JP2004360047A - High-tensile-strength steel material for flash butt welding superior in toughness of weld zone, and welded structure thereof - Google Patents

High-tensile-strength steel material for flash butt welding superior in toughness of weld zone, and welded structure thereof Download PDF

Info

Publication number
JP2004360047A
JP2004360047A JP2003162901A JP2003162901A JP2004360047A JP 2004360047 A JP2004360047 A JP 2004360047A JP 2003162901 A JP2003162901 A JP 2003162901A JP 2003162901 A JP2003162901 A JP 2003162901A JP 2004360047 A JP2004360047 A JP 2004360047A
Authority
JP
Japan
Prior art keywords
toughness
flash butt
welding
steel
weld
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003162901A
Other languages
Japanese (ja)
Other versions
JP4264298B2 (en
Inventor
Hajime Ishikawa
肇 石川
Ryuji Uemori
龍治 植森
Yoshiyuki Watabe
義之 渡部
Kenichi Yoshii
健一 吉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003162901A priority Critical patent/JP4264298B2/en
Publication of JP2004360047A publication Critical patent/JP2004360047A/en
Application granted granted Critical
Publication of JP4264298B2 publication Critical patent/JP4264298B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel for a welded structure including a 400 MPa grade or 490 MPa grade steel, which is usable for the flash butt welded structure such as a building, a bridge, a construction machine, a ship, an ocean structure and a line pipe, and to provide a steel structure thereof. <P>SOLUTION: This steel material has a steel composition comprising, by mass%, 0.03-0.2% C, 0.01-2.5% Si, 0.25-2.0% Mn, 0.03% or less P, 0.03% or less S and 0.05% or less Al, while controlling Mn/Si so as to satisfy 2 to 30, Ceq=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14 to 0.2 to 0.5, and Pcm=C+Si/30+Mn/20+Ni/60+Cu/20+Cr/20+Mo/15+V/15+5B to 0.1 to 0.3. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は建築、橋梁、建設機械、造船、海洋構造物、およびラインパイプなどの溶接構造物として利用可能な400MPa級や490MPa級をはじめとする溶接構造物用鋼に関わり、さらに詳しくはフラッシュバット溶接用の鋼材およびその溶接鋼構造物に関するものであり、本発明鋼は特に大断面でのフラッシュバット溶接に対して優れた靭性を発揮するものである。
【0002】
【従来の技術】
従来、フラッシュバット溶接はラインパイプ、鉄道レール、チェーン、あるいは機械部品など比較的断面積の小さい部材に適用されていた。しかし、近年建築用大断面溶接に適したフラッシュバット溶接機および溶接方法が報告されている(例えば、特許文献1及び2参照)。これらの発明は溶接する大断面鋼材個々にクランプ(または反力板、反力帯)を取り付け、その間をアクチュエータで相互に連結し、各大断面鋼材へ給電用の電極を取り付けた後に、アクチュエータでフラッシュおよびアップセット工程に対して同期した変位制御により加圧することにより溶接することを特徴としている。しかも本溶接方法では大断面鋼材のフラッシュバット溶接に対して、溶接機の小型化、軽量化が実現されており、現地溶接を可能にした点は特筆に値する。
【0003】
通常、鉄道レール、チェーン、あるいは機械部品などのフラッシュバット溶接部の材質特性に対しては、引張試験や曲げ試験などにより機械的特性が規格化されているが、溶接部の靭性に対しては厳格な要求がなされていなかった。これに対して、本発明の対象分野である建築分野では、たとえばJIS G 3136に規定されている建築構造用圧延鋼材(SN490等)の母材に対して、靭性値としてvE≧27Jが必要と明確に記載されている。近年、地震時の変形能付与の観点から、母材だけでなく溶接部の靭性も重要との認識が高まり、溶接部の靭性も十分に確保することが義務づけられる方向にある。しかしながら、現時点ではフラッシュバット溶接を行った場合の溶接部靭性を確保できる鋼材は公表されるに至っていない。
【0004】
なお、溶接部の引張試験や曲げ試験によって評価されるような材質特性(引張試験や曲げ試験等)を確保するための提案は、既になされている(例えば、特許文献3及び4参照)。前者は鋼帯を中継ぎ溶接するためにシールドガスを使用するための装置であり、後者は高張力鋼のフラッシュバット溶接のために油を塗布し、溶接時に燃焼させて溶接部の酸化物の量および形態制御を実施したものである。しかし、このようなシールド装置は溶接物が大きくなると大規模なものとなり、現地溶接には不向きである。また、油の塗布に関しては燃焼を伴うため厳しい安全管理を必要とするなどの欠点がある。
【0005】
以上のような背景から、現地溶接を可能とするようなフラッシュバット溶接に対して、しかも設備的な工夫を極力少なくできるような方策、換言すると、溶接後の材質特性、特に溶接部の靭性を確保できるような従来にない鋼材が強く求められている。
【0006】
【特許文献1】
特開2001−259849公報
【特許文献2】
特開2001−259850公報
【特許文献3】
実開昭58−85484公報
【特許文献4】
特許第2864338号公報
【0007】
【発明が解決しようとする課題】
フラッシュバット溶接は、高能率でしかも安定した溶接部を得ることができることから、溶接断面積の広い上記の用途への利用が図られつつある。その場合の問題点はフラッシュバット溶接後の溶接線(以下WL)や溶接熱影響部(以下HAZ)において、溶接構造物として重要な特性である溶接部靭性が低いことにある。
【0008】
この原因として、次のような理由が考えられる。
【0009】
(1)通常のフラッシュバット溶接機では溶接時にC、Si、Mnが酸化されフラッシュシングと共に排出されるため溶接線の強度が周辺のHAZより軟化する。一方、電流一定制御法(3C:constant current controlsと呼ばれる)では、逆にHAZより硬化する傾向にある。このような溶接線近傍での硬さ分布の微妙な変化によって靭性レベルが大きく変動するものと思われる。
【0010】
(2)フラッシュバット溶接を大断面に適用した場合には、フラッシング時間を長くすることが必要となり、この場合にはWLでの酸化物の生成が促進される。
【0011】
このため、本発明の目的は主として上記2点を解決し、フラッシュバット溶接後の溶接線およびHAZの靭性を向上させた鋼材を提供することにある。
【0012】
【課題を解決するための手段】
本発明者らは上記課題を解決するために溶接部近傍における硬さ、メタルフローの角度および靭性値との関係を詳細に調査した。その結果、以下の点が明らかになった。
【0013】
(1)フラッシュバット溶接のWLの硬さが200Hv以下で、溶接線の硬さとHAZ1mmの硬さの差が40Hv以内である場合、靭性値は良好である。
【0014】
(2)母材の圧延方向と溶接によって生じたメタルフローの角度が45゜以上である場合、靭性値はそれより小さい場合に比べて著しく向上する。
【0015】
前述したように電流一定の制御のフラッシュバット溶接では母材に対して溶接線近傍のHAZおよび溶接線で硬化する。溶接線の硬さと靭性の指標であるシャルピー吸収エネルギー(0℃)の関係を図1に示す。本結果から明らかなように靭性を確保するためには溶接線の硬さを200Hv以下にする必要があり、200Hv以上の値では急激に靭性値が低下する。また、脱炭等により溶接線の硬さが減少する場合も起こり得るが、図2に示すように溶接線の硬さが溶接熱影響部(溶接線より1mm)の硬さに比較して±40Hv以内である場合には靭性の低下は小さいことも確認されている。このような硬さ分布を確保するためには母材の鋼成分等を厳しく規制する必要がある。
【0016】
また、大断面の鋼材のフラッシュバット溶接ではフラッシング時間がより長くなるため、酸化物の生成量が多くなることがわかっている。このためアップセット時の加圧力も重要な溶接パラメーターとして考慮する必要がある。この加圧力を判定するものとして加圧方向と溶接によって生じたメタルフローの角度がある。酸化物を排除し、靭性を向上させるためにはこの角度を45゜以上にすることが重要であり、十分なアップセットをする必要がある。
【0017】
以上の知見に基づいて本発明を完成したもので、本発明の主旨とするところは下記の通りである。
【0018】
(1) 鋼成分が質量%で、
C:0.02〜0.2%、
Si:0.01〜2.5%、
Mn:0.25〜2.0%、
P:0.03%以下、
S:0.03%以下、
Al:0.05%以下
を含有し、
2≦Mn/Si≦30、
炭素当量(Ceq)を求める下記(1)式に従う炭素当量(Ceq)が0.2≦Ceq≦0.5、焼入れ性指数(Pcm)を求める下記(2)式に従う焼入れ性指数(Pcm)が0.1≦Pcm≦0.3

