して電解槽外へ排出する機構が必要となる。このような場合に用いられる陽極ボックスとしては、従来、例えば図2、図3に示すようなものが知られている(特許文献1参照)。
すなわち、図2にその構成を示すように、陽極ボックス1は、上部においてアノードビーム3に連結され、該ボックス内の陽極2の上部を包むように設けられたカバー部4の上部から内部へ突設された排出管5を備え、該排出管の先端がガスと陽極液とを同時に吸引できるように斜めに切り落とされた形状に形成され、かつ溶液中に浸漬しないように配置されている。図中、6は枠、7は補強桟、8は陽極2、枠6および補強桟7を覆うろ布である。
図3は上記構成の陽極ボックスを装備した電解槽例を示したもので、電解槽11の上部に配設されたブスバー12上にアノードビーム3とカソードビーム14が載置されてそれぞれ通電される構成となし、ガスヘッダー15に接続された排出管5より塩素ガスおよび陽極液が排出されるように構成されている。図中13はカソードである。
【0004】
特許文献1に記載されている金属電解採取方法は、前記陽極ボックス1のカバー部4内の気相圧を−5mmHO以下、陽極液の液面を電解槽液面より5〜20mm低くするように陽極液および塩素ガスを前記排出管5より吸引排出しながら電解を行うことで、陽極ボックス1内から該ボックスの外へ塩素ガスが逆拡散するのを防止している。また、排出管5より吸引排出された陽極液および塩素ガスは、それぞれ分離ポット(図示せず)で分離され、陽極液は廃液槽(図示せず)に回収され、塩素ガスはタンクに回収されるように構成され、かつ吸引設備が停電等のトラブルで停止した場合の塩素ガスの大気中への漏洩を防止するために、吸引設備停止と電解給電設備が連動して停止する安全策が取られている。
【0005】
【特許文献1】特許第2751900号
【0006】
【発明が解決しようとする課題】
しかしながら、上記した従来技術は、以下に記載する問題点がある。
すなわち、図1、図2に示す陽極ボックスを装備した電解槽による金属電解採取方法は、排出管5の液面からの配管高さが低い場合、ガス吸引設備がトラブル等により停止した際には、陽極でのガスの発生停止により陽極液が上昇し、かつ一時的に吸引設備配管の負圧が定常状態の2〜3倍程度となるため、排出管から陽極液のみが排出され、吸引配管内の負圧が低下した後でもサイフォン現象により電解槽内の液が排出されることになる。このことにより、ガス吸引設備の下流に設けられた廃液槽の液面が上昇し、廃液槽から溢流した液が系内に戻されたりするため、系内の液中ニッケル濃度の低下および液バランスが崩れるという問題が発生する。
【0007】
本発明は、上記した問題を解決するためになされたもので、ガスを発生する金属塩水溶液から金属を電解採取する際、陽極液およびガスの吸引設備がトラブル等により停止した場合でも、電解槽内の電解液が排出管から排出されることがなく電解槽液面を一定に保持することができ、かつ系内の液中ニッケル濃度および液バランスに影響をおよぼさない金属電解採取方法を提案しようとするものである。
【0008】
【課題を解決するための手段】
本発明に係る金属電解採取方法は、金属板を陰極とし、不溶性陽極と、該不溶性陽極の上部を包みガスを捕集するためのカバー部と前記不溶性陽極の電解液中に浸漬させた部分を覆うろ布とを具備する不溶性陽極ボックスを用い、該不溶性陽極ボックス内の気相圧を−5mmHO以下、陽極液の液面を電解槽液面より5〜20mm低くするように陽極液およびガスを前記カバー部に設けた排出管より吸引排出しながら金属塩水溶液電解液から金属を電解採取する方法において、前記排出管の陽極液面からの配管高さH1(mmHO)が該排出管の負圧の絶対値P1(mmHO)に対し、H1>3P1となるように、電解を行うことを特徴とするものである。
【0009】
本発明において、排出管の陽極液面からの配管高さH1をH1>3P1と規定したのは、排出管の陽極液面からの配管高さH1が3P1未満と低い場合は、ガス吸引設備がトラブル等により停止した際、陽極でのガス発生停止により陽極液面が上昇し、排出管から陽極液のみが排出され、吸引配管内の負圧が停止した後でもサイフォン現象により電解槽内の液が排出されるためである。なお、排出管の陽極液面からの配管高さH1の上限は、特に限定されないが、設備配置やスペースを考慮し、かつ定常操業時の吸引負荷を軽減するため5P1程度が好ましい。
【0010】
【発明の実施の形態】
図1は本発明方法に実施するために用いる陽極ボックスおよびガス排出管の一実施例を示す概念図であり、20は陽極液、21は電解液、20Lは陽極液面、21Lは電解槽液面、Pは吸引ポンプである。
すなわち、本発明方法は、陽極ボックス1内の気相圧を−5mmHO以下、陽極液20の液面20Lを電解槽液面21Lより5〜20mm低くするように陽極液20およびガスをカバー部4に設けた排出管5より吸引排出しながら金属塩水溶液電解液から金属を電解採取する際に、前記排出管5の陽極液面20Lからの配管高さH1(mmHO)を該排出管5の負圧の絶対値P1(mmHO)の3倍以上の高さに設定して電解を行う。なお、排出管5の負圧の絶対値P1は、ガスヘッダー15(図3)に取付けられているマノメーター(図示せず)により測定される負圧の絶対値を水柱として表した値である。
【0011】
上記のように、ガス排出管5の配管高さH1を該排出管5の負圧の絶対値P1(mmHO)の3倍以上の高さに設定して電解を実施した場合には、吸引ポンプP等の吸引設備がトラブル等により停止し一時的に排出管5の負圧が上昇しても、電解槽11内の電解液21がサイフォン現象によりガス排出管5から排出されることがないため、電解槽11内の液面21Lは一定に保持されて低下することがない。
【0012】
【実施例】
実施例
52枚のニッケル陰極と、53枚の図2と同様に構成した陽極ボックスを装備した容量7mの実操業規模の電解槽を使用して、Ni95g/L、Cl130g/L、pH2.0、溶解Clは含まない電解液を35L/minで供給し、通電電流を20.0〜22.5kAに変化させ、陰極電流密度を243〜273A/m、陽極液面を電解槽液面より20mm低くし、陽極ボックスに取付けた排出管の配管高さH1を陽極液面より300mmとし、塩素ガスヘッダーの負圧を80mmHOに制御するという条件でガスと陽極液を排出しつつ電解を実施し、その実施中に吸引設備を停止した時の電解槽液面を観察した。
その結果、塩素ガスヘッダーの負圧は一時的に−200mmHOまで上昇したが、陽極液の排出はなく、電解槽内の液面低下は生じなかった。
【0013】
比較例
陽極ボックスに取付けた排出管の配管高さH1を陽極液面より110mmとした以外は、実施例と同じ条件で電解を実施した結果、吸引設備停止後、塩素ガスヘッダーの負圧が一時的に−200mmHOまで上昇したときに陽極液が排出管より排出され、電解槽内の液面が低下した。
【0014】
【発明の効果】
以上説明したごとく、本発明方法によれば、ガス排出管の陽極液面からの配管高さを適正な高さに設定することにより、ガス吸引設備がトラブル等により停止し一時的に排出管の負圧が上昇しても、電解槽内の電解液が排出管から排出されることなく電解槽内の液面を一定に保持することができるので、電解採取を安定して行うことができ、かつ系内の液中ニッケル濃度および液バランスに影響をおよぼすことも無くなる等の顕著な効果を奏する。
【図面の簡単な説明】
【図1】本発明方法に実施するために用いる陽極ボックスおよびガス排出管の一実施例を示す概念図である。
【図2】本発明の対象とする従来の陽極ボックス例を一部破断して示す斜視図である。
【図3】図2に示す陽極ボックスを装備した電解槽の一例を一部破断して示す斜視図である。
【符号の説明】
1 陽極ボックス
2 陽極
3 アノードビーム
4 カバー部
5 排出管
6 枠
7 補強桟
8 ろ布
11 電解槽
12 ブスバー
13 カソード
14 カソードビーム
15 ガスヘッダー
20 陽極液
21 電解液
20L 陽極液面
21L 電解槽液面
P 吸引ポンプ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a metal electrowinning method for generating gas from an anode, and more particularly to a metal electrowinning method for preventing discharge of an electrolytic solution even when suction of gas and anolyte is stopped.
[0002]
[Prior art]
Conventionally, as a method of collecting nickel, for example, a nickel mat mainly composed of Ni 3 S 2 is pulverized, then repulped into a chloride solution, and chlorine gas is blown into the metal to leaching the metal containing nickel. After removing copper, cobalt, iron, etc. from the resulting nickel chloride solution, nickel is electrodeposited on the nickel plate of the cathode by an electrolytic method using an insoluble anode (hereinafter abbreviated as anode) from the obtained nickel chloride aqueous solution. The way has been done.
[0003]
In such a method of electrowinning from a metal chloride solution, chlorine gas is generated on the anode side, so this chlorine gas is collected in an anode box provided so as to surround the anode and discharged out of the electrolytic cell. A mechanism to do this is required. Conventionally, as an anode box used in such a case, for example, one shown in FIGS. 2 and 3 is known (see Patent Document 1).
That is, as shown in FIG. 2, the anode box 1 is connected to the anode beam 3 at the upper part, and protrudes from the upper part of the cover part 4 provided to surround the upper part of the anode 2 in the box. A discharge pipe 5 is provided, and the tip of the discharge pipe is formed so as to be cut off obliquely so that gas and anolyte can be sucked simultaneously, and is arranged so as not to be immersed in the solution. In the figure, 6 is a frame, 7 is a reinforcing bar, and 8 is a filter cloth covering the anode 2, the frame 6 and the reinforcing bar 7.
