JP2004360001A - Hardened high-purity platinum, and its product - Google Patents

Hardened high-purity platinum, and its product Download PDF

Info

Publication number
JP2004360001A
JP2004360001A JP2003159226A JP2003159226A JP2004360001A JP 2004360001 A JP2004360001 A JP 2004360001A JP 2003159226 A JP2003159226 A JP 2003159226A JP 2003159226 A JP2003159226 A JP 2003159226A JP 2004360001 A JP2004360001 A JP 2004360001A
Authority
JP
Japan
Prior art keywords
platinum
coated
hardened
metal
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003159226A
Other languages
Japanese (ja)
Inventor
Takeshi Takayanagi
猛 高柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuwayama KK
Original Assignee
Kuwayama KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuwayama KK filed Critical Kuwayama KK
Priority to JP2003159226A priority Critical patent/JP2004360001A/en
Publication of JP2004360001A publication Critical patent/JP2004360001A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a jewelry market with, as high-purity platinum for personal ornaments capable of gaining a Pt1,000 qualification, hardened pure platinum which is provided with a hardened surface-layer part and made scratch resistant by allowing, in order to obtain high-hardness high-purity platinum, hardening elements to diffuse and penetrate into a surface-layer part (up to about 100 μm) of high-purity platinum and alloying these hardening elements and the platinum. <P>SOLUTION: The hardened pure platinum can be obtained by coating the surface of Pt of 99.9% purity with one or more kinds among platinum-group elements other than platinum and metallic elements other than the platinum-group elements to 0.1 to 100 μm thickness by PVD, CVD, plating, etc., and then applying high-temperature heat treatment to the coated pure platinum for a long period of time to allow ≥98% of the above elements used in the coating treatment to diffuse and penetrate into the pure platinum and form a hardened layer in its part. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明が属する技術分野】
指輪、ペンダント、イヤリング、ブローチ、チェーン等の宝飾品は金、銀、白金とこれらを基本とした合金によって作られているが、とりわけ清楚なホワイトと、重量感、高級感のある白金とその合金による宝飾品が本邦では好まれている。白金系宝飾品は白金の純度によって区分けされ、Pt=99.9%以上の純白金(Pt1000と表示)、白金の純度が95%の(Pt950)、90%の(Pt900)、85%の(Pt850)4品位のものがある。これら4種類の純白金及び白金合金の製品の中でも、純白金、すなわち、Pt1000の宝飾品はそのピュアな白金独特のホワイト色が白金合金のものよりも消費者の好感度が高い。しかし、純白金は柔らかいため(硬さがHv=40)表面に損傷が受けやすい。純白金宝飾品の表面に疵が付いてしまうと白金のピュアホワイトの輝きが損なわれ、美的、更には商品価値の低下を招くことになる。本発明は、この点についての改善を図るために、純白金の表面に白金の硬化に有効な金属元素を拡散浸透させて純白金の表面に硬化層を形成して疵が付きにくくし、プラチナホワイトの美麗な輝きが長期間に渡って保持されるような新規の純白金宝飾品として貴金属宝飾品市場へ提供するものである。
【0002】
【従来の技術】
従来は純白金宝飾品、すなわち“Pt1000”の宝飾品表面にロジウムメッキ、ルテニウムメッキ等を行って0.2〜0.5μmの硬化保護膜とし、“Pt1000”宝飾品表面の損傷の防止を図っていた。
【0003】また、最近では白金とホウ素(B)との硬い金属間化合物を純白金表面に形成させたり、あるいはジルコニウム(Zr)、ケイ素(Si)、マグネシウム(Mg)、アルミニウム(AI)、カルシウム(Ca)等の元素と白金または微量含有させたホウ素(B)との合金化等で硬化表面層を作り硬化“Pt1000”宝飾品として市場に提供されている。
【0004】
【発明が解決しようとする課題】
白金の純度が99.9%の“Pt1000”宝飾品は素材自体が軟らかすぎて宝飾品として身に着けていた場合に疵が付きやすい。一端、“Pt1000”宝飾品の表面に疵が付いてしまうと、その部分が汚れやすく、また、可視光線の乱反射が生じて純白金のピュアホワイトの輝きが減退し、“Pt1000”宝飾品の美的価値が損なわれるようになり商品価値が著しく低下する。本発明は、この点を克服することにあり、宝飾品業界で切望されている疵が付きにくい高純度の“Pt1000”宝飾品の製造を主眼とするものである。
【0005】
【課題を解決するための手段】
Pt1000と刻印される白金の公称純度は99.9%なので0.1%は他元素の含有が許される。そこで、この0.1%による硬化Pt1000の製造という観点から、純白金の表層部に硬度を高める金属元素を拡散浸透させてPt1000宝飾品の極く表面のみを固溶強化し、表面硬度の著しい上昇を図って硬化層を形成させることを特徴とするものである。
【0006】白金族元素の中で白金以外の元素(Pd,Rh,Ru,Ir,Os)もしくはこれらの合金(白金との合金も含む)をPVD,CVD、メッキ、あるいはこれらの元素の粉末に有機の溶媒、可塑剤等を混ぜてペースト状にしてPt1000表面に塗り付けるなどしてPt1000表面にコーティングする。
【0007】また、タンタル(Ta)、ニオブ(Nb)、タングステン(W)、ジルコニウム(Zr)等の単体あるいは合金、さらにはこれらの金属元素と白金族元素との合金を被覆しても良い。次いで、これらの金属及び合金を被覆処理したPt1000を真空中、不活性ガス雰囲気中、あるいは高温酸化が少ない被膜金属のものは大気中で白金の融点以下の温度で2〜60時間加熱してコーティングした金属元素をPt1000の表層部0.1〜100μmへ拡散浸透させる。この時、浸透させた金属の濃度はPt1000の最外表面0.5〜1μmでは60〜99%であり、ここから内部へ100μm付近まで次第にその濃度が低下するようにする。
【0008】また、拡散浸透させるにはHIP(高温静水圧プレス)を用いて、アルゴン雰囲気中600〜1200℃、500〜1000kg/cmで5〜20時間の処理を行っても良い。
【0009】また、Pt1000をPd、Rh、Ru、Ir、Os等の粉末中へ埋没し、これを白金の融点以下の温度で加熱し、これらの元素をPt1000へ拡散浸透させても良い。
【0010】以上のような方法によって、硬度の高い白金族元素及びこれら以外で上記した金属元素及びそれらの合金をPt1000表層部へ浸透、白金と合金化させ、その部分の硬化を図ることによって疵が付きにくい“Pt1000”宝飾品とする。
【0011】
【発明の実施の形態】
以下において、本発明の実施形態を実施例1〜27にて説明する。
【0012】
【実施例1】
バフ研磨により鏡面仕上げした8mm×8mm×3mm厚のPt1000板試料をアルミナ製容器中に充填したイリジウム(Ir)の微粉末中へ埋没し、軽くつき固めた。これをアルゴン雰囲気中、1200℃で20時間加熱して拡散浸透処理を行った。処理後、Pt1000板試料を取り出し、磁気研磨で荒仕上げた後、バフで元のPt1000の面が現れる直近まで鏡面研磨した。研磨の済んだ試料を厚さ方向に切断し、その切断面について処理表面から内部へ向かってX線マイクロアナライザー(XMA)で線分析したところIrが15.5μmまで浸透しており、Pt1000試料の表面硬度もビッカース硬度、Hv=150となっていて、浸透処理前のPt1000のHv=40よりもはるかに高い表面硬度を持つPt1000板が得られた。
【0013】
【実施例2】
手細工で製作したPt1000の板状ペンダントを試料として、これをバフ研磨によって鏡面仕上げしたものの表面に低温高速スパッタリング(アルゴン10−2Torr)によってロジウム(Rh)をコーティングした。これを真空にした電気炉中で1000℃で35時間加熱処理により拡散浸透処理を行った。浸透処理後の試料表面を再びバフ研磨した後、浸透処理面に対して垂直に切断し、その切断面について表面から内部へ向かってXMAでRhの浸透状態を調べたところ、Rhは表面から23μmほど内部まで浸透しており、表面硬度はHv=200ほどであった。
拡散浸透処理後、試料表面を軽くバフ研磨してから表層部におけるRhの濃度変化と硬度変化について測定した結果を図1,図2に示す。
図1より、RhはPt1000の表面から11μmほど浸透しており、硬度も表面ではHv200で順次内部へ進むほど硬度が低下するが表面から20μmまではHv=105〜60の範囲であった。
【0014】
【実施例3】
バフで鏡面仕上げしたPt1000板状ペンダント試料の表面にルテニウム(Ru)を電気メッキによって被覆した。これを真空中、1000℃で40時間加熱し、拡散浸透処理を行った。メッキの条件は下記の通りである。
<ルテニウムメッキ浴と操作条件>
RuNOCl・5HO 10g/L
(Ruとして) 3.5〜4.5g/L
NH SO H 10〜20g/L
温度 50〜65℃
電流密度 0.5〜1.5A/dm
陽極 Ti−Pt板
浸透処理後、試料の断面についてRuの表面から内部方向への分布と表面硬度を測ったところRuは表層部に6.8μm、その部分の硬さはHv=140であり、表面は一段と硬化されていた。
【0015】
【実施例4】
実施例3で用いたものと同様の鏡面仕上げ済みのPt1000の板状ペンダント試料の表面にロジウム(Rh)を電気メッキによって被覆した。ロジウムのメッキ浴と操作条件は以下の通りである。
<ロジウムのメッキ浴と操作条件>
硫酸ロジウム 1.5〜2.0g/L
硫酸(95〜96%) 25〜50ml/L
浴温 40〜50℃
電流密度 1〜10A/dm
電圧 3〜6V
陽極 Pt
メッキ被覆後の試料をアルゴン雰囲気中で1200℃で25時間、拡散浸透処理を行った。処理後の試料について表面硬度を測定したところHv=157であった。
【0016】
【実施例5】
実施例3のテストで使用したものと同様に鏡面仕上げしたPt1000の板状ペンダント試料の表面へイリジウム(Ir)粉末をセルロース溶液中へ分散させたペーストを筆で塗り、自然乾燥した後、これをアルゴン雰囲気中で1000℃で30時間加熱して拡散浸透処理を行った。得られた試料の表面は未拡散のIrが付着して粗くなっていたので、これをまず磁気研磨にかけ荒仕上げし、さらにバフ研磨による表面仕上げを行った後、Irの浸透深さと表面硬度の測定を行った。その結果、Irは表面から内部へ9.3μm浸透しており、表面硬度はHv=187であった。
【0017】
【実施例6】
鏡面仕上げしたPt1000の板状ペンダント試料の表面にパラジウム(Pd)を電気メッキによって被覆した。メッキをする時のメッキ液の組成と操作条件は下記の通りである。
<パラジウムのメッキ浴と操作条件>
Pd(NHCl 35g/L
塩化アンモニウム 30〜50g/L
硫酸アンモニウム 20〜30g/L
pH 9.0
温度 30℃
電流密度 1A/dm
Pd含有量 15g/L
そして、メッキ後の板状ペンダントをアルゴン雰囲気中で900℃で15時間加熱処理した。板状試料について二次のバフ研磨仕上げをした後、Pdの浸透深さと表面硬度を測定したところ、PdはPt1000表面から内部へ7.2μm浸透しており、表面硬さもHv=100であった。