Figure 2004360047
を満足することを特徴とする溶接部靭性の優れたフラッシュバット溶接用高張力鋼材。
【0019】
(2) 鋼成分が、さらに、質量%で
Nb:0.005〜0.1%、
Ni:0.05〜1.0%、
Cu:0.05〜1.0%、
Cr:0.05〜2.0%、
Mo:0.05〜0.50%、
V:0.002〜0.5%、
B:0.0005〜0.01%、
Ca:0.0005〜0.005%、
Mg:0.0005〜0.005%、
REM:0.0005〜0.005%
の範囲で、1種以上を含有する鋼であることを特徴とする上記(1)記載のフラッシュバット溶接用高張力鋼材。
【0020】
(3) フラッシュバットの加圧方向と溶接によって生じたメタルフローの角度が45°以上であることを特徴とする上記(1)または(2)記載の鋼板を使用した溶接部高靭性の大断面フラッシュバット溶接構造物。
【0021】
(4) フラッシュバット溶接後の溶接部全体の硬さが200Hv以下で、溶接線の硬さと溶接熱影響部(溶接線から1mm)の硬さの差が40Hv以内であることを特徴とする上記(3)記載の溶接部高靭性の大断面フラッシュバット溶接構造物。
【0022】
【発明の実施の形態】
一般の溶接では、溶接部の靭性を確保するために焼入れ性と酸素雰囲気(フラックスやシールドガスの使用)などを規定する。たとえば、SAWでは強度確保の観点から化学成分の焼入れ性を高めることにより、オーバーマッチング(母材強度より溶接金属の方を硬くする)にすることが有効とされている。しかし、過度に溶接金属の強度を高くすると溶接金属の靭性が低下する。また、溶接雰囲気中の酸素量を規制することにより溶接金属中の酸素量を制御することができる。このことにより溶接金属中の酸化物、窒化物や炭化物の量や大きさを制御して靭性劣化を抑制するとともに、これらの酸化物や窒化物が最終フェライト組織の核生成サイトとして作用することになりさらなる高靭性の付与が可能となる。
【0023】
一方、フラッシュバット溶接では、通常酸素雰囲気を制御することはない。そのためHAZやWLに厳しい硬さ制御が必要であると本発明者らは考えた。そのため図1に示すような硬さと溶接部の靭性との関係を明確化する必要があった。その結果、たとえばSAWでは250Hv程度の溶接部は多く存在するが、フラッシュバット溶接部では200Hv以下にする必要があることが明らかになった。さらに、Cなどの母材の焼入れ性を上昇させる鋼成分は溶接後の硬化組織の生成を助長するために、炭素当量(Ceq)や焼入れ性指数(Pcm)の上限を制限する必要がある。炭素当量(Ceq)は下記(1)式によって、そして焼入れ性指標(Pcm)は下記(2)式によって求めることができる。
Figure 2004360047
なお、式中の成分に該当する成分が鋼成分として存在しないときは、式のその成分の値を0とする。
【0024】
また、フラッシュバット溶接の特徴として大気中で溶接するため溶接線のC、Si、Mnなどが母材やHAZより減少する。このため、一般的には強度が低下する。しかし、加圧量や溶接手法を変えると硬化する場合もある。溶接線の幅は約100μmと薄く、HAZからの拘束力を大きく受けため、靭性値が低下することが考えられる。そのため図2に示すような拘束力の指標となる溶接線とHAZとの硬さの差と溶接部の靭性との関係を明確化する必要があった。HAZより40Hv以上硬さが変化すると溶接線での拘束力が大きくなり靭性が低下する。また、溶接部の軟化を抑制するためには、C、Si、Mnなどの元素を適量添加する必要がある。さらに、元素の規制だけではなく前出のCeqやPcmの下限値を規制し軟化を抑制する必要がある。
【0025】
フラッシュバット溶接では、アップセット時とフラッシュ時に生じた酸化物をスクイズアウトし、溶融金属の凝固に対して凝固収縮を補う必要がある。これらを制御するためには加圧力を規制する必要がある。加圧力と溶接部のメタルフローには密接な関係があり、本発明者らの調査によれば45°以上とする必要がある。特に凝固割れに関しては顕著で45°未満とすると溶接欠陥である高温割れなどが観察されることを実験的に確認した。
【0026】
そして、前記特性を得るために母材の鋼成分を以下のように規制する必要がある。
【0027】
Cは0.02%に満たないと鋼の強度が不足し、また製造技術面においてコストの増加を招く。そこでC量の下限値を0.02%とした。一方、0.2%を超えると溶接部の硬度が急激に上昇し200Hvが確保できなくなり靭性値を低下させる。そのため、C量は0.02〜0.2%とした。
【0028】
Siは脱酸上鋼に含まれる元素である。0.01%未満ではその効果は少ない。一方、2.5%を超えて添加すると強度が高くなり靭性を低下させる。このため、上限値を2.5%とした。
【0029】
Mnは鋼の焼入れ性を向上させて強度を上昇させるのに有効である。この効果を得るためには、少なくとも0.25%以上を添加する必要がある。一方、2.0%を超えると著しく硬化するため靭性が劣化する。このためMnの上限を2.0%とし、Mn量は0.25〜2.0の範囲とする。
【0030】
Pは粒界に偏析し粒界脆化を起こしやすくするため、0.03%以下にする必要がある。靭性確保の観点からは不純物元素であるPは極力低減することが望ましい。
【0031】
SもPと同様に粒界に偏析し粒界脆化を起こしやすくするため、0.03%以下にする必要がある。不純物元素であるSも極力低減することが望ましい。
【0032】
Alは脱酸上鋼に含まれる元素であるため添加する必要がある。しかし、0.05%超添加すると溶接部において粗大な酸化物が生成するため靭性を低下させる。このため0.05%以下とする。
【0033】
上記の成分が所定の成分範囲であっても、2≦Mn/Si≦30の冶金パラメーターが満足していないと靭性値が低下する。この範囲外になると低融点酸化物が多量に生成し、これを起点として割れが発生し靭性値を低下する。このため、2≦Mn/Si≦30とする必要がある。建築用鋼・橋梁用鋼などではMn/Siは望ましくは3.0〜9.0の範囲とすることがよい。
【0034】
また、前述したように溶接部の著しい硬化または軟化を抑制するために炭素当量(Ceq)、焼入れ性指数(Pcm)を所定の範囲とする。Ceq、Pcmはそれぞれ0.2〜0.5、0.1〜0.3の範囲である。
【0035】
次に以下の元素を適量含有することにより、さらに機能が向上する。
【0036】
NbはNb析出物のピニング効果によりオーステナイト粒を微細化し、靭性を向上させる。また、母材の強度確保にも有効である。これらのためには0.005%以上の添加が必要である。しかしながら、多量に添加しても効果が飽和し、かつ経済的に不利となるため0.1%を上限とする。このためNbの適正範囲を0.005〜0.1%とする。
【0037】
Niは焼入れ性を向上させるために添加する。また、Cu脆化を抑制する効果もある。焼入特性を向上させるためには0.05%以上必要である。しかし、1.0%を超えるとその効果が飽和するため経済的に不利になる。このために上限値を1.0%とした。
【0038】
CuはNiと同様に焼入れ性を向上させるために添加する。この効果を得るには0.05%以上必要である。しかし、1.0%を超えると圧延時に熱間割れを引き起こしやすくなるため上限値を1.0%とした。
【0039】
Crは固溶強化、焼入れ性を向上させ、強度を上昇させる。0.05%以下ではこの効果が不十分である。しかし、2.0%を超えると強度が高くなり過ぎ、靭性が低下する。このため上限値を2.0%とした。
【0040】
Moは、鋼の強度を上昇させるためには少なくとも0.05%以上添加しないとその効果は認められない。また、0.50%を超えて添加するとフェライトの生成が抑制されるためその上限を0.50%とする。そのため、Moの成分範囲を0.10〜0.50%までとした。
【0041】
Vは炭窒化物を析出させγ粒を微細化し強度、靭性を向上させる。この効果を得るには0.002%以上の添加が必要である。しかし、多量の添加では靭性の劣化が生じる。このため上限値を0.5%とした。
【0042】
Bは焼入れ性を向上させることで強度を増加させる機能を有している。また、優先的に粒界に偏析しP、S、Mn等の粒界偏析を抑制する粒界清浄効果のために靭性の劣化を抑える。このため、Bは0.0005%を下限値とした。しかし、0.01%を超えるとむしろ靭性を劣化させる。このためBの成分範囲を0.0005〜0.01%とする。
【0043】
CaはCaS(O)の生成により熱処理時のγ粒径などを微細化するのに有効な元素である。0.0005%未満では効果がないため0.0005%を下限値とした。しかし、0.005%を超えると清浄度が低下するとともにCa介在物が粗大化し靭性を低下させるため上限値を0.005%とした。
【0044】
MgはCaと同様に熱処理時のγ粒径などを微細化するのに有効な元素である。0.0005%未満では効果がないため0.0005%を下限値とした。しかし、0.005%を超えると清浄度が低下するとともに介在物が粗大化し靭性を低下させるため上限値を0.005%とした。
【0045】
REMもCaと同様に熱処理時のγ粒径などを微細化するために有効な元素である。0.0005%未満では効果がないため0.0005%を下限値とした。しかし、0.005%を超えると清浄度が低下するとともにREMを含む介在物が粗大化し靭性を低下するため上限値を0.005%とした。
【0046】
次に本発明の硬さとメタルフローの角度について説明する。
【0047】
本発明の特徴は、フラッシュバット溶接の溶接線の硬さが200Hv以下で、WL(溶接線)からHAZ(溶接熱影響部)1mmの硬さの差が40Hv以内である。溶接線の硬さを200Hv以上とすると図1の溶接線(WL)の硬さとシャルピー吸収エネルギー(0℃)との関係を示す図に示したように著しく靭性が低下するため硬さを200Hv以下とする。
【0048】
また、WLからHAZ1mmの硬さの差(ΔHv)が40Hv以内にする必要がある。40Hv以上となると図2の溶接線(WL)の硬さと溶接熱影響部(HAZ)の硬さとの差と靭性との関係を示す図に示したように靭性値が著しく低下する。本発明では溶接線の硬さが硬化または軟化する点に対して言及しない。しかし、強度等の観点から溶接線が硬化している方(オーバーマッチング)が望ましい。
【0049】
母材の圧延方向と溶接によって生じたメタルフローの角度が45゜以上であることが必要である。それ以下になるとアップセット時のスクイズアウトが弱くなり、酸化物の吐き出しが不十分となり、靭性値が大きく低下する。
【0050】
【実施例】
以下本発明の実施例について説明する。表1の化学成分を有する鋼塊を熱間圧延および熱処理を行い鋼板とした。これらの鋼板を機械加工して試験材を作製した。この時の溶接部の面積は4000〜50000mmとした。その後、フラッシュバット溶接し、硬さとメタルフローを調査した。図3の溶接部のメタルフロー角度を示す図に示すように硬さは溶接線(WL)が約100μmと細いためHv100gfで実施した。HAZの硬さは溶接線の中心より1mmとした。また、加圧方向Fに対するメタルフローの角度θはメタルフローエッチより図3のようにして求めた。硬さ、メタルフロー、および靭性値を表2に示す。
【0051】
【表1】
Figure 2004360047
【0052】
【表2】
Figure 2004360047
【0053】
鋼1〜10は本発明鋼であり、良好な靭性を示した。
【0054】
鋼11〜14は鋼成分が適切でないため靭性値が確保できない。鋼11ではC量が高く島状マルテンサイトが発生し靭性値を低下させた。鋼12ではSiが高く、鋼13ではMn量が高いため靭性に有害な酸化物が多量に発生した。鋼14でもAlが高く溶接線に酸化物が増加し靭性値を低下させた。
【0055】
鋼15〜19は冶金パラメーターが適切でないために、靭性値が確保できない。鋼15、16は化学成分は請求範囲内にあるが、Mn/Siが適切ではない。また、鋼17ではCeq、Pcmが低いため溶接線の硬さが低くなり靭性が低下した例である。鋼18ではCeq、Pcmが高く、溶接部の硬さが大きくなり、靭性が低下した。
【0056】
鋼19ではメタルフローの角度が低く、介在物の吐き出しが不十分であるため、靭性値が低下した。
【0057】
【発明の効果】
本発明によると大断面のフラッシュバット溶接に対して高靭性高張力のフラッシュバット用鋼およびその溶接鋼構造物を得ることができ、工業的に非常に有用である。
【図面の簡単な説明】
【図1】溶接線(WL)の硬さとシャルピー吸収エネルギー(0℃)との関係を示す図である。
【図2】溶接線(WL)の硬さと溶接熱影響部(HAZ)の硬さとの差と靭性との関係を示す図である。
【図3】溶接部のメタルフロー角度を示す図である。
【符号の説明】
WL 溶接線
θ メタルフロー角度
F 加圧方向