FIG. 3 shows an example of an electrolytic cell equipped with an anode box having the above-described structure. An anode beam 3 and a cathode beam 14 are placed on a bus bar 12 disposed above an electrolytic cell 11 and are respectively energized. The chlorine gas and the anolyte are discharged from the discharge pipe 5 connected to the gas header 15. In the figure, reference numeral 13 denotes a cathode.
[0004]
Metal electrowinning method described in Patent Document 1, the anode gas phase pressure of the cover portion 4 of the box 1 -5mmH 2 O or less, to 5~20mm lower than the liquid level electrolyzer liquid level of the anolyte By performing electrolysis while sucking and discharging the anolyte and the chlorine gas from the discharge pipe 5, the back diffusion of the chlorine gas from the inside of the anode box 1 to the outside of the box is prevented. Further, the anolyte and the chlorine gas sucked and discharged from the discharge pipe 5 are separated in respective separation pots (not shown), the anolyte is collected in a waste liquid tank (not shown), and the chlorine gas is collected in a tank. In order to prevent chlorine gas from leaking into the atmosphere when the suction equipment is stopped due to a trouble such as a power outage, safety measures to stop the suction equipment and the electrolytic power supply equipment in conjunction with each other are taken. Have been.
[0005]
[Patent Document 1] Japanese Patent No. 2751900
[Problems to be solved by the invention]
However, the above-described prior art has the following problems.
That is, the metal electrowinning method using the electrolytic cell equipped with the anode box shown in FIGS. 1 and 2 is performed when the gas suction equipment is stopped due to a trouble or the like when the pipe height from the liquid level of the discharge pipe 5 is low. Since the anolyte rises due to the stoppage of gas generation at the anode and the negative pressure of the suction facility pipe temporarily becomes about two to three times the steady state, only the anolyte is discharged from the discharge pipe, and the suction pipe is discharged. The liquid in the electrolytic cell is discharged due to the siphon phenomenon even after the negative pressure in the cell decreases. As a result, the liquid level in the waste liquid tank provided downstream of the gas suction equipment rises, and the liquid overflowing from the waste liquid tank is returned to the system. The problem that the balance is lost occurs.
[0007]
The present invention has been made in order to solve the above-described problems, and when electrowinning a metal from a metal salt aqueous solution that generates a gas, even when the anolyte and gas suction equipment is stopped due to a trouble or the like, the electrolytic cell A metal electrowinning method that does not affect the nickel concentration in the liquid and the liquid balance in the system that can maintain the electrolytic cell liquid level constant without the electrolytic solution in the system being discharged from the discharge pipe. It is something to propose.
[0008]
[Means for Solving the Problems]
In the metal electrowinning method according to the present invention, a metal plate is used as a cathode, an insoluble anode, a cover portion for wrapping an upper portion of the insoluble anode and collecting gas, and a portion immersed in the electrolyte of the insoluble anode. using an insoluble anode box and a filter cloth covering the following vapor pressures of -5mmH 2 O in the insoluble anode box, anolyte and to 5~20mm lower than the liquid level electrolyzer liquid level of the anolyte In the method of electrowinning a metal from an aqueous solution of a metal salt while sucking and discharging a gas from a discharge pipe provided in the cover portion, a pipe height H1 (mmH 2 O) from an anolyte surface of the discharge pipe is determined by the discharge. to the absolute value P1 (mmH 2 O) of the negative pressure of the tube, so that H1> 3P1, is characterized in performing the electrolysis.
[0009]
In the present invention, the pipe height H1 from the anolyte level of the discharge pipe is defined as H1> 3P1 because the pipe height H1 from the anolyte level of the discharge pipe is as low as less than 3P1, and the gas suction equipment is required. When stopped due to trouble, etc., the anolyte level rises due to the stoppage of gas generation at the anode, only the anolyte is discharged from the discharge pipe, and even after the negative pressure in the suction pipe stops, the liquid in the electrolytic cell due to the siphon phenomenon Is discharged. In addition, the upper limit of the pipe height H1 from the anolyte surface of the discharge pipe is not particularly limited, but is preferably about 5P1 in consideration of the arrangement and space of the facilities and to reduce the suction load at the time of steady operation.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a conceptual view showing an embodiment of an anode box and a gas discharge pipe used for carrying out the method of the present invention, wherein 20 is an anolyte, 21 is an electrolyte, 20 L is an anolyte surface, and 21 L is an electrolytic bath solution. Surface P is a suction pump.