【0018】
【実施例7】
鏡面仕上げの終わったPt1000の板状ペンダント試料の表面にイリジウム(Ir)を電気メッキによって被覆した。メッキをする時のメッキ液の組成と操作条件は下記の通りである。
<イリジウムメッキ浴と操作条件>
IrCl 15〜20g/L
スルファミド 5〜6g/L
温度 80℃
pH 2
電流密度 1〜3A/dm
メッキ後の板状ペンダントをアルゴン雰囲気中で1300℃で20時間加熱処理した。IrはPt1000の表面から内部へ22.3μm浸透しており、表面硬さもHv=160あり、十分な表面硬度が得られた。この試料の表面付近におけるIr濃度の変化をXMAで分析した結果と硬度の変化を図3、図4に示す。
【0019】
【実施例8】
バフ研磨による鏡面仕上げしたPt1000の板状ペンダト試料の表面に高速マグネトロンスパッタリングによってタンタル(Ta)をコーティングした。これを電気炉中で1500℃で15時間加熱処理した。処理後の試料について二次のバフ研磨をした後、試料の厚さ方向への切断面について表面から内部へ向かってXMAでTaの分布状態を調べたところ、タンタルは表面から34.2μmほど内部まで浸透しており、表面にはHv=100ほどの硬さがあった。
【0020】
【実施例9】
バフ研磨による鏡面仕上げしたPt1000の板状ペンダト試料の表面にマグネトロンスパッタリングによってジルコニウム(Zr)をコーティングした。これを電気炉中で1400℃で30時間加熱処理した。処理後の試料について二次のバフ研磨した後、試料の切断面について表面から内部へ向かってXMAでZrの分布状態を調べたところ、Zrは表面から10.6μmほど内部まで浸透しており、表面はHv=100の硬度であった。
【0021】
【実施例10】
バフ研磨による鏡面仕上げしたPt1000の板状ペンダント試料の表面にロジウムを電気メッキで被覆し、さらにその上へイリジウムを電気メッキによって被覆した。各々のメッキをする時のメッキ液の組成と操作条件は下記の通りである。
<ロジウムメッキ浴と操作条件>
硫酸ロジウム 1.5〜2.0g/L
硫酸(95〜96%) 25〜50ml/L
浴温 40〜50℃
電流密度 1〜10A/dm
電圧 3〜6V
陽極 Pt
<イリジウムメッキ浴と操作条件>
IrCl 15〜20g/L
スルファミド 5〜6g/L
温度 80℃
pH 2
電流密度 1〜3A/dm
そして、メッキ後の板状ペンダントをアルゴン雰囲気中で1400℃で15時間加熱処理した。処理後の試料についてIrとロジウムの浸透深さと表面硬度を測定したところ、IrはPt1000の表面から内部へ16.1μm、Rhは14.3μm浸透してPt、Ir、Rhの合金層を形成しており、表面硬さもHv=140と高い硬度が得られた。
【0022】
【実施例11】
鏡面仕上げしたPt1000の板状ペンダント試料の表面にイリジウム(Ir)を電気メッキによって被覆した。メッキをする時のメッキ液の組成と操作条件は下記の通りである。
IrCl 15〜20g/L
スルファミン酸 10〜20g/L
温度 80℃
pH 2
電流密度 1〜3A/dm
そして、メッキ後の板状ペンダントをHIPによってIrをPt1000の表層部へ浸透させた。HIPをした条件はアルゴン雰囲気中で1500℃で15時間の処理を行った。IrはPt1000の表面から内部へ21.6μm浸透しており、表面硬さもHv=140であった。Pdの場合は少し硬さが足りない様であった。
【0023】
【実施例12】
バフ研磨による鏡面仕上げしたPt1000板状ペンダント試料の表面にルテニウム(Ru)を電気メッキによって被覆した。
RuNOCl・5HO 10g/L
(Ruとして) 3.5〜4.5g/L
NHSO H 10〜20g/L
温度 50〜65℃
電流密度 0.5〜1.5A/dm
陽極 Ti−Pt板
これをアルゴン雰囲気中で1000℃で30時間加熱処理した。加熱処理後、試料の断面についてRuの表面から内部方向への分布と表面硬度を測ったところRuは表層部に6.4μm浸透しており、表面硬度はHv=130であった。
【0024】
【実施例13】
バフ研磨により鏡面仕上げしたPt1000の板状ペンダント試料の表面にイリジウム(Ir)と白金(Pt)の合金を電気メッキによって被覆した。メッキをする時のメッキ液の組成と操作条件は下記の通りである。
<Ir−Pt合金のメッキ浴と操作条件>
IrCl 10〜15g/L
PtCl 10〜15g/L
スルファミン酸 10〜20g/L
温度 80℃
pH 2
電流密度 1〜3A/dm
そして、メッキ後の板状ペンダントをHIPによってIr−Pt合金をPt1000の表層部へ浸透させた。HIP処理の条件はアルゴン雰囲気中で1000Kg/cm、950℃で15時間の処理を行った。IrはPt1000の表面から内部へ8.9μm浸透しており、表面硬さもHv=150であった。
【0025】
【実施例14】
バフ研磨による鏡面仕上げしたPt1000の板状ペンダント試料の表面にIrClを原料とし、アルゴン(Ar)をキャリアガスとして1気圧、1000℃でCVDによりイリジウム(Ir)を被覆した。被覆後、この試料をアルゴン雰囲気中で1400℃で25時間加熱処理した。処理後の試料についてIrの浸透深さと表面硬度を測定したところ、IrはPt1000表面から内部へ19.6μm浸透しており、表面硬さもHv=130であった。
【0026】
【実施例15】
バフ研磨による鏡面仕上げしたPt1000の板状ペンダント試料の表面へイリジウム(Ir)とロジウム(Rh)合金をターゲットとしてアーク放電イオンプレーティングによってIr−Rh合金を被覆した。被覆後、これをアルゴン雰囲気中で1500℃で20時間加熱処理を行い、その後に軽く試料表面をバフ研磨してから表面硬さの測定を行った。その結果、Ir−Rhの浸透深さは52.7μmで表面硬さはHv=150であった。
【0027】
【実施例16】
塩化イリジウム(IrCl)をエチシリケート加水分解液中へ溶かし、その溶液中へバフ研磨より鏡面仕上げしたPt1000板状ペンダント試料を浸漬してIrClを被覆した。被覆したPt1000試料を900℃で1時間加熱してIrClを分解してPt1000上にIrを生成させ、次いでこれをアルゴン気流中、1400℃で15時間加熱した。加熱後のPt1000についてIrの浸透深さと表面硬度を測定したところ浸透深さは23.5μmで、硬度は135であった。
【0028】
【実施例17】
アンモニア安定化型コロイダルシリカ溶液中へニオブ(Nb)の粉末を懸濁させ、この溶液をバフ研磨により鏡面仕上げしたPt1000の板状ペンダント試料上へスプレーして塗布することによってNbを被覆した。Nbを被覆したPt試料を真空中で1400℃で5時間加熱してNbをPt1000の表層へ拡散させた。加熱処理後にNbの浸透深さと表面硬度を測定した結果、浸透深さは14μmで、表面を微少焦点X線回析で分析したところNbPtも生成していて硬度はHv=230であった。
【0029】
【実施例18】
バフ研磨による鏡面仕上げしたPt1000の板状ペンダント試料の表面へ金(Au)と銅(Cu)のメッキを行ってPt表面へAuとCuを被覆した。被覆したPt1000を水素気流中、1200℃で10時間加熱処理してPt1000の表層へAuとCuを拡散浸透させた。CuとAuの両元素とも31.3μmほどまで浸透しており、表面について微少焦点X線回析で分析したところ、表面ではCuPtAuCu等が生成していて表面硬度はHv=256ほどあった。
【0030】
【実施例19】
バフ研磨による鏡面仕上げしたPt1000の板状ペンダント試料の表面へゲルマニウム(Ge)をGeターゲットとして、10−6Torrで電子ビームによる真空蒸着によって被覆した。被覆後、これをヘリウム気流中で800℃、25時間加熱した。加熱後にGeの浸透深さと表面硬度を測定した結果、浸透深さは16μmで、硬度はHv=157であった。
【0031】
【実施例20】
バフ研磨による鏡面仕上げしたPt1000の板状ペンダント試料の表面へ10−2Torrでスッパッタリングによりマンガン(Mn)を被覆した。被覆後の試料を水素気流中、1000℃で20時間加熱処理した。加熱後の試料についてMnの浸透深さと表面硬度を測定した。その結果、浸透深さは35μmで、硬度はHv=223であった。
【0032】
【実施例21】
バフ研磨による鏡面仕上げしたPt1000の板状ペンダント試料の表面へWFとH混合ガスを使い、CVDによってタングステン(W)を被覆した。被覆後の試料を水素気流中で1500℃で15時間加熱処理した。処理後の試料についてWの浸透深さと表面硬度を測定した。その結果、浸透深さは26μmで表面硬度はHv=304であった。
【0033】
【実施例22】
バフ研磨による鏡面仕上げしたPt1000の板状ペンダント試料の表面へオスミウム(Os)をOsターゲットを使って、10−6Torrの真空下で電子ビームによる真空蒸着した。蒸着被覆後、これを大気中で1400℃、5時間加熱処理した。加熱後の試料についてOsの浸透深さと表面硬度を測定した結果、浸透深さは6μmで、硬度はHv=287であった。
【0034】
【実施例23】
アンモニア安定化型コロイダルシリカ溶液中へパラジウム(Pd)と銅(Cu)の粉末を同時に懸濁させ、この溶液をバフ研磨より鏡面仕上げしたPt1000の板状ペンダント試料上へスプレーして塗布した。塗布後のPt1000試料を真空中で950℃で10時間加熱してPdとCuを同時にPt1000の表層部へ拡散浸透させた。加熱処理後にパラジウムと銅の浸透深さと表面硬度を測定した結果、浸透深さはパラジウムと銅が14〜20μmほど浸透しており、表面を微少焦点X線回析で分析したところCuPtが生成していて、硬度はHv=163であった。
【0035】
【実施例24】
塩化白金酸(HPtCl)を10%含み、塩化イリジウム(IrCl)を30%含む水溶液中へカルボキシメチルセルロースを少量、そして界面活性剤を微量溶かしこんだ溶液をバフ研磨により鏡面仕上げしたPt1000の板状ペンダント試料上へスプレーして塗布した。被覆試料を乾燥させた後、アルミナ粉中へ埋めて塗布膜の剥がれの防止をした後、このPt1000試料をアルゴン気流中で1500℃で8時間加熱してIrとPtの合金化と同時にIrを拡散浸透させた。加熱処理後、IrはPt1000の表層部へ35.1μm拡散浸透しており、表面硬度はHv=183であった。
【0036】
【実施例25】
バフ研磨による鏡面仕上げしたPt1000の板状ペンダント試料の表面へインジウムと錫をIn(C1119と(C)Sn(Cへ酸素を送ってCVDによりインジウム(In)と錫(Sn)を450℃で被覆した。被覆後の試料を水素気流中で700℃で7時間加熱処理した。処理後の試料についてWの浸透深さと表面硬度を測定した。その結果、浸透深さは47,2μmで、表面硬度はHv=173であった。
【0037】
【実施例26】
バフ研磨による鏡面仕上げしたPt1000の板状ペンダント試料の表面へアルミニウム(Al)とパラジウム(Pd)合金のターゲットを使って、10−6Torrの真空下で電子ビームによって真空蒸着した。蒸着被覆後の試料を真空下で850℃、20時間加熱処理した。加熱後の試料についてAlとPdの浸透深さと表面硬度を測定した結果、浸透深さは52μmで、表面にはAlPdが生成していて硬度はHv=287であった。
【0038】
【実施例27】
バフ研磨による鏡面仕上げしたPt1000の板状ペンダント試料の表面へクロム(Cr)のターゲットを使って、10−5Torrの真空下で電子ビームによって真空蒸着した。蒸着被覆後の試料をアルゴン気流中下で1550℃、8時間加熱処理した。加熱後の試料について表面分析、Crの浸透深さと表面硬度を測定した結果、Crの浸透深さは39.2μmで、表面にCrPtが生成しており、表面硬度はHv=196であった。
【発明の効果】
以上説明したように、本発明による硬化高純度白金は従来の“Pt1000”に代わるべき高純度白金素材であり、従来品よりもはるかに高い硬さを有する“Pt1000”として認定され得るもので、これにより製作された硬化高純度白金は市場で高い評価が得られるであろう。
【図面の簡単な説明】
【図1】実施例2でロジウム(Rh)をPt1000試料へスパッタリング被覆後、浸透処理を行った時の試料表面から内部へRhの濃度変化をXMAで分析した結果を示したものである。
【図2】実施例2でロジウム(Rh)をPt1000試料へスパッタリング被覆後、浸透処理を行った時の試料表面から内部への硬さ(Hv)の変化をマイクロビッカース高度計で測定した結果を示したものである。
【図3】実施例7でイリジウム(Ir)を電気メッキでPt1000試料表面へ被覆後、浸透処理を行った時の試料表面から内部へのIrの濃度変化をXMAで分析した結果を示したものである。
【図4】実施例7でイリジウム(Ir)を電気メッキでPt1000試料表面へ被覆後、浸透処理を行った時の試料表面から内部のへのIrの硬さ(Hv)の変化をマイクロビッカース高度計で測定した結果を示したものである。
[0001]
TECHNICAL FIELD OF THE INVENTION