HAZ 溶接熱影響部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to steel for welded structures such as 400 MPa class and 490 MPa class which can be used as welded structures such as buildings, bridges, construction machines, shipbuilding, marine structures, and line pipes. The present invention relates to a steel material for welding and a welded steel structure thereof, and the steel of the present invention exhibits excellent toughness particularly to flash butt welding in a large cross section.
[0002]
[Prior art]
Conventionally, flash butt welding has been applied to members having a relatively small cross-sectional area, such as line pipes, railway rails, chains, and mechanical parts. However, in recent years, flash butt welding machines and welding methods suitable for large section welding for buildings have been reported (for example, see Patent Documents 1 and 2). According to these inventions, clamps (or reaction plates, reaction zones) are attached to individual large-section steel materials to be welded, interconnected between them by an actuator, and a power supply electrode is attached to each large-section steel material. It is characterized in that welding is performed by applying pressure by displacement control synchronized with the flash and upset processes. Moreover, in this welding method, the size and weight of the welding machine have been reduced compared to flash butt welding of a large-section steel material, and it is worth noting that the on-site welding was enabled.
[0003]
Usually, the mechanical properties of flash butt welds such as railway rails, chains, and mechanical parts are standardized by tensile tests and bending tests, but the toughness of welds is not Strict requirements were not made. On the other hand, in the architectural field which is the subject field of the present invention, for example, vE 0 ≧ 27J is required as a toughness value for a base material of a rolled steel material for building structures (such as SN490) specified in JIS G 3136. Is clearly stated. In recent years, from the viewpoint of imparting deformability during an earthquake, it has been increasingly recognized that not only the base material but also the toughness of the welded part is important, and there is a trend in which it is mandatory to sufficiently secure the toughness of the welded part. However, at present, no steel material capable of securing the weld toughness when flash butt welding is performed has been disclosed.
[0004]
Proposals have already been made to ensure material properties (such as a tensile test and a bending test) that can be evaluated by a tensile test and a bending test of a welded portion (for example, see Patent Documents 3 and 4). The former is a device for using shield gas to relay weld a steel strip, and the latter is to apply oil for flash butt welding of high strength steel and burn it during welding to reduce the amount of oxide in the weld. And morphological control. However, such a shield device becomes large-scale when the size of the welded material is large, and is not suitable for on-site welding. In addition, there is a drawback in that oil application involves burning and requires strict safety management.
[0005]
Against this background, measures to minimize as much equipment as possible for flash butt welding, which enables on-site welding, in other words, to improve the material properties after welding, especially the toughness of the welded part There is a strong demand for unprecedented steel materials that can be secured.
[0006]
[Patent Document 1]
JP 2001-259849A [Patent Document 2]
JP 2001-259850 A [Patent Document 3]
Published Japanese Utility Model Application No. 58-85484 [Patent Document 4]
Japanese Patent No. 2864338
[Problems to be solved by the invention]
Since flash butt welding can obtain a highly efficient and stable welded portion, it is being used for the above-mentioned applications having a large welding cross-sectional area. The problem in that case is that the weld toughness, which is an important property as a welded structure, is low in a weld line (hereinafter WL) and a heat affected zone (hereinafter HAZ) after flash butt welding.
[0008]
The following are possible reasons for this.
[0009]
(1) In a normal flash butt welding machine, C, Si, and Mn are oxidized at the time of welding and are discharged together with flashing, so that the strength of the welding line is softened more than the surrounding HAZ. On the other hand, in the constant current control method (3C: called constant current controls), on the contrary, there is a tendency to harden more than HAZ. It is considered that the toughness level greatly changes due to such a subtle change in the hardness distribution near the weld line.
[0010]
(2) When flash butt welding is applied to a large cross section, it is necessary to lengthen the flushing time, and in this case, the generation of oxide in WL is promoted.
[0011]
Accordingly, an object of the present invention is to solve the above two problems and to provide a steel material having improved toughness of a welding line and HAZ after flash butt welding.
[0012]
[Means for Solving the Problems]
The present inventors have investigated in detail the relationship between the hardness in the vicinity of the weld, the angle of the metal flow, and the toughness value in order to solve the above problems. As a result, the following points became clear.
[0013]
(1) If the WL hardness of flash butt welding is 200 Hv or less and the difference between the hardness of the welding line and the hardness of HAZ 1 mm is within 40 Hv, the toughness value is good.
[0014]
(2) When the angle between the rolling direction of the base material and the metal flow generated by welding is 45 ° or more, the toughness value is significantly improved as compared with the case where it is smaller.
[0015]