That is, the method of the present invention covers the anolyte 20 and the gas so that the gas phase pressure in the anode box 1 is −5 mmH 2 O or less, and the liquid level 20 L of the anolyte 20 is 5 to 20 mm lower than the electrolytic cell liquid level 21 L. When the metal is electrolytically collected from the metal salt aqueous solution while being sucked and discharged from the discharge pipe 5 provided in the section 4, the pipe height H1 (mmH 2 O) from the anolyte surface 20L of the discharge pipe 5 is discharged. Electrolysis is performed with the height set to at least three times the absolute value P1 (mmH 2 O) of the negative pressure of the tube 5. The absolute value P1 of the negative pressure of the discharge pipe 5 is a value representing the absolute value of the negative pressure measured by a manometer (not shown) attached to the gas header 15 (FIG. 3) as a water column.
[0011]
As described above, when the pipe height H1 of the gas discharge pipe 5 is set to be at least three times the absolute value P1 (mmH 2 O) of the negative pressure of the discharge pipe 5, and electrolysis is performed, Even if the suction equipment such as the suction pump P is stopped due to a trouble or the like and the negative pressure of the discharge pipe 5 is temporarily increased, the electrolyte 21 in the electrolytic cell 11 may be discharged from the gas discharge pipe 5 due to a siphon phenomenon. Therefore, the liquid level 21L in the electrolytic cell 11 is kept constant and does not decrease.
[0012]
【Example】
Example 5 Using an electrolytic cell of a 7 m 3 capacity and a commercial scale equipped with 52 nickel cathodes and 53 anode boxes constructed in the same manner as in FIG. 2, Ni 95 g / L, Cl 130 g / L, pH 2.0 An electrolytic solution containing no dissolved Cl 2 is supplied at a rate of 35 L / min, the energizing current is changed to 20.0 to 22.5 kA, the cathode current density is 243 to 273 A / m 2 , and the anolyte surface is the electrolytic cell surface. more 20mm lower piping height H1 of the discharge pipe attached to the anode box and 300mm from the anolyte surface, while discharging the gas and anolyte under a condition of controlling the negative pressure of the chlorine gas header 80mmH 2 O electrolysis Was carried out, and the liquid level of the electrolytic cell when the suction equipment was stopped during the operation was observed.
As a result, the negative pressure of the chlorine gas header rose to temporarily -200mmH 2 O, no discharge of the anolyte did not result decrease the liquid level in the electrolytic cell.
[0013]
Comparative Example Electrolysis was performed under the same conditions as in the example except that the pipe height H1 of the discharge pipe attached to the anode box was set at 110 mm from the anolyte level. As a result, the negative pressure of the chlorine gas header was temporarily reduced after the suction equipment was stopped. to anolyte when raised to -200mmH 2 O is discharged from the discharge pipe, the liquid level in the electrolytic cell is lowered.
[0014]
【The invention's effect】
As described above, according to the method of the present invention, by setting the pipe height from the anolyte surface of the gas discharge pipe to an appropriate height, the gas suction equipment stops due to a trouble or the like, and the discharge pipe is temporarily stopped. Even if the negative pressure rises, the liquid level in the electrolytic cell can be kept constant without the electrolytic solution in the electrolytic cell being discharged from the discharge pipe, so that the electrolytic sampling can be performed stably, In addition, there is a remarkable effect that the nickel concentration in the liquid in the system and the liquid balance are not affected.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing one embodiment of an anode box and a gas exhaust pipe used for carrying out the method of the present invention.
FIG. 2 is a perspective view, partially cut away, showing an example of a conventional anode box to which the present invention is applied.
FIG. 3 is a perspective view partially broken away showing an example of an electrolytic cell equipped with the anode box shown in FIG. 2;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Anode box 2 Anode 3 Anode beam 4 Cover part 5 Drain pipe 6 Frame 7 Reinforcement bar 8 Filter cloth 11 Electrolysis tank 12 Bus bar 13 Cathode 14 Cathode beam 15 Gas header 20 Anolyte 21 Electrolyte 20 L Anolyte level 21 L Electrolyte level P suction pump