Jewelry such as rings, pendants, earrings, brooches, and chains are made of gold, silver, platinum, and alloys based on these.Especially neat white, and platinum and its alloys that are heavy and luxurious Jewelry is preferred in Japan. Platinum jewelry is classified according to the purity of platinum. Pt = 99.9% or more pure platinum (denoted as Pt1000), platinum purity of 95% (Pt950), 90% (Pt900), 85% of ( Pt850) There are 4 grades. Among these four types of pure platinum and platinum alloy products, jewelry made of pure platinum, that is, Pt1000, has a pure platinum unique white color that is more favorable to consumers than platinum alloy. However, since pure platinum is soft (hardness is Hv = 40), the surface is easily damaged. If the surface of pure platinum jewelry is damaged, the shine of pure white of platinum will be impaired, which will lead to a reduction in aesthetics and commercial value. In order to improve this point, the present invention diffuses and penetrates a metal element effective for hardening platinum on the surface of pure platinum, forms a hardened layer on the surface of pure platinum, makes it difficult for scratches to be formed, and forms platinum. It is a new pure platinum jewelry that will keep the beautiful white shine for a long period of time.
[0002]
[Prior art]
Conventionally, pure platinum jewelry, that is, rhodium plating, ruthenium plating, or the like is applied to the jewelry surface of “Pt1000” to form a 0.2-0.5 μm hardened protective film to prevent damage to the surface of “Pt1000” jewelry. Was.
Further, recently, a hard intermetallic compound of platinum and boron (B) is formed on the surface of pure platinum, or zirconium (Zr), silicon (Si), magnesium (Mg), aluminum (AI), calcium A hardened surface layer is formed by alloying an element such as (Ca) with platinum or boron (B) contained in a trace amount, and is provided on the market as hardened “Pt1000” jewelry.
[0004]
[Problems to be solved by the invention]
The "Pt1000" jewelry with a platinum purity of 99.9% tends to be scratched when worn as a jewelry because the material itself is too soft. At one end, if the surface of the “Pt1000” jewelry is scratched, the part is easily stained, and diffused reflection of visible light occurs, reducing the shine of pure platinum pure white. The value will be impaired and the commercial value will drop significantly. The present invention has been made to overcome this problem, and has as its main purpose the manufacture of high-purity “Pt1000” jewelry, which is highly desired in the jewelry industry and is less likely to have scratches.
[0005]
[Means for Solving the Problems]
The nominal purity of platinum engraved with Pt1000 is 99.9%, so that 0.1% may contain other elements. Therefore, from the viewpoint of producing a hardened Pt1000 with 0.1%, a metal element for increasing hardness is diffused and infiltrated into the surface layer of pure platinum to solid-solution strengthen only the very surface of the Pt1000 jewelry, and the surface hardness is remarkable. It is characterized in that a cured layer is formed by ascending.
[0006] Among the platinum group elements, elements other than platinum (Pd, Rh, Ru, Ir, Os) or alloys thereof (including alloys with platinum) are used for PVD, CVD, plating, or powders of these elements. An organic solvent, a plasticizer, and the like are mixed to form a paste, and the paste is applied to the Pt1000 surface to coat the Pt1000 surface.
[0007] A single element or an alloy of tantalum (Ta), niobium (Nb), tungsten (W), zirconium (Zr), or the like, or an alloy of these metal elements and a platinum group element may be coated. Next, Pt1000 coated with these metals and alloys is coated in a vacuum, in an inert gas atmosphere, or in the case of a coated metal with low high-temperature oxidation at a temperature lower than the melting point of platinum for 2 to 60 hours in the atmosphere. The diffused metal element is diffused and penetrated into the surface layer portion of Pt1000 at 0.1 to 100 μm. At this time, the concentration of the permeated metal is 60 to 99% at the outermost surface of Pt1000 of 0.5 to 1 μm, and the concentration is gradually reduced to around 100 μm from here.
For diffusion and infiltration, HIP (high-temperature isostatic press) may be used to carry out treatment in an argon atmosphere at 600 to 1200 ° C. and 500 to 1000 kg / cm 2 for 5 to 20 hours.
Alternatively, Pt1000 may be buried in a powder of Pd, Rh, Ru, Ir, Os or the like, and heated at a temperature lower than the melting point of platinum to diffuse and infiltrate these elements into Pt1000.
[0010] By the above-described method, the platinum group element having high hardness and the above-mentioned metal elements other than these and their alloys are penetrated into the surface layer of Pt1000, alloyed with platinum, and the part is hardened to thereby form a flaw. "Pt1000" jewelry that is difficult to attach.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in Examples 1 to 27.
[0012]
Embodiment 1
An 8 mm × 8 mm × 3 mm thick Pt1000 plate sample mirror-finished by buffing was buried in iridium (Ir) fine powder filled in an alumina container and lightly hardened. This was heated at 1200 ° C. for 20 hours in an argon atmosphere to perform a diffusion and infiltration treatment. After the treatment, a Pt1000 plate sample was taken out, rough-finished by magnetic polishing, and then mirror-polished with a buff until the original Pt1000 surface appeared. The polished sample was cut in the thickness direction, and the cut surface was analyzed by X-ray microanalyzer (XMA) from the treated surface to the inside. As a result, Ir had penetrated to 15.5 μm. The surface hardness was Vickers hardness, Hv = 150, and a Pt1000 plate having a surface hardness much higher than that of Ht = 40 of Pt1000 before the infiltration treatment was obtained.
[0013]
Embodiment 2
Rhodium (Rh) was coated by low-temperature and high-speed sputtering (argon 10 −2 Torr) on the surface of a plate-like pendant of Pt1000 manufactured by hand, which was mirror-finished by buffing. This was subjected to a diffusion and infiltration treatment by heat treatment at 1000 ° C. for 35 hours in an electric furnace in a vacuum. After buffing the surface of the sample after the infiltration treatment again, it was cut perpendicularly to the infiltration treatment surface, and the cut surface was examined for the infiltration state of Rh by XMA from the surface toward the inside. Rh was 23 μm from the surface. And the surface hardness was about Hv = 200.