As described above, in flash butt welding with constant current control, the base metal is hardened at the HAZ and the welding line near the welding line. FIG. 1 shows the relationship between the hardness of the weld line and the Charpy absorbed energy (0 ° C.) as an index of toughness. As is clear from this result, in order to ensure toughness, the hardness of the weld line needs to be 200 Hv or less, and a value of 200 Hv or more sharply lowers the toughness value. Although the hardness of the welding line may decrease due to decarburization or the like, as shown in FIG. 2, the hardness of the welding line is less than the hardness of the heat affected zone (1 mm from the welding line). It has also been confirmed that when it is within 40 Hv, the decrease in toughness is small. In order to secure such a hardness distribution, it is necessary to strictly control the steel composition of the base metal.
[0016]
In addition, it has been found that flash butt welding of a steel material having a large cross section requires a longer flushing time, so that a larger amount of oxide is generated. For this reason, it is necessary to consider the pressing force at the time of upsetting as an important welding parameter. The pressing force and the angle of the metal flow generated by welding determine the pressing force. In order to eliminate oxides and improve toughness, it is important to set this angle to 45 ° or more, and it is necessary to perform a sufficient upset.
[0017]
The present invention has been completed based on the above findings, and the gist of the present invention is as follows.
[0018]
(1) Steel component is mass%
C: 0.02 to 0.2%,
Si: 0.01 to 2.5%,
Mn: 0.25 to 2.0%,
P: 0.03% or less,
S: 0.03% or less,
Al: contains 0.05% or less,
2 ≦ Mn / Si ≦ 30,
The carbon equivalent (Ceq) according to the following formula (1) for obtaining the carbon equivalent (Ceq) is 0.2 ≦ Ceq ≦ 0.5, and the hardenability index (Pcm) for obtaining the hardenability index (Pcm) according to the following formula (2) is 0.1 ≦ Pcm ≦ 0.3
Figure 2004360047
A high-strength steel material for flash butt welding having excellent weld toughness characterized by satisfying the following conditions.
[0019]
(2) The steel component further contains Nb: 0.005 to 0.1% by mass%,
Ni: 0.05-1.0%,
Cu: 0.05-1.0%,
Cr: 0.05 to 2.0%,
Mo: 0.05 to 0.50%,
V: 0.002-0.5%,
B: 0.0005 to 0.01%,
Ca: 0.0005 to 0.005%,
Mg: 0.0005 to 0.005%,
REM: 0.0005-0.005%
The high-tensile steel material for flash butt welding according to the above (1), wherein the high-strength steel material contains one or more kinds of steels.
[0020]
(3) The large cross section of the high toughness of the welded part using the steel sheet according to the above (1) or (2), wherein the angle between the pressing direction of the flash butt and the metal flow generated by welding is 45 ° or more. Flash butt welded structure.
[0021]
(4) The hardness of the entire weld after flash butt welding is 200 Hv or less, and the difference between the hardness of the weld line and the hardness of the weld heat affected zone (1 mm from the weld line) is within 40 Hv. (3) A flash butt welded structure having a high toughness and a large cross section, as described in (3).
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
In general welding, hardenability and oxygen atmosphere (use of flux or shield gas) are specified in order to secure the toughness of the weld. For example, in SAW, it is effective to improve the hardenability of a chemical component from the viewpoint of securing strength to make overmatching (to make the weld metal harder than the base metal strength). However, if the strength of the weld metal is excessively increased, the toughness of the weld metal decreases. Further, by regulating the amount of oxygen in the welding atmosphere, the amount of oxygen in the weld metal can be controlled. This controls the amount and size of oxides, nitrides and carbides in the weld metal to suppress toughness degradation, and these oxides and nitrides act as nucleation sites in the final ferrite structure. It is possible to impart even higher toughness.
[0023]
On the other hand, in flash butt welding, the oxygen atmosphere is not usually controlled. Therefore, the present inventors have considered that strict hardness control is required for HAZ and WL. Therefore, it was necessary to clarify the relationship between the hardness and the toughness of the weld as shown in FIG. As a result, it became clear that, for example, in the case of SAW, there are many welds of about 250 Hv, but in the case of a flash butt weld, it is necessary to reduce the weld to 200 Hv or less. Further, since a steel component such as C that increases the hardenability of the base material promotes the formation of a hardened structure after welding, it is necessary to limit the upper limits of the carbon equivalent (Ceq) and the hardenability index (Pcm). The carbon equivalent (Ceq) can be determined by the following equation (1), and the hardenability index (Pcm) can be determined by the following equation (2).
Figure 2004360047
When a component corresponding to the component in the formula does not exist as a steel component, the value of the component in the formula is set to 0.
[0024]
In addition, as a feature of flash butt welding, C, Si, Mn, etc. of the welding line are reduced compared to the base metal and HAZ because welding is performed in the atmosphere. Therefore, the strength generally decreases. However, when the amount of pressurization or the welding method is changed, it may be hardened. The width of the welding line is as thin as about 100 μm, and is greatly affected by the binding force from the HAZ, so that the toughness value may be reduced. Therefore, it is necessary to clarify the relationship between the difference in hardness between the welding line and the HAZ, which is an index of the binding force as shown in FIG. 2, and the toughness of the welded portion. If the hardness changes by 40 Hv or more than HAZ, the binding force at the welding line increases, and the toughness decreases. Further, in order to suppress the softening of the weld, it is necessary to add an appropriate amount of elements such as C, Si, and Mn. Further, it is necessary to suppress not only the element but also the lower limit of Ceq and Pcm described above to suppress softening.