Claims (1)

金属板を陰極とし、不溶性陽極と、該不溶性陽極の上部を包みガスを捕集するためのカバー部と前記不溶性陽極の電解液中に浸漬させた部分を覆うろ布とを具備する不溶性陽極ボックスを用い、該不溶性陽極ボックス内の気相圧を−5mmHO以下、陽極液の液面を電解槽液面より5〜20mm低くするように陽極液およびガスを前記カバー部に設けた排出管より吸引排出しながら金属塩水溶液電解液から金属を電解採取する方法において、前記排出管の陽極液面からの配管高さH1(mmHO)が該排出管の負圧の絶対値P1(mmHO)に対し、H1>3P1となるように、電解を行うことを特徴とする金属電解採取方法。An insoluble anode box comprising a metal plate as a cathode, an insoluble anode, a cover part for wrapping the upper part of the insoluble anode and collecting gas, and a filter cloth covering a part of the insoluble anode immersed in the electrolytic solution. And a discharge pipe provided with the anolyte and the gas in the cover part such that the gas phase pressure in the insoluble anode box is −5 mmH 2 O or less and the liquid level of the anolyte is 5 to 20 mm lower than the liquid level of the electrolytic cell. a method of electrowinning a metal from a metal salt aqueous electrolyte solution with more suction outlet, the absolute value P1 (mmH the negative pressure pipe height from the anolyte surface of the discharge tube H1 (mmH 2 O) is exhaust extraction tube 2 ) A metal electrowinning method, wherein electrolysis is performed so that H1> 3P1.
JP2003163026A 2003-06-06 2003-06-06 Metal electrolytic winning method Pending JP2004360051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003163026A JP2004360051A (en) 2003-06-06 2003-06-06 Metal electrolytic winning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003163026A JP2004360051A (en) 2003-06-06 2003-06-06 Metal electrolytic winning method

Publications (1)

Publication Number Publication Date
JP2004360051A true JP2004360051A (en) 2004-12-24

Family

ID=34054953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003163026A Pending JP2004360051A (en) 2003-06-06 2003-06-06 Metal electrolytic winning method

Country Status (1)

Country Link
JP (1) JP2004360051A (en)

Similar Documents

Publication Publication Date Title
JPWO2019181662A1 (en) Alkaline water electrolysis apparatus and gas production method
CN103025920B (en) For the preparation of chlorine sodium hydroxide electrolyzer and prepare the method for chlorine sodium hydroxide
US20100264038A1 (en) High-pressure electrolysis installation and process for inertising an installation of this type
FI123851B (en) Cathodram and use of a cathodram
CN103305865B (en) The method of the foraminate oxygen-consuming electrode electrolyzing alkali metal chloride of apparatus
JPS6317914B2 (en)
JPH0780466A (en) Method and device for regenerating aqueous solution containing metal ion and sulfuric acid
JP4990127B2 (en) Electrochemical cell
JP4699105B2 (en) Gold recovery method and apparatus
EP2548997B1 (en) Electrolyzer apparatus
EP3045568A1 (en) Chlorine dioxide production device and chlorine dioxide production method
JP2004360051A (en) Metal electrolytic winning method
JP2009019250A (en) Method and apparatus for producing metal
JP2006241568A (en) Electrowinning method for iron from acid chloride aqueous solution
JP2009191362A (en) Apparatus for molten salt electrolysis and method for producing fluorine gas
JP2526734B2 (en) Insoluble anode box for metal electrowinning
JP2012193439A (en) Electrolytic bath facility for electrowinning metal manganese
JP2751900B2 (en) Metal electrowinning method
JP4143235B2 (en) Copper chloride etchant electrolytic regeneration system
JPS5831893Y2 (en) anode chamber
US4293395A (en) Process for electrolysis of an aqueous alkali metal chloride solution
US2099801A (en) Electrolytic apparatus for prepar
CA1119999A (en) Process for electrolysis of brine by mercury cathodes
JP3568805B2 (en) Treatment method of ferric chloride etching waste liquid and its regeneration method
JPH04318185A (en) Desilverizing method