After the diffusion and infiltration treatment, the surface of the sample was lightly buffed, and the results of measurement of the change in Rh concentration and the change in hardness in the surface layer are shown in FIGS. 1 and 2.
From FIG. 1, Rh has penetrated about 11 μm from the surface of Pt1000, and the hardness of the surface decreases with increasing Hv200 in sequence at the surface, but Hv = 105 to 60 μm from the surface to 20 μm.
[0014]
Embodiment 3
Ruthenium (Ru) was coated by electroplating on the surface of a Pt1000 plate-shaped pendant sample mirror-finished with a buff. This was heated in a vacuum at 1000 ° C. for 40 hours to perform a diffusion and infiltration treatment. The plating conditions are as follows.
<Ruthenium plating bath and operating conditions>
RuNOCl 3 · 5H 2 O 10g / L
(As Ru) 3.5 to 4.5 g / L
NH 2 SO 3 H 10-20 g / L
Temperature 50-65 ° C
Current density 0.5-1.5 A / dm 2
Anode After the infiltration treatment of the Ti-Pt plate, the distribution of the Ru from the surface to the inside and the surface hardness of the cross section of the sample were measured. As a result, Ru was 6.8 μm in the surface layer portion, and the hardness of the portion was Hv = 140. The surface was more hardened.
[0015]
Embodiment 4
Rhodium (Rh) was coated by electroplating on the surface of a Pt1000 plate-like pendant sample having the same mirror finish as that used in Example 3. Rhodium plating bath and operating conditions are as follows.
<Rhodium plating bath and operating conditions>
Rhodium sulfate 1.5-2.0 g / L
Sulfuric acid (95-96%) 25-50 ml / L
Bath temperature 40-50 ° C
Current density 1 to 10 A / dm 2
Voltage 3-6V
Anode Pt
The sample after the plating coating was subjected to a diffusion infiltration treatment at 1200 ° C. for 25 hours in an argon atmosphere. When the surface hardness of the sample after the treatment was measured, it was Hv = 157.
[0016]
Embodiment 5
A paste obtained by dispersing iridium (Ir) powder in a cellulose solution was applied to the surface of a plate-like pendant sample of Pt1000 mirror-finished in the same manner as that used in the test of Example 3 with a brush, dried naturally, and then dried. Diffusion and infiltration treatment was performed by heating at 1000 ° C. for 30 hours in an argon atmosphere. Since the surface of the obtained sample was roughened due to the adhesion of undiffused Ir, the surface was first roughened by magnetic polishing, and then the surface was finished by buffing. A measurement was made. As a result, Ir had penetrated 9.3 μm from the surface to the inside, and the surface hardness was Hv = 187.
[0017]
Embodiment 6
Palladium (Pd) was coated on the surface of a mirror-finished Pt1000 plate-shaped pendant sample by electroplating. The composition of the plating solution and the operating conditions for plating are as follows.
<Palladium plating bath and operating conditions>
Pd (NH 3 ) 2 Cl 2 35g / L
Ammonium chloride 30-50g / L
Ammonium sulfate 20-30g / L
pH 9.0
Temperature 30 ° C
Current density 1A / dm 2
Pd content 15g / L
Then, the plate-shaped pendant after the plating was heat-treated at 900 ° C. for 15 hours in an argon atmosphere. After performing a secondary buffing finish on the plate-like sample, the penetration depth and surface hardness of Pd were measured. As a result, Pd had penetrated 7.2 μm from the surface of Pt1000 into the inside, and the surface hardness was also Hv = 100. .
[0018]
Embodiment 7
Iridium (Ir) was coated by electroplating on the surface of the Pt1000 plate-shaped pendant sample that had been mirror-finished. The composition of the plating solution and the operating conditions for plating are as follows.
<Iridium plating bath and operating conditions>
IrCl 3 15-20 g / L
Sulfamide 5-6g / L
Temperature 80 ° C
pH 2
Current density 1-3 A / dm 2
The plated pendant after the plating was heated at 1300 ° C. for 20 hours in an argon atmosphere. Ir penetrated 22.3 μm from the surface of Pt1000 into the inside, and the surface hardness was Hv = 160, and a sufficient surface hardness was obtained. The results of XMA analysis of the change in Ir concentration near the surface of this sample and the change in hardness are shown in FIGS.
[0019]
Embodiment 8
Tantalum (Ta) was coated by high-speed magnetron sputtering on the surface of a Pt1000 plate-like pendat sample mirror-finished by buff polishing. This was heat-treated at 1500 ° C. for 15 hours in an electric furnace. After secondary buffing of the treated sample, the distribution of Ta was examined by XMA from the surface to the inside of the cut surface in the thickness direction of the sample. As a result, tantalum was 34.2 μm inward from the surface. And the surface had a hardness of about Hv = 100.
[0020]
Embodiment 9
Zirconium (Zr) was coated by magnetron sputtering on the surface of a Pt1000 plate-like pendat sample mirror-finished by buff polishing. This was heat-treated at 1400 ° C. for 30 hours in an electric furnace. After secondary buffing of the sample after the treatment, the distribution of Zr was examined by XMA from the surface toward the inside of the cut surface of the sample, and Zr had penetrated about 10.6 μm from the surface to the inside, The surface had a hardness of Hv = 100.
[0021]
Embodiment 10
Rhodium was coated by electroplating on the surface of a Pt1000 plate-shaped pendant sample mirror-finished by buffing, and iridium was further coated thereon by electroplating. The composition of the plating solution and the operating conditions for each plating are as follows.
<Rhodium plating bath and operating conditions>
Rhodium sulfate 1.5-2.0 g / L
Sulfuric acid (95-96%) 25-50 ml / L
Bath temperature 40-50 ° C
Current density 1 to 10 A / dm 2
Voltage 3-6V
Anode Pt
<Iridium plating bath and operating conditions>
IrCl 3 15-20 g / L
Sulfamide 5-6g / L
Temperature 80 ° C
pH 2
Current density 1-3 A / dm 2
Then, the plated pendant after the plating was heat-treated at 1400 ° C. for 15 hours in an argon atmosphere. When the penetration depth of Ir and rhodium and the surface hardness of the sample after the treatment were measured, Ir was penetrated from the surface of Pt1000 to the inside by 16.1 μm and Rh was penetrated by 14.3 μm to form an alloy layer of Pt, Ir, and Rh. As a result, the surface hardness was as high as Hv = 140.
[0022]
Embodiment 11
The surface of the mirror-finished Pt1000 plate-shaped pendant sample was coated with iridium (Ir) by electroplating. The composition of the plating solution and the operating conditions for plating are as follows.
IrCl 3 15-20 g / L
Sulfamic acid 10-20 g / L
Temperature 80 ° C
pH 2
Current density 1-3 A / dm 2
Then, the plate-shaped pendant after plating was made to infiltrate Ir into the surface layer portion of Pt1000 by HIP. The HIP was performed at 1500 ° C. for 15 hours in an argon atmosphere. Ir penetrated 21.6 μm from the surface of Pt1000 into the inside, and the surface hardness was also Hv = 140. In the case of Pd, the hardness seemed to be slightly insufficient.
[0023]
Embodiment 12
Ruthenium (Ru) was coated by electroplating on the surface of a Pt1000 plate-shaped pendant sample which had been mirror-finished by buff polishing.
RuNOCl 3 · 5H 2 O 10g / L
(As Ru) 3.5 to 4.5 g / L
NH 2 SO 3 H 10-20 g / L
Temperature 50-65 ° C
Current density 0.5-1.5 A / dm 2
Anode Ti-Pt plate This was heat-treated at 1000 ° C for 30 hours in an argon atmosphere. After the heat treatment, the distribution and surface hardness of Ru from the surface to the inside of the cross section of the sample were measured. As a result, Ru penetrated 6.4 μm into the surface layer, and the surface hardness was Hv = 130.
[0024]
Embodiment 13
An alloy of iridium (Ir) and platinum (Pt) was coated by electroplating on the surface of a Pt1000 plate-shaped pendant sample mirror-finished by buffing. The composition of the plating solution and the operating conditions for plating are as follows.
<Ir-Pt alloy plating bath and operating conditions>
IrCl 3 10 to 15 g / L
H 2 PtCl 6 10-15 g / L
Sulfamic acid 10-20 g / L
Temperature 80 ° C
pH 2
Current density 1-3 A / dm 2
Then, the plate-like pendant after plating was infiltrated with an Ir-Pt alloy into the surface layer portion of Pt1000 by HIP. The HIP treatment was performed in an argon atmosphere at 1000 Kg / cm 2 at 950 ° C. for 15 hours. Ir penetrated 8.9 μm from the surface of Pt1000 into the inside, and the surface hardness was also Hv = 150.
[0025]
Embodiment 14
The surface of a plate-like pendant sample of Pt1000, which was mirror-finished by buff polishing, was coated with iridium (Ir) by CVD at 1 atm and 1000 ° C. using IrCl 3 as a raw material and argon (Ar) as a carrier gas. After coating, the sample was heat-treated at 1400 ° C. for 25 hours in an argon atmosphere. When the penetration depth and surface hardness of Ir were measured for the sample after the treatment, Ir penetrated 19.6 μm from the surface of Pt1000 into the inside, and the surface hardness was also Hv = 130.
[0026]
Embodiment 15
The surface of a Pt1000 plate-shaped pendant sample mirror-finished by buff polishing was coated with an Ir-Rh alloy by arc discharge ion plating using iridium (Ir) and rhodium (Rh) alloy as targets. After coating, this was subjected to a heat treatment at 1500 ° C. for 20 hours in an argon atmosphere, and thereafter, the surface of the sample was lightly buffed and then the surface hardness was measured. As a result, the penetration depth of Ir-Rh was 52.7 μm, and the surface hardness was Hv = 150.
[0027]
Embodiment 16
Iridium chloride (IrCl 4 ) was dissolved in an ethisilicate hydrolyzed solution, and a Pt 1000 plate-shaped pendant sample mirror-finished by buffing was immersed in the solution to coat IrCl 4 . The coated Pt1000 sample was heated at 900 ° C. for 1 hour to decompose IrCl 4 to produce Ir on Pt1000, which was then heated at 1400 ° C. for 15 hours in a stream of argon. When the penetration depth and surface hardness of Ir were measured for Pt1000 after heating, the penetration depth was 23.5 μm and the hardness was 135.
[0028]
Embodiment 17
Niobium (Nb) powder was suspended in an ammonia-stabilized colloidal silica solution, and this solution was sprayed onto a Pt1000 plate-shaped pendant sample mirror-finished by buffing to apply Nb. The Pt sample coated with Nb was heated at 1400 ° C. for 5 hours in vacuum to diffuse Nb into the surface layer of Pt1000. As a result of measuring the penetration depth and surface hardness of Nb after the heat treatment, the penetration depth was 14 μm, and when the surface was analyzed by microfocal X-ray diffraction, Nb 3 Pt was also generated and the hardness was Hv = 230. .
[0029]
Embodiment 18
Gold (Au) and copper (Cu) were plated on the surface of the Pt1000 plate-shaped pendant sample which had been mirror-finished by buffing, and the Pt surface was coated with Au and Cu. The coated Pt1000 was heat-treated at 1200 ° C. for 10 hours in a hydrogen stream to diffuse and infiltrate Au and Cu into the surface layer of Pt1000. Both elements of Cu and Au have penetrated to about 31.3 μm. When the surface was analyzed by microfocal X-ray diffraction, Cu 3 PtAu 3 Cu and the like were generated on the surface, and the surface hardness was about Hv = 256. there were.
[0030]
Embodiment 19
The surface of a plate-like pendant sample of Pt1000, which was mirror-finished by buff polishing, was coated by vacuum deposition with an electron beam at 10 −6 Torr using germanium (Ge) as a Ge target. After coating, it was heated in a helium stream at 800 ° C. for 25 hours. As a result of measuring the penetration depth and surface hardness of Ge after heating, the penetration depth was 16 μm and the hardness was Hv = 157.
[0031]
Embodiment 20
Manganese (Mn) was coated on the surface of a Pt1000 plate-shaped pendant sample mirror-finished by buffing by sputtering at 10 −2 Torr. The coated sample was heat-treated at 1000 ° C. for 20 hours in a hydrogen stream. The Mn penetration depth and surface hardness of the heated sample were measured. As a result, the penetration depth was 35 μm, and the hardness was Hv = 223.
[0032]
Embodiment 21
Using a mixed gas of WF 8 and H 2 , tungsten (W) was coated on the surface of a plate-like pendant sample of Pt1000, which was mirror-finished by buff polishing. The coated sample was heat-treated at 1500 ° C. for 15 hours in a hydrogen stream. The W penetration depth and surface hardness of the sample after the treatment were measured. As a result, the penetration depth was 26 μm, and the surface hardness was Hv = 304.
[0033]
Embodiment 22
Osmium (Os) was vacuum-deposited with an electron beam under a vacuum of 10 −6 Torr on the surface of a plate-like pendant sample of Pt1000, which had been mirror-finished by buff polishing, using an Os target. After the deposition coating, this was heat-treated at 1400 ° C. for 5 hours in the air. As a result of measuring the penetration depth of Os and the surface hardness of the sample after heating, the penetration depth was 6 μm and the hardness was Hv = 287.
[0034]
Embodiment 23
Powders of palladium (Pd) and copper (Cu) were simultaneously suspended in an ammonia-stabilized colloidal silica solution, and this solution was applied by spraying onto a Pt1000 plate-shaped pendant sample mirror-finished by buffing. The Pt1000 sample after application was heated in vacuum at 950 ° C. for 10 hours to simultaneously diffuse and infiltrate Pd and Cu into the surface layer of Pt1000. Heat treatment Determination of the palladium and copper penetration depth and surface hardness after, penetration depth of the palladium and copper have penetrated as 14~20Myuemu, the Cu 3 Pt was analyzed surface with micro focus X-ray diffraction As a result, the hardness was Hv = 163.
[0035]
Embodiment 24
Pt1000 obtained by buffing a solution containing a small amount of carboxymethylcellulose and a small amount of a surfactant dissolved in an aqueous solution containing 10% of chloroplatinic acid (H 2 PtCl 6 ) and 30% of iridium chloride (IrCl 3 ) by buff polishing. Was sprayed and applied onto the plate-shaped pendant sample. After the coated sample was dried, it was buried in alumina powder to prevent peeling of the coating film, and then this Pt1000 sample was heated at 1500 ° C. for 8 hours in an argon stream to alloy Ir and Pt simultaneously with Ir. Diffusion infiltration. After the heat treatment, Ir was diffused and penetrated into the surface portion of Pt1000 by 35.1 μm, and the surface hardness was Hv = 183.
[0036]
Embodiment 25
Indium and tin were supplied to the surface of the Pt1000 plate-shaped pendant sample which had been mirror-finished by buffing, and oxygen was sent to In (C 11 H 19 O 2 ) 3 and (C 4 H 9 ) Sn (C 2 H 3 O 3 ) 2 . Then, indium (In) and tin (Sn) were coated at 450 ° C. by CVD. The coated sample was heat-treated at 700 ° C. for 7 hours in a hydrogen stream. The W penetration depth and surface hardness of the sample after the treatment were measured. As a result, the penetration depth was 47.2 μm, and the surface hardness was Hv = 173.
[0037]
Embodiment 26
Using a target of an aluminum (Al) and palladium (Pd) alloy, a vacuum deposition was performed on the surface of a Pt1000 plate-shaped pendant sample mirror-finished by buff polishing with an electron beam under a vacuum of 10 −6 Torr. The sample after the vapor deposition coating was heated at 850 ° C. for 20 hours under vacuum. As a result of measuring the penetration depth of Al and Pd and the surface hardness of the heated sample, the penetration depth was 52 μm, Al 3 Pd was formed on the surface, and the hardness was Hv = 287.
[0038]
Embodiment 27
Using a chromium (Cr) target, a vacuum deposition was performed on the surface of a Pt1000 plate-shaped pendant sample that had been mirror-finished by buff polishing using an electron beam under a vacuum of 10 −5 Torr. The sample after the vapor deposition coating was heat-treated at 1550 ° C. for 8 hours in a stream of argon. As a result of surface analysis and measurement of Cr penetration depth and surface hardness of the sample after heating, the penetration depth of Cr was 39.2 μm, CrPt 3 was formed on the surface, and the surface hardness was Hv = 196. .
【The invention's effect】
As described above, the cured high-purity platinum according to the present invention is a high-purity platinum material that can replace conventional “Pt1000”, and can be certified as “Pt1000”, which has much higher hardness than conventional products. The hardened high-purity platinum produced by this method will be highly evaluated in the market.
[Brief description of the drawings]
FIG. 1 shows a result of XMA analysis of a change in Rh concentration from the sample surface to the inside when a permeation treatment is performed after rhodium (Rh) is sputter-coated on a Pt1000 sample in Example 2.
FIG. 2 shows the results of measuring the change in hardness (Hv) from the sample surface to the inside when performing a penetration treatment after rhodium (Rh) was applied to a Pt1000 sample by sputtering in Example 2 using a micro Vickers altimeter. It is a thing.
FIG. 3 shows the results of XMA analysis of a change in the concentration of Ir from the sample surface to the inside when the infiltration treatment is performed after coating the surface of the sample with iridium (Ir) by electroplating in Example 7; It is.
FIG. 4 is a micro-Vickers altimeter which measures the change in the hardness (Hv) of Ir from the sample surface to the inside when the infiltration treatment is performed after coating the surface of the Pt1000 sample with iridium (Ir) by electroplating in Example 7. 5 shows the results of the measurement.

Claims (2)

極く表層のみ硬化させた高純度白金で、硬化層は硬化に有効な金属元素を高純度白金表層部へ拡散浸透させ、浸透した元素と白金とを合金化させることによって形成する。硬化層の深さは0.1〜100μmで硬化元素の含有量の多い表面から白金の内部へ、最大で浸透深さ100μmまで連続的に含有量を低下させて硬化元素と白金との合金化を図って硬化層とし、その表面硬化層がマトリックス(基地)の高純度白金の硬度よりも一段と高い硬度を有する高純度白金である。
硬化層の形成に際しては、予め、拡散浸透させる金属元素を純白金(Pt1000)の表面へ以下のいずれかの1種もしくは2種以上組み合わせた方法によって被覆する。
▲1▼拡散浸透させる金属もしくは合金を物理的蒸着(PVD)あるいは科学的蒸着(CVD)でPt1000表面へコーティングする。
▲2▼拡散浸透させる金属もしくは合金をメッキによってPt1000表面へコーティングする。
▲3▼拡散浸透させる金属もしくは合金の粉末を適当な溶媒に懸濁させて液状もしくはペースト状態にしてPt1000表面へ塗布する。
▲4▼拡散浸透させる金属もしくは合金の微粉末をセルローズ等の希薄溶液へ分散させて刷毛塗りするか、微粉末の中へ純白金を埋没させ、Pt1000全体を覆う。
▲5▼Pt1000をエチルシリケート加水分解溶液あるいはコロイダルシリカ溶液に浸漬後、Pt1000上の溶液が未乾燥の内にその中に拡散浸透させる金属もしくは合金の微粉末を振りかけてPt1000面を被覆する。
▲6▼白金以外の白金族元素のハロゲン化物あるいはこれらと白金のハロゲン化物との混合物をセルローズ等もしくはコロイダルシリカの希薄溶液に溶かし、それをPt1000へ刷毛塗り、あるいは液中へ浸漬することによってPt1000へ浸透させる金属を塩化物として被覆する。
以上のいずれかもしくはこれらを組み合わせた方法によって1回、また、必要な場合には2回以上の被覆処理を行う。被覆処理の済んだPt1000は大気中、真空中、水素、窒素、アルゴンもしくはヘリウム気流中、白金の融点(1769℃)以下の温度で2〜100時間ほど加熱するか、アルゴン雰囲気下で高温静水圧プレス(HIP)によってPt1000の表面にコーティングした金属の95重量%以上をPt1000表層へ拡散させて表層部を強固にし、Pt1000の表面の損傷に対する抵抗性を高めた硬化高純度白金(Pt1000)とその製品。
The hardened layer is formed by diffusing and penetrating a metal element effective for hardening into the surface layer of the high-purity platinum, and alloying the permeated element with platinum. The depth of the hardened layer is from 0.1 to 100 µm, and from the surface with a high content of hardening element to the inside of platinum, the content is continuously reduced to a maximum of 100 µm in depth, and the hardening element is alloyed with platinum. And a hardened layer is formed of the hardened layer, and the hardened surface layer is made of high-purity platinum having a higher hardness than the high-purity platinum of the matrix (base).
In forming the hardened layer, the surface of pure platinum (Pt1000) is coated in advance with a metal element to be diffused and infiltrated by one or more of the following methods.
{Circle around (1)} A metal or alloy to be diffused and infiltrated is coated on the Pt1000 surface by physical vapor deposition (PVD) or chemical vapor deposition (CVD).
{Circle around (2)} A metal or alloy to be diffused and infiltrated is coated on the Pt1000 surface by plating.
{Circle around (3)} A metal or alloy powder to be diffused and infiltrated is suspended in an appropriate solvent to be in a liquid or paste state and applied to the Pt1000 surface.
{Circle around (4)} Fine powder of metal or alloy to be diffused and infiltrated is dispersed in a dilute solution such as cellulose and brush-coated, or pure platinum is buried in the fine powder to cover the entire Pt1000.
{Circle around (5)} After immersing Pt1000 in a hydrolyzed ethyl silicate solution or colloidal silica solution, the Pt1000 surface is coated by sprinkling fine powder of a metal or an alloy into the undried solution while diffusing and penetrating it.
{Circle around (6)} A platinum group element halide other than platinum or a mixture of these and a platinum halide is dissolved in a diluted solution of cellulose or the like or colloidal silica, and the solution is brush-coated on Pt1000 or immersed in the solution. The metal that penetrates into is coated as chloride.
The coating process is performed once, or, if necessary, two or more times by any of the above methods or a combination thereof. The coated Pt1000 may be heated in air, in vacuum, in a stream of hydrogen, nitrogen, argon or helium at a temperature not higher than the melting point of platinum (1769 ° C.) for about 2 to 100 hours, or may be subjected to high-temperature hydrostatic pressure in an argon atmosphere. Hardened high-purity platinum (Pt1000), in which 95% by weight or more of the metal coated on the surface of Pt1000 is diffused into the surface layer of Pt1000 by pressing (HIP) to strengthen the surface layer portion and increase resistance to damage to the surface of Pt1000, and Product.
純白金(Pt=99.9重量%)の硬化表層部の形成に有効な金属元素は白金以外の白金族元素であるロジウム(Rh)、ルテニウム(Ru)、イリジウム(Ir)、オスミウム(Os)、パラジウム(Pd)、さらには、白金族以外の金属元素でタンタル(Ta)、ジルコニウム(Zr)、ニオブ(Nb)、タングステン(W)、ゲルマニウム(Ge)、マンガン(Mn)、クロム(Cr)、金(Au)、銅(Cu)、錫(Sn)、インジウム(In)、アルミニウム(Al)があり、通常はこれらの元素の1種を選択するが、必要であればこれらに白金を含めた元素を2種以上組み合わせたものを請求項1記載のいずれかの方法により拡散浸透させて硬化層を形成した硬化高純度白金とその製品。Metal elements effective for forming a hardened surface layer of pure platinum (Pt = 99.9 wt%) are rhodium (Rh), ruthenium (Ru), iridium (Ir), and osmium (Os), which are platinum group elements other than platinum. , Palladium (Pd), and metal elements other than the platinum group, such as tantalum (Ta), zirconium (Zr), niobium (Nb), tungsten (W), germanium (Ge), manganese (Mn), and chromium (Cr) , Gold (Au), copper (Cu), tin (Sn), indium (In), and aluminum (Al). Usually, one of these elements is selected. 2. A hardened high-purity platinum formed by forming a hardened layer by diffusing and infiltrating a combination of two or more kinds of elements by the method according to claim 1.
JP2003159226A 2003-06-04 2003-06-04 Hardened high-purity platinum, and its product Pending JP2004360001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003159226A JP2004360001A (en) 2003-06-04 2003-06-04 Hardened high-purity platinum, and its product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003159226A JP2004360001A (en) 2003-06-04 2003-06-04 Hardened high-purity platinum, and its product

Publications (1)

Publication Number Publication Date
JP2004360001A true JP2004360001A (en) 2004-12-24

Family

ID=34052348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003159226A Pending JP2004360001A (en) 2003-06-04 2003-06-04 Hardened high-purity platinum, and its product

Country Status (1)

Country Link
JP (1) JP2004360001A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106286A (en) * 2006-09-29 2008-05-08 Kyocera Corp Composite material and decorative article
JP2010275575A (en) * 2009-05-27 2010-12-09 Ishifuku Metal Ind Co Ltd HIGH-DURABLE Pt WIRE
CN104164585A (en) * 2014-08-06 2014-11-26 贵研铂业股份有限公司 Platinum-based high-elasticity alloy and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106286A (en) * 2006-09-29 2008-05-08 Kyocera Corp Composite material and decorative article
JP2010275575A (en) * 2009-05-27 2010-12-09 Ishifuku Metal Ind Co Ltd HIGH-DURABLE Pt WIRE
CN104164585A (en) * 2014-08-06 2014-11-26 贵研铂业股份有限公司 Platinum-based high-elasticity alloy and preparation method thereof
CN104164585B (en) * 2014-08-06 2016-08-24 贵研铂业股份有限公司 Platino high elastic modulus alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
EP0808921B1 (en) Ornamental member
EP0258283B1 (en) Method for depositing on a substrate a wear-resistant decorative coating layer, and object produced according to this method
EP2135972A1 (en) Gold alloy coating, gold alloy coating clad laminate and gold alloy coating clad member
WO1995018248A1 (en) White decorative part and process for producing the same
EP1710323B1 (en) Nickel coating
WO2002000958A1 (en) Decorative article having white film and production method therefor
JP2010047791A (en) STEEL MATERIAL COATED WITH Al-CONTAINING COPPER ALLOY AND MANUFACTURING METHOD THEREFOR
US4935193A (en) Method for producing a layer protective against oxidation
JP3174005B2 (en) Aluminum material having metal diffusion layer, method for manufacturing the same, and metal diffusion paste
JP2004360001A (en) Hardened high-purity platinum, and its product
JPH09165670A (en) Transparent protective film-coated structure and its production
JPS6353267A (en) Plating method
EP0462228A1 (en) Method and layered structure for adhering gold to a substrate
JPH0813133A (en) Silvery external ornamental parts
JPH0751742B2 (en) Exterior parts for watches
JP2000144366A (en) Member for aluminum-zinc coating bath, and its manufacture
JP2990917B2 (en) Watch exterior parts
JP3009527B2 (en) Aluminum material excellent in wear resistance and method for producing the same
JPH08120481A (en) Decorative member
JPS6217040B2 (en)
JPS634630B2 (en)
US20080171221A1 (en) Thermal Barrier Coating
JPH0534432B2 (en)
CN113621914B (en) Silvery white coating and preparation method thereof
JP7198726B2 (en) Rigid decorative member and its manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050428

A131 Notification of reasons for refusal

Effective date: 20070220

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20070312

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A02 Decision of refusal

Effective date: 20070807

Free format text: JAPANESE INTERMEDIATE CODE: A02