[0025]
In flash butt welding, it is necessary to squeeze out oxides generated during upsetting and flashing to compensate for solidification shrinkage of solidified molten metal. In order to control these, it is necessary to regulate the pressing force. There is a close relationship between the pressing force and the metal flow of the welded portion, and according to the investigation by the present inventors, it is necessary that the applied pressure be 45 ° or more. In particular, it was experimentally confirmed that solidification cracks were remarkable, and when the angle was less than 45 °, welding defects such as hot cracks were observed.
[0026]
Then, in order to obtain the above properties, it is necessary to regulate the steel composition of the base material as follows.
[0027]
If C is less than 0.02%, the strength of the steel is insufficient, and the cost is increased in the production technology. Therefore, the lower limit of the C content is set to 0.02%. On the other hand, if it exceeds 0.2%, the hardness of the welded portion increases rapidly, and 200 Hv cannot be secured, and the toughness value is reduced. Therefore, the C content is set to 0.02 to 0.2%.
[0028]
Si is an element contained in the deoxidized upper steel. If less than 0.01%, the effect is small. On the other hand, if it exceeds 2.5%, the strength increases and the toughness decreases. Therefore, the upper limit is set to 2.5%.
[0029]
Mn is effective in improving the hardenability of steel and increasing the strength. To obtain this effect, it is necessary to add at least 0.25% or more. On the other hand, if it exceeds 2.0%, the composition is extremely hardened, and the toughness is deteriorated. Therefore, the upper limit of Mn is set to 2.0%, and the Mn content is set in the range of 0.25 to 2.0.
[0030]
Since P segregates at grain boundaries and easily causes grain boundary embrittlement, it is necessary to make the content 0.03% or less. From the viewpoint of ensuring toughness, it is desirable to reduce P as an impurity element as much as possible.
[0031]
S, like P, segregates at the grain boundaries and easily causes grain boundary embrittlement, so it is necessary to set S to 0.03% or less. It is desirable that S, which is an impurity element, be reduced as much as possible.
[0032]
Al must be added because it is an element contained in the deoxidized steel. However, if more than 0.05% is added, a coarse oxide is generated in the welded portion, so that the toughness is reduced. Therefore, the content is set to 0.05% or less.
[0033]
Even if the above components are in the predetermined component range, the toughness value is reduced if the metallurgical parameters of 2 ≦ Mn / Si ≦ 30 are not satisfied. Outside of this range, a large amount of low melting point oxide is generated, and from this, cracks occur to lower the toughness value. Therefore, it is necessary to satisfy 2 ≦ Mn / Si ≦ 30. For building steel, bridge steel and the like, Mn / Si is desirably in the range of 3.0 to 9.0.
[0034]
Further, as described above, the carbon equivalent (Ceq) and the hardenability index (Pcm) are set to predetermined ranges in order to suppress remarkable hardening or softening of the welded portion. Ceq and Pcm are in the range of 0.2 to 0.5 and 0.1 to 0.3, respectively.
[0035]
Next, the function is further improved by containing the following elements in appropriate amounts.
[0036]
Nb refines austenite grains by the pinning effect of Nb precipitates and improves toughness. It is also effective in securing the strength of the base material. For these reasons, 0.005% or more must be added. However, even if a large amount is added, the effect is saturated and it is economically disadvantageous, so the upper limit is 0.1%. Therefore, the appropriate range of Nb is set to 0.005 to 0.1%.
[0037]
Ni is added to improve hardenability. It also has the effect of suppressing Cu embrittlement. In order to improve the quenching characteristics, 0.05% or more is required. However, if the content exceeds 1.0%, the effect is saturated, which is economically disadvantageous. For this reason, the upper limit is set to 1.0%.
[0038]
Cu is added to improve hardenability similarly to Ni. To obtain this effect, 0.05% or more is required. However, if it exceeds 1.0%, hot cracking is likely to occur during rolling, so the upper limit was made 1.0%.
[0039]
Cr improves solid solution strengthening, hardenability, and increases strength. If it is less than 0.05%, this effect is insufficient. However, if it exceeds 2.0%, the strength becomes too high, and the toughness decreases. Therefore, the upper limit is set to 2.0%.
[0040]
Mo is not effective unless it is added at least 0.05% or more in order to increase the strength of the steel. Further, if the addition exceeds 0.50%, the formation of ferrite is suppressed, so the upper limit is made 0.50%. Therefore, the component range of Mo is set to 0.10 to 0.50%.
[0041]
V precipitates carbonitrides, refines γ grains, and improves strength and toughness. To obtain this effect, 0.002% or more is required. However, addition of a large amount deteriorates toughness. Therefore, the upper limit is set to 0.5%.
[0042]
B has a function of increasing strength by improving hardenability. Further, deterioration of toughness is suppressed due to a grain boundary cleaning effect which preferentially segregates at grain boundaries and suppresses segregation of P, S, Mn and the like. Therefore, B has 0.0005% as its lower limit. However, if it exceeds 0.01%, the toughness is rather deteriorated. Therefore, the component range of B is set to 0.0005 to 0.01%.
[0043]
Ca is an element effective for miniaturizing the γ particle size and the like at the time of heat treatment by generating CaS (O). If it is less than 0.0005%, there is no effect, so 0.0005% is set as the lower limit. However, when the content exceeds 0.005%, the cleanliness decreases, and Ca inclusions become coarse and the toughness is reduced. Therefore, the upper limit is set to 0.005%.
[0044]
Mg, like Ca, is an element that is effective in reducing the γ particle size during heat treatment. If it is less than 0.0005%, there is no effect, so 0.0005% is set as the lower limit. However, when the content exceeds 0.005%, the cleanliness decreases, the inclusions become coarse, and the toughness is reduced. Therefore, the upper limit is set to 0.005%.
[0045]
REM, like Ca, is also an effective element for reducing the γ particle size and the like during heat treatment. If it is less than 0.0005%, there is no effect, so 0.0005% is set as the lower limit. However, if the content exceeds 0.005%, the cleanliness is reduced, and the inclusions including REM are coarsened and the toughness is reduced. Therefore, the upper limit is set to 0.005%.
[0046]
Next, the angle between the hardness and the metal flow of the present invention will be described.
[0047]
A feature of the present invention is that the hardness of the welding line in flash butt welding is 200 Hv or less, and the difference in hardness of 1 mm from HAZ (welding heat affected zone) from WL (welding line) is within 40 Hv. When the hardness of the welding line is 200 Hv or more, the toughness is remarkably reduced as shown in FIG. 1 showing the relationship between the hardness of the welding line (WL) and the Charpy absorbed energy (0 ° C.). And
[0048]
Further, the difference (ΔHv) between the hardness of WL and HAZ of 1 mm needs to be within 40 Hv. When the pressure is 40 Hv or more, the toughness value is significantly reduced as shown in the graph of FIG. 2 showing the relationship between the difference between the hardness of the weld line (WL) and the hardness of the weld heat affected zone (HAZ) and the toughness. The present invention does not mention that the hardness of the weld line hardens or softens. However, it is desirable that the weld line is hardened (overmatching) from the viewpoint of strength and the like.
[0049]
It is necessary that the angle between the rolling direction of the base metal and the metal flow generated by welding is 45 ° or more. If it is less than that, squeeze-out at the time of upsetting becomes weak, and the discharge of oxide becomes insufficient, and the toughness value is greatly reduced.
[0050]
【Example】
Hereinafter, embodiments of the present invention will be described. A steel ingot having the chemical components shown in Table 1 was subjected to hot rolling and heat treatment to obtain a steel sheet. These steel sheets were machined to produce test materials. The area of the weld at this time was 4000 to 50,000 mm 2 . Thereafter, flash butt welding was performed to investigate hardness and metal flow. As shown in the figure showing the metal flow angle of the welded portion in FIG. 3, the hardness was set to Hv 100 gf because the welding line (WL) was as thin as about 100 μm. The hardness of the HAZ was 1 mm from the center of the welding line. The angle θ of the metal flow with respect to the pressing direction F was determined from the metal flow etch as shown in FIG. Table 2 shows the hardness, metal flow, and toughness values.
[0051]
[Table 1]
Figure 2004360047
[0052]
[Table 2]
Figure 2004360047
[0053]
Steels 1 to 10 are the steels of the present invention and exhibited good toughness.
[0054]
Steels 11 to 14 cannot secure a toughness value because the steel components are not appropriate. Steel 11 had a high C content and produced island-like martensite, which lowered the toughness value. Steel 12 had high Si and steel 13 had a high Mn content, so that a large amount of oxides harmful to toughness was generated. Steel 14 also had a high Al content and increased oxides on the weld line, resulting in a decrease in toughness.
[0055]
Steels 15 to 19 cannot secure a toughness value due to inappropriate metallurgical parameters. Steels 15 and 16 have chemical compositions within the scope of claims, but Mn / Si is not appropriate. Further, in steel 17, the Ceq and Pcm are low, so that the hardness of the weld line is low and the toughness is low. In steel 18, Ceq and Pcm were high, the hardness of the welded portion was increased, and the toughness was reduced.
[0056]
In steel 19, the metal flow angle was low and the discharge of inclusions was insufficient, so that the toughness value was reduced.
[0057]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the flash butt steel of high toughness and high tension with respect to flash butt welding of a large cross section and its welded steel structure can be obtained, and it is industrially very useful.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between the hardness of a welding line (WL) and the Charpy absorbed energy (0 ° C.).
FIG. 2 is a diagram showing a relationship between a difference between hardness of a welding line (WL) and hardness of a welding heat affected zone (HAZ) and toughness.
FIG. 3 is a view showing a metal flow angle of a welded portion.
[Explanation of symbols]
WL Welding line θ Metal flow angle F Pressing direction HAZ Weld heat affected zone

Claims (4)

鋼成分が質量%で、
C:0.02〜0.2%、
Si:0.01〜2.5%、
Mn:0.25〜2.0%、
P:0.03%以下、
S:0.03%以下、
Al:0.05%以下
を含有し、
2≦Mn/Si≦30、
炭素当量(Ceq)を求める下記(1)式に従う炭素当量(Ceq)が0.2≦Ceq≦0.5、焼入れ性指数(Pcm)を求める下記(2)式に従う焼入れ性指数(Pcm)が0.1≦Pcm≦0.3
Figure 2004360047
を満足することを特徴とする溶接部靭性の優れたフラッシュバット溶接用高張力鋼材。
Steel component is mass%,
C: 0.02 to 0.2%,
Si: 0.01 to 2.5%,
Mn: 0.25 to 2.0%,
P: 0.03% or less,
S: 0.03% or less,
Al: contains 0.05% or less,
2 ≦ Mn / Si ≦ 30,
The carbon equivalent (Ceq) according to the following formula (1) for obtaining the carbon equivalent (Ceq) is 0.2 ≦ Ceq ≦ 0.5, and the hardenability index (Pcm) for obtaining the hardenability index (Pcm) according to the following formula (2) is 0.1 ≦ Pcm ≦ 0.3
Figure 2004360047
A high-strength steel material for flash butt welding having excellent weld toughness characterized by satisfying the following conditions.
鋼成分が、さらに、質量%で
Nb:0.005〜0.1%、
Ni:0.05〜1.0%、
Cu:0.05〜1.0%、
Cr:0.05〜2.0%、
Mo:0.05〜0.50%、
V:0.002〜0.5%、
B:0.0005〜0.01%、
Ca:0.0005〜0.005%、
Mg:0.0005〜0.005%、
REM:0.0005〜0.005%
の範囲で、1種以上を含有する鋼であることを特徴とする請求項1記載のフラッシュバット溶接用高張力鋼材。
The steel component further contains Nb: 0.005 to 0.1% by mass%,
Ni: 0.05-1.0%,
Cu: 0.05-1.0%,
Cr: 0.05 to 2.0%,
Mo: 0.05 to 0.50%,
V: 0.002-0.5%,
B: 0.0005 to 0.01%,
Ca: 0.0005 to 0.005%,
Mg: 0.0005 to 0.005%,
REM: 0.0005-0.005%
The high-tensile steel material for flash butt welding according to claim 1, wherein the steel material contains one or more kinds.
フラッシュバットの加圧方向と溶接によって生じたメタルフローの角度が45°以上であることを特徴とする請求項1または2記載の鋼板を使用した溶接部高靭性の大断面フラッシュバット溶接構造物。The flash butt welded structure having a high toughness in a welded part using a steel sheet according to claim 1 or 2, wherein the angle between the pressure direction of the flash butt and the metal flow generated by welding is 45 ° or more. フラッシュバット溶接後の溶接部全体の硬さが200Hv以下で、溶接線の硬さと溶接熱影響部(溶接線から1mm)の硬さの差が40Hv以内であることを特徴とする請求項3記載の溶接部高靭性の大断面フラッシュバット溶接構造物。The hardness of the entire weld after flash butt welding is 200 Hv or less, and the difference between the hardness of the weld line and the hardness of the weld heat affected zone (1 mm from the weld line) is within 40 Hv. High cross section flash butt welded structure with high toughness at the weld.
JP2003162901A 2003-06-06 2003-06-06 Large section flash butt welded structure with high toughness in the weld zone Expired - Fee Related JP4264298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003162901A JP4264298B2 (en) 2003-06-06 2003-06-06 Large section flash butt welded structure with high toughness in the weld zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003162901A JP4264298B2 (en) 2003-06-06 2003-06-06 Large section flash butt welded structure with high toughness in the weld zone

Publications (2)

Publication Number Publication Date
JP2004360047A true JP2004360047A (en) 2004-12-24
JP4264298B2 JP4264298B2 (en) 2009-05-13

Family

ID=34054910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003162901A Expired - Fee Related JP4264298B2 (en) 2003-06-06 2003-06-06 Large section flash butt welded structure with high toughness in the weld zone

Country Status (1)

Country Link
JP (1) JP4264298B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103981441A (en) * 2014-05-30 2014-08-13 武汉钢铁(集团)公司 Construction steel with yield strength of no less than 490 MPa and production method thereof
CN104400200A (en) * 2014-11-27 2015-03-11 广东省工业技术研究院(广州有色金属研究院) Flash butt welding process for high-pressure boiler pipeline
WO2021189621A1 (en) * 2020-03-25 2021-09-30 南京钢铁股份有限公司 S355g10+n-thickness steel plate for offshore structure and production method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103981441A (en) * 2014-05-30 2014-08-13 武汉钢铁(集团)公司 Construction steel with yield strength of no less than 490 MPa and production method thereof
CN104400200A (en) * 2014-11-27 2015-03-11 广东省工业技术研究院(广州有色金属研究院) Flash butt welding process for high-pressure boiler pipeline
WO2021189621A1 (en) * 2020-03-25 2021-09-30 南京钢铁股份有限公司 S355g10+n-thickness steel plate for offshore structure and production method therefor

Also Published As

Publication number Publication date
JP4264298B2 (en) 2009-05-13

Similar Documents

Publication Publication Date Title
KR101211284B1 (en) Ultra high-strength welded joint and method for producing same
EP2105513B1 (en) High strength thick welded steel pipe for a line pipe superior in low temperature toughness and process for producing the same.
JP4926406B2 (en) Steel sheet with excellent fatigue crack propagation characteristics
JP2008023569A (en) METHOD FOR PRODUCING ULTRAHIGH-STRENGTH WELDED STEEL PIPE HAVING TENSILE STRENGTH EXCEEDING 800 MPa
EP2093302A1 (en) Weld steel pipe with excellent low-temperature toughness for high-strength line pipe and process for producing the same
JP2005171300A (en) High tensile steel for high heat input welding, and weld metal
WO1997024203A1 (en) Method of manufacturing large diameter welded steel pipe having high strength and toughness
JP4901262B2 (en) Thick steel plate with excellent toughness of heat affected zone
JP2009127104A (en) Steel having excellent weld heat-affected zone toughness, and method for producing the same
JP2007023346A (en) Method for producing high strength welded steel tube excellent in strain-aging characteristic
JP4264298B2 (en) Large section flash butt welded structure with high toughness in the weld zone
JP2005298900A (en) Thick steel plate having excellent toughness in high heat input weld heat affected zone
JP4857855B2 (en) Fatigue-resistant cracked steel plate for welding with excellent joint fatigue strength
JP2007126724A (en) High tensile strength steel plate having excellent low temperature toughness in weld heat-affected zone
JP2010077531A (en) Clad steel sheet excellent in characteristic of stopping initiation of fatigue crack and characteristic of stopping propagation thereof and method for producing the same
JP4259374B2 (en) High strength steel sheet with excellent low temperature toughness and weld heat affected zone toughness and method for producing the same
JP4264299B2 (en) High strength steel for flash butt welding with excellent weld toughness and its welded structure
JP2008264812A (en) Groove filler for submerged-arc welding
JP3711948B2 (en) Steel sheet pile excellent in toughness and weld properties and its manufacturing method
JP5044928B2 (en) Fatigue-resistant cracked steel plate for welding with excellent joint fatigue strength
JP2007246933A (en) High strength steel pipe with excellent weld zone toughness, and its manufacturing method
JP3917084B2 (en) Solid wire for gas shielded arc welding and welding method thereof
JP4332064B2 (en) High HAZ toughness steel for high heat input welding with heat input of 20-100 kJ / mm
JP4464859B2 (en) Large heat input welded joint using low yield ratio steel sheet and welding method
JP2008184672A (en) High strength steel having excellent toughness in laser welded joint zone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4264298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees