JP2004358516A - Resistance welding method, method for cleaning resistance welding electrode, and resistance welding apparatus - Google Patents

Resistance welding method, method for cleaning resistance welding electrode, and resistance welding apparatus Download PDF

Info

Publication number
JP2004358516A
JP2004358516A JP2003159723A JP2003159723A JP2004358516A JP 2004358516 A JP2004358516 A JP 2004358516A JP 2003159723 A JP2003159723 A JP 2003159723A JP 2003159723 A JP2003159723 A JP 2003159723A JP 2004358516 A JP2004358516 A JP 2004358516A
Authority
JP
Japan
Prior art keywords
electrode
resistance welding
welding
welded
moving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003159723A
Other languages
Japanese (ja)
Inventor
Kenichiro Maki
謙一郎 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2003159723A priority Critical patent/JP2004358516A/en
Publication of JP2004358516A publication Critical patent/JP2004358516A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Resistance Welding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily remove obstacles against resistance welding which are formed on a surface of an electrode for resistance welding. <P>SOLUTION: An electrode 4 is abutted on one side of a welding part where conductors 1 and 2 contact with each other, and an electrode 3 is arranged with a space from the welding part of the other side conductor 1. In such a state, voltage is applied between the electrodes 3 and 4. As a result, An arc A<SB>rc</SB>is generated between the conductor 1 and the electrode 3, and the resistance welding obstacles such as an oxide film 7 and dust, which are formed on the surfaces of the conductor 1 and on the electrode side of the electrode 3, are scattered and removed by the arc A<SB>rc</SB>. After the cleaning, the electrode 3 is abutted on the welding part of the conductor 1, and the welding part of the conductors 1 and 2 is sandwiched between the electrodes 3 and 4. In this state, the resistance welding is carried out by applying the voltage between the electrodes 3 and 4. The cleaning by the arc is performed very easily and rapidly. The excellent resistance welding is realized by removing the resistance welding obstacles. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、抵抗溶接方法および抵抗溶接用電極のクリーニング方法および抵抗溶接装置に関するものである。
【0002】
【背景技術】
金属(導電体)同士を接合する溶接の一つとして、抵抗溶接と呼ばれるものがある。その抵抗溶接は次に示すようにして行われる。例えば、図7に示されるように、複数の導電体1,2の溶接対象部分を互いに接触させた状態でそれら溶接対象部分をその両側から対を成す電極3,4により挟み込む。そのように電極3,4により溶接対象部分を挟み込んで、電極3,4から溶接対象部分に圧力を加えながら、電極3,4間に電圧を印加する。なお、図7の例では、電極3,4は直流電源5に接続されており、電極3,4間には直流電圧が印加する構成となっているが、電極3,4間に交流を印加する場合もある。
【0003】
電極3,4間の電圧印加によって、電極3,4間には導電体1,2の溶接対象部分を通って電流が通電する。接触し合う溶接対象部分間には接触抵抗があり、この接触抵抗に起因して、接触し合っている溶接対象部分が通電により発熱する。この熱によって溶接対象部分間が溶接接合される。このように溶接対象部分間の接触抵抗を利用した溶接が抵抗溶接と呼ばれている。
【0004】
【特許文献1】
実開平5−5275号公報
【特許文献2】
特開平6−122078号公報
【特許文献3】
特開平9−239556号公報
【0005】
【発明が解決しようとする課題】
ところで、例えば図8に示されるように、電極3の電極面や、導電体1の溶接対象部分の表面には、酸化膜7が形成されていたり、塵などが付着していることがある。そのように、電極面や溶接対象部分の表面に酸化膜7や塵があると、その酸化膜7や塵によって例えば電極3と導電体1の溶接対象部分との間の接触抵抗が大きくなる。このため、抵抗溶接を行うべく電極3,4間に電圧を印加して導電体1,2の溶接対象部分に電流を通電させたときに、電極3と導電体1の溶接対象部分との間の酸化膜7や塵に起因した接触抵抗により電極3と導電体1間の発熱が大きくなる。
【0006】
これにより、導電体1,2の溶接対象部分間での発熱量が低下して導電体1,2の溶接対象部分間の溶接接合が不良となったり、電極3と導電体1間が抵抗溶接されてしまう等の不都合が生じる。なお、電極面や溶接対象部分の表面の酸化膜7や塵は抵抗溶接を妨げるものであることから、この明細書中では、そのような酸化膜7や塵を抵抗溶接障害物と記す。
【0007】
例えば、特許文献1には、電極面をクリーニング板を利用し研磨して、電極面のクリーニングを行う手法が提案されている。この手法のように電極面を研磨することにより、電極面の酸化膜等の抵抗溶接障害物を除去できるので、抵抗溶接障害物に起因した抵抗溶接不良を減少させることは可能である。しかしながら、その提案の手法では、電極面の研磨により抵抗溶接障害物を除去して電極面のクリーニングを行っているので、その電極面のクリーニングに時間が掛かるという問題がある。また、研磨による電極面のクリーニングであるために、電極の摩耗が早いという問題もある。さらに、提案の手法では、導電体の抵抗溶接部分の表面のクリーニングを行うことが難しい。
【0008】
この発明は上記課題を解決するために成されたものであり、その目的は、抵抗溶接に用いる電極の表面および導電体の溶接対象部分の表面にある抵抗溶接障害物を簡単に除去できて、複数の導電体の接触し合う溶接対象部分間を良好に抵抗溶接できる抵抗溶接方法および抵抗溶接用電極のクリーニング方法および抵抗溶接装置を提供することにある。
【0009】
【課題を解決するための手段】
上記目的を達成するために、この発明は次に示す構成をもって前記課題を解決するための手段としている。すなわち、この発明の抵抗溶接方法は、複数の導電体の溶接対象部分を互いに接触させた状態でそれら溶接対象部分をその両側から対を成す電極により挟み込み、その対を成す電極間に電圧を印加して、溶接対象部分間の接触抵抗に起因した発熱により溶接対象部分間を溶接接合する抵抗溶接方法において、接触し合う溶接対象部分の一方側に対を成す電極の一方側を当接させ他方側の電極は他方側の溶接対象部分と間隔を介し配置させた状態で対を成す電極間に電圧を印加して、前記間隔を介し配置されている電極と溶接対象部分間にアークを発生させてそれら電極と溶接対象部分のそれぞれの表面にある抵抗溶接障害物を除去し、このクリーニングの後に、前記他方側の電極を溶接対象部分に当接させて複数の導電体の溶接対象部分を対を成す電極により挟み込んで抵抗溶接を行うことを特徴としている。
【0010】
また、この発明の抵抗溶接用電極のクリーニング方法は、複数の導電体の溶接対象部分を互いに接触させた状態でそれら溶接対象部分をその両側から対を成す電極により挟み込み、その対を成す電極間に電圧を印加して、溶接対象部分間の接触抵抗に起因した発熱により溶接対象部分間を溶接接合する抵抗溶接の前記対を成す電極を間隔を介して対向配置し、それら電極間に電圧を印加しアークを発生させて、対を成す電極の対向し合う電極面にある抵抗溶接障害物を除去することを特徴としている。
【0011】
この発明の抵抗溶接装置は、複数の導電体の互いに接触させた溶接対象部分をその両側から挟み込む対を成す電極を有し、その対を成す電極間に電圧を印加して、複数の導電体の溶接対象部分間の接触抵抗に起因した発熱により溶接対象部分間を溶接接合する抵抗溶接装置において、前記対を成す電極の一方側は固定側の電極と成し、他方側は移動側の電極と成しており、移動側の電極を固定側の電極に対して進退方向に移動させる電極移動機構と、複数の導電体の接触し合う溶接対象部分の一方側に固定側の電極を当接させた状態で他方側の溶接対象部分と間隔を介して配置された移動側の電極をその他方側の溶接対象部分に向けて電極移動機構により移動させて当該移動側の電極が溶接対象部分に当接する前に移動側の電極と固定側の電極間に電圧を印加して移動側の電極と溶接対象部分間にアークを発生させて移動側の電極と当該電極に対向する溶接対象部分とのそれぞれの表面にある抵抗溶接障害物を除去するアーククリーニング制御部と、移動側の電極と固定側の電極との間に電圧を印加するための通電経路上の電流を検出し当該検出電流に基づいて移動側の電極と溶接対象部分間のアークの発生を検出するアーク発生検出部と、アーク発生が検出された後に移動側の電極と固定側の電極との間の印加電圧をアーク発生用の電圧から抵抗溶接用の電圧に変化させる印加電圧制御部とを有しており、アークを利用した移動側の電極と溶接対象部分のそれぞれの表面のクリーニングが行われた後に引き続いて、抵抗溶接が行われることを特徴としている。
【0012】
【発明の実施の形態】
以下に、この発明に係る実施形態例を図面に基づいて説明する。
【0013】
第1実施形態例における抵抗溶接工程では、例えば、まず、図1(a)に示されるように、複数の導電体1,2の互いに接触させた溶接対象部分の一方側(2)を、対を成す電極3,4のうちの一方側の電極4に当接させ、また、他方側の電極3は他方側の溶接対象部分(1)と間隔を介して配置させる。
【0014】
そして、電源5の電力に基づいて電極3,4間に予め定められた設定の電圧を印加しながら、電極3を電極4に向けて徐々に移動させる(換言すれば、電極3を導電体1の溶接対象部分に徐々に近付けていく)。このときの電極3,4間の印加電圧は例えば数百V程度である。なお、電源5は交流電源と直流電源のうちの何れを採用してもよい。
【0015】
そして、その電極3の移動により、図1(b)に示されるように、電極3が導電体1の溶接対象部分に接近したときに、電極3と導電体1の溶接対象部分との間にアークArcが発生する。このアークArcによって、電極3の表面(電極面)およびその電極面に対向している導電体1の溶接対象部分の表面の酸化膜7や塵などの抵抗溶接障害物が飛散し除去されて、電極3の電極面および導電体1の溶接対象部分の表面のクリーニングが成される。
【0016】
アークArcによるクリーニングは瞬間的に行われるものであり、電極3の導電体1側への移動はアークArcの発生に関係なく連続的に行う。そして、図1(c)に示されるように、電極3を導電体1の溶接対象部分に当接させて、導電体1,2の接触し合う溶接対象部分をその両側から電極3,4によって挟み込み、当該電極3,4から導電体1,2の溶接対象部分に予め定められた押圧力を加えながら電極3,4間に電圧を印加する。このとき、電極3,4間の電圧印加に起因した電流が導電体1,2の溶接対象部分を通電し、その溶接対象部分間の接触抵抗に起因して当該溶接対象部分に発熱が生じる。この発熱によって溶接対象部分間が接合して抵抗溶接が成される。
【0017】
ところで、抵抗溶接を行う際の電極3,4間の印加電圧は、例えば数V程度でよく、アークを発生させる際の電極3,4間の印加電圧(例えば数百V程度)よりも格段に低い電圧である。このことから、アークによるクリーニングが終了した後に、電極3,4間の印加電圧をアーク発生用の電圧から抵抗溶接用の電圧に下げることが好ましい。その電圧低下のタイミングは、例えば、アークによるクリーニングの終了を検出したときでもよいし、アークによるクリーニングの終了を検出してから設定時間を経過したときでもよいし、電極3が導電体1の溶接対象部分に当接したときでもよい。また、アークによるクリーニングの終了を検出したときに電極3,4間の電圧印加を一旦停止し、その後、電極3が導電体1の溶接対象部分に当接した後に電極3,4間に抵抗溶接用の電圧の印加を開始してもよい。
【0018】
この第1実施形態例では、上記のような工程でもって抵抗溶接が成され、次に示すような効果を得ることができる。つまり、第1実施形態例の抵抗溶接工程では、電極3の表面および導電体1の溶接対象部分の表面の抵抗溶接障害物をアークにより除去してから抵抗溶接を行う。特に、この実施形態例では、電極3だけでなく、抵抗溶接時に電極3が当接する導電体1の溶接対象部分の表面のクリーニングをも行うので、抵抗溶接障害物に起因した問題(つまり、抵抗溶接障害物により、当接し合う電極3と導電体1間の接触抵抗が大きくなって、導電体1,2の溶接対象部分間の抵抗溶接を妨げるという問題や、電極3が導電体1の溶接対象部分に抵抗溶接により接合してしまうという問題など)をより確実に回避することができる。
【0019】
また、第1実施形態例の抵抗溶接工程では、電極3の表面および導電体1の溶接対象部分の表面をクリーニングするためのクリーニング専用の設備を用意することなく、抵抗溶接に使用する電極3,4を利用し電極3と導電体1の溶接対象部分との間にアークを発生させるだけで、電極3および導電体1の溶接対象部分の表面のクリーニングを行うことができる。これにより、設備コスト低減を図ることができる。
【0020】
さらに、第1実施形態例の抵抗溶接工程では、電極3および導電体1の溶接対象部分の表面のクリーニングと、導電体1,2の抵抗溶接とを連続的に行うことができる。このため、抵抗溶接工程とは別の工程として、電極3や導電体1の溶接対象部分の表面のクリーニング工程を必要としない。これにより、製造効率を低下させることなく、抵抗溶接不良を防止できる。
【0021】
さらに、電極面の抵抗溶接障害物を研磨ではなく、アークにより瞬間的に除去するので、クリーニングに要する時間を大幅に低減することができる。また、電極の摩耗を小さく抑制することができる。これにより、電極の取り替え頻度を少なくすることができることから、メンテナンスの手間を軽減できたり、部品コストを削減することができる。
【0022】
以下に、この第1実施形態例の抵抗溶接工程を実施することができる抵抗溶接装置の一例を述べる。図2にはその抵抗溶接装置の本実施形態例において特徴的な構成部分が抜き出されて表されている。この抵抗溶接装置は、対を成す電極3,4と、それら電極3,4間に電圧を印加するための交流又は直流の電源5と、この電源5と電極3,4を通る通電経路上の電流を検出する電流検出手段6と、電極3を移動させるための電極移動機構8と、抵抗溶接装置の動作を制御するための制御装置10とを有して構成されている。
【0023】
すなわち、この第1実施形態例では、電極3は移動側の電極と成し、電極4は固定側の電極と成している。電極移動機構8は、その移動側の電極3を固定側の電極4に対して進退方向に移動させるものである。なお、固定側の電極4は、図2に示されるように導電体2の溶接対象部分に当接している状態では変位しないものであり、例えばそれ以外のときには移動できる構成(つまり、電極移動機構に接続されている構成)であってもよい。もちろん、固定側の電極4は、例えば基台などに固定されて移動しない構成であってもよい。
【0024】
制御装置10は、アーク発生検出部12と、印加電圧制御部13と、アーククリーニング制御部14と、抵抗溶接制御部15とを有して構成されている。
【0025】
アーククリーニング制御部14は、電極移動開始指令部20と電圧印加開始指令部21を有して構成されている。例えば、抵抗溶接開始を指令する信号がアーククリーニング制御部14に加えられると、電極移動開始指令部20は、電極移動機構8に向けて電極移動開始信号を出力する。電極移動機構8は、その電極移動開始信号を受け取ると、例えば図1に示されるように導電体1と間隔を介して配置されている移動側の電極3を固定側の電極4(導電体1)側に向けて例えば設定の移動速度でもって徐々に移動させる。なお、抵抗溶接開始指令信号は、例えば、抵抗溶接装置に設けられている抵抗溶接開始指示用操作手段(例えばスタートボタンやスタートスイッチ)が操作されたときや、また例えば導電体1,2の自動設置機能が設けられている場合にはその自動設置機能により導電体1,2が抵抗溶接を行うための設定位置への自動設置が終了したときに、アーククリーニング制御部14に加えられる。
【0026】
また、電圧印加開始指令部21は、抵抗溶接開始指令信号がアーククリーニング制御部14に加えられると、電圧印加開始信号を印加電圧制御部13に出力する。印加電圧制御部13にはメモリ(図示せず)が内蔵されており、そのメモリにはアーク発生用に設定された電圧(例えば数百V程度)と、抵抗溶接用に設定された電圧(例えば数V程度)とが予め格納されている。印加電圧制御部13は、電圧印加開始指令部21から電圧印加開始信号が加えられたときに、内蔵のメモリからアーク発生用の電圧を読み出し、このアーク発生用の電圧が電極3,4間に印加されるように電源5を制御する。
【0027】
なお、電極移動開始指令部20の電極移動機構8への電極移動開始指令信号の出力と、電圧印加開始指令部21の印加電圧制御部13への電圧印加開始指令信号の出力とは、同じタイミングで行ってもよいし、異なるタイミングで行ってもよい。具体的には、例えば、抵抗溶接開始指令信号がアーククリーニング制御部14に加えられたときに同時に電極移動開始指令部20と電圧印加開始指令部21が信号出力を行ってもよい。この場合には、電極移動機構8による移動側の電極3の移動と、印加電圧制御部13の制御による電極3,4間の電圧印加とがほぼ同時に開始される。
【0028】
また、例えば、抵抗溶接開始指令信号がアーククリーニング制御部14に加えられたときに電圧印加開始指令部21が信号出力を行い、電極移動開始指令部20は、抵抗溶接開始指令信号がアーククリーニング制御部14に加えられたときから設定時間が経過したときに信号出力を行ってもよい。この場合には、印加電圧制御部13の制御による電極3,4間の電圧印加が開始された後に、電極移動機構8による移動側の電極3の移動が開始される。
【0029】
さらに、例えば、抵抗溶接開始指令信号がアーククリーニング制御部14に加えられたときに電極移動開始指令部20が信号出力を行い、抵抗溶接開始指令信号がアーククリーニング制御部14に加えられたときから設定時間が経過したときに電圧印加開始指令部21が信号出力を行ってもよい。この場合には、電極移動機構8による移動側の電極3の移動が開始された後に、印加電圧制御部13の制御による電極3,4間の電圧印加が開始される。
【0030】
上記のように、電極移動機構8により移動側の電極3が導電体1側に移動していき、移動側の電極3と導電体1の溶接対象部分との間の間隔が非常に狭くなってきたときに、電極3,4間の電圧印加(つまり、移動側の電極3と導電体1の溶接対象部分との間の電圧印加)に起因して移動側の電極3と導電体1の溶接対象部分との間にアークArcが発生する。
【0031】
移動側の電極3と導電体1の溶接対象部分との間にアークArcが発生したときには、電極3,4と電源5とを通る通電経路上の通電電流がアーク発生に応じて一時的に大きくなる。この電流変化を利用して、アーク発生検出部12は、アーク発生を検出する。このアーク発生検出部12はメモリ17と比較部18を有して構成されている。メモリ17には、予めアーク発生用のしきい値が格納されている。そのしきい値は例えば次に示すように求められる。
【0032】
すなわち、電流検出手段6は、例えば、電極3,4と電源5を通る通電経路上に電流が通電しているときには、その通電電流の大きさに応じた例えば電圧信号(電流検出信号)を出力する構成を有する。例えば、アークが発生しているときに、その電流検出手段6から出力される電流検出信号の大きさを予め実験等により求め、その求めたアーク発生時の電流検出信号の大きさに基づいてアーク発生を検知するためのアーク検出用のしきい値を求める。
【0033】
そのようにして求めたアーク検出用のしきい値がアーク発生検出部12のメモリ17に予め格納される。比較部18は、電流検出手段6から電流検出信号が出力されているときにはその電流検出信号を時々刻々と取り込む。そして、比較部18は、その取り込んだ電流検出信号の大きさをメモリ17のアーク検出用のしきい値と比較し、電流検出信号の大きさがアーク検出用のしきい値を越えているか否かを判断する。そして、比較部18は、その比較の結果、電流検出信号の大きさがアーク検出用のしきい値を越えていると判断したときに、アークが発生したと判断して、アーク発生を知らせるためのアーク発生報知信号を抵抗溶接制御部15に向けて出力する。
【0034】
抵抗溶接制御部15は、アーク発生報知信号を受け取ったときに、印加電圧制御部13に向けて、電圧中断信号を出力する。印加電圧制御部13は、その電圧中断信号を受け取ったときに、電極3,4間の電圧印加を中断する。
【0035】
また、抵抗溶接制御部15は、アーク発生後も引き続き電極移動機構8による移動側の電極3の移動を継続させ、予め定めた停止位置まで移動側の電極3を連続的に移動させる。ここでは、その移動側の電極3の停止位置は、移動側の電極3が導電体1に当接し当該移動側の電極3から導電体1に予め定めた荷重を加えることができる位置に設定されている。なお、移動側の電極3から導電体1へは、ばね等の弾性力を利用して荷重を加える構成となっている。
【0036】
抵抗溶接制御部15は、例えば電極移動機構8からの情報に基づいて移動側の電極3が設定の停止位置で移動を停止したことを検知した以降に、印加電圧制御部13に電圧印加再開信号を出力する。印加電圧制御部13は電圧印加再開信号を受け取ると、内蔵のメモリに格納されている抵抗溶接用の設定電圧を読み出し、その抵抗溶接用の設定電圧での電極3,4間の電圧印加が開始されるように電源5を制御する。この抵抗溶接制御部15の制御動作によって、導電体1,2の接触し合う溶接対象部分が電極3,4により加圧されている状態で当該電極3,4間の電圧印加に起因して溶接対象部分間が接触抵抗により発熱して接合され抵抗溶接が成される。
【0037】
抵抗溶接制御部15は、例えば、電極3,4による導電体1,2の溶接対象部分への加圧が開始されてから設定時間を経過したときに、電極3,4間の電圧印加を停止させて抵抗溶接制御動作を終了する。また、抵抗溶接制御部15は、電極移動機構8を制御して、移動側の電極3を固定側の電極4に対して退避移動させて、例えば設定の待機位置に戻し、次の抵抗溶接動作に備えさせる。
【0038】
この第1実施形態例の溶接抵抗装置は上記のように構成されており、この装置は、例えば、装置の使用者が抵抗溶接開始ボタンやスイッチを操作しただけで、アークによる電極3と導電体1のクリーニングと、導電体1,2の抵抗溶接とを連続的に自動的に行うことができる。
【0039】
なお、この第1実施形態例に示した抵抗溶接工程や抵抗溶接装置を用いて抵抗溶接するものは特に限定されるものではないが、その一例を次に述べる。例えば、図3には巻線型コイル部品の一例が斜視図により示されている。この巻線型コイル部品30は、導電体である平形巻線31が巻回形成されて成るコイル32を有し、このコイル32が磁性材料から成るブロック体33の内部に埋設されている構成を有する。この巻線型コイル部品30には、コイル32を外部と接続させるために導電体である金属端子34(34a,34b)が設けられている。その金属端子34に平形巻線31の端部が接続されている。
【0040】
この巻線型コイル30は次に示すように作製される。例えば、平形巻線31を巻回して図4(a)に示されるようなコイル32を作製し、このコイル32の端部と、金属端子34とを溶接接合する。このコイル32の端部の平形巻線部分31a,31bと、金属端子34との溶接に、この第1実施形態例に示した抵抗溶接工程や抵抗溶接装置を用いることができる。
【0041】
その後に、ブロック体33を成形するための金型の内部に、コイル32および金属端子34を配置し、その金型内に磁性材料を充填する。これにより、図4(b)に示されるようなコイル32と金属端子34の一部とを埋設したブロック体33が形成される。このブロック体33の側面からは金属端子34(34a,34b)の一部が突出しており、然る後に、その金属端子34(34a,34b)の突出部分を図4(c)に示されるように、ブロック体33の側面および底面に倣って折り曲げる。このようにして図3に示す巻線型コイル部品30を作製することができる。
【0042】
以下に、第2実施形態例を説明する。なお、この第2実施形態例の説明において、第1実施形態例と同一構成部分には同一符号を付し、その共通部分の重複説明は省略する。
【0043】
この第2実施形態例では、移動側の電極3に特徴があり、この移動側の電極3以外の構成は第1実施形態例と同様である。すなわち、この第2実施形態例では、移動側の電極3は電荷を集中させる構造を備えている。具体的には、例えば、図5(a)に示されるように、移動側の電極3の電極面には丸みが付けられて、丸みの張り出し部分Pに電荷を集中させる構成を備える。あるいは、例えば、図5(b)に示されるように、移動側の電極3の一部を張り出し面3Tとして、電極3が導電体1に当接する当接面3Tの面積を減少させ当該当接面3Tに電荷を集中させる。あるいは、対を成す電極3,4の各電極面を同じ面積とするのではなく、例えば、図5(c)に示されるように、移動側の電極3全体を固定側の電極4よりも細くして、移動側の電極3の電極面を固定側の電極4の電極面よりも小さくして電荷を集中させる。例えば、図5(b)や(c)の形態の場合に、移動側の電極3が導電体1に当接する部分の電極面が円形状と成している場合には、その円形状の電極面の直径φを0.5mm以下に細く形成する。
【0044】
上記のように、電極3,4間の電荷を一部に集中させることによって、その電荷集中領域でのエネルギーが高まるので、電極3,4間の電圧印加によるアークの発生を安定化させることができる。
【0045】
なお、この発明は第1や第2の各実施形態例に限定されるものではなく、様々な実施の形態を採り得る。例えば、第2実施形態例では、移動側の電極3と固定側の電極4のうち、移動側の電極3だけが電荷集中のための構成を有していたが、例えば、移動側の電極3だけでなく固定側の電極4の電極面にも図5(a)の電極3と同様に丸みを付けてもよい。また、図5(b)の移動側の電極3と同様に固定側の電極4も先細り形状として導電体2に当接する電極面を減少させてもよい。さらに、例えば、電極3,4の両方共に、図5(c)の移動側の電極3と同様に、例えば直径が0.5mm以下である細い電極としてもよい。
【0046】
さらに、第1や第2の各実施形態例に示した抵抗溶接工程や抵抗溶接装置により、電極面および導電体の溶接対象部分の表面のクリーニングや、導電体1,2の溶接対象部分間の抵抗溶接を行う場合には、導電体1,2や電極3,4は、大気中に配置されていてもよいし、例えばアルゴンなどの不活性ガスの雰囲気中に配置されていてもよい。
【0047】
さらに、第1と第2の各実施形態例は、アークを利用して電極面や導電体表面の抵抗溶接障害物を除去する(クリーニングする)という技術思想に基づいたものである。その技術思想に基づいて、例えば、図6に示されるように、抵抗溶接に使用する対を成す電極3,4を間隔を介し対向配置し、それら電極3,4間に電圧を印加してアークArcを発生させて、電極3,4の両方の電極面の抵抗溶接障害物を除去してクリーニングを行ってもよい。このクリーニングも、第1や第2の各実施形態例と同様に、アークを利用するので、クリーニング専用の設備を設けなくて済むし、非常に簡単且つ短時間で行うことができる。また、もちろん、電極3,4の両方の電極面のクリーニングを行うことによって、抵抗溶接不良を防止できる。
【0048】
【発明の効果】
この発明によれば、抵抗溶接用の対を成す電極間の電圧印加により発生するアークを利用して、電極面や、溶接対象部分の表面をクリーニングして抵抗溶接障害物を除去している。この発明では、電極面や溶接対象部分の表面のクリーニングを行うための専用の設備を用意することなく、抵抗溶接に使用する電極を利用して簡単に電極面や溶接対象部分の表面のクリーニングを行うことができる。このため、設備コストを抑制することができる。
【0049】
また、アークによるクリーニングは瞬間的に行うことができるので、製造効率を高めることができる。さらに、電極面を研磨するのではなく、アークによってクリーニングするので、電極の摩耗を低減することができる。これにより、電極の取り替え頻度を減少させることができて、装置メンテナンスの手間の軽減や、部品コストの低下を図ることができる。
【0050】
この発明の抵抗溶接方法や抵抗溶接装置にあっては、電極面および溶接対象部分の表面にある抵抗溶接障害物をアークによって除去した後に引き続いて、抵抗溶接を行うので、抵抗溶接工程とは別にクリーニングの工程を設けなくてよく、製造工程の簡略化が図れて製造効率を向上させることができる。
【0051】
また、電極面だけでなく、これに対向する抵抗溶接対象部分の表面をも、抵抗溶接障害物の除去を行うので、複数の導電体の溶接対象部分間の良好な抵抗溶接を安定的に行うことができる。
【0052】
電極の表面に丸みが付けられて、丸みの張り出し部分に電荷を集中させる構成や、溶接対象部分に当接する部分の電極面を狭くして電荷を集中させる構成を備えているものにあっては、対を成す電極間の一部分に電荷を集中させることにより、その電荷集中領域でのエネルギーが高まってアークの発生を安定化させることができる。これにより、電極面や、導電体の溶接対象部分の表面のアークによるクリーニングをより良好に行うことが可能となる。
【図面の簡単な説明】
【図1】本発明に係る抵抗溶接工程の一例を説明するための図である。
【図2】本発明に係る抵抗溶接装置の一実施形態例を説明するための図である。
【図3】実施形態例に示した抵抗溶接工程や抵抗溶接装置を利用して溶接を行って作製できる部品の一例を示すモデル図である。
【図4】図3に示す部品の製造工程を説明するための図である。
【図5】抵抗溶接に使用する電極のその他の形態例を説明するための図である。
【図6】アークを利用した電極面のクリーニング手法を説明するための図である。
【図7】抵抗溶接を説明するための図である。
【図8】抵抗溶接に生じる問題を説明するための図である。
【符号の説明】
1,2 導電体
3 移動側の電極
4 固定側の電極
6 電流検出手段
7 酸化膜
8 電極移動機構
12 アーク発生検出部
14 アーククリーニング制御部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a resistance welding method, a method for cleaning a resistance welding electrode, and a resistance welding apparatus.
[0002]
[Background Art]
As one of welding methods for joining metals (conductors), there is a method called resistance welding. The resistance welding is performed as follows. For example, as shown in FIG. 7, in a state where the portions to be welded of the plurality of conductors 1 and 2 are in contact with each other, the portions to be welded are sandwiched between the paired electrodes 3 and 4 from both sides thereof. In such a manner, a portion to be welded is sandwiched between the electrodes 3 and 4, and a voltage is applied between the electrodes 3 and 4 while applying pressure from the electrodes 3 and 4 to the portion to be welded. In the example of FIG. 7, the electrodes 3 and 4 are connected to the DC power supply 5 and a DC voltage is applied between the electrodes 3 and 4. However, an AC is applied between the electrodes 3 and 4. In some cases.
[0003]
By applying a voltage between the electrodes 3 and 4, a current flows between the electrodes 3 and 4 through the portions of the conductors 1 and 2 to be welded. There is a contact resistance between the portions to be welded that are in contact with each other, and due to the contact resistance, the portions to be welded that are in contact with each other generate heat when energized. This heat causes the portions to be welded to be welded together. Such welding utilizing the contact resistance between the portions to be welded is called resistance welding.
[0004]
[Patent Document 1]
JP-A-5-5275
[Patent Document 2]
JP-A-6-122078
[Patent Document 3]
JP-A-9-239556
[0005]
[Problems to be solved by the invention]
By the way, as shown in FIG. 8, for example, the oxide film 7 may be formed on the electrode surface of the electrode 3 or the surface of the portion of the conductor 1 to be welded, or dust may adhere thereto. If the oxide film 7 and dust are present on the electrode surface and the surface of the welding target portion, the contact resistance between the electrode 3 and the welding target portion of the conductor 1 is increased by the oxide film 7 and dust. For this reason, when a voltage is applied between the electrodes 3 and 4 to perform resistance welding and a current is applied to the portions to be welded of the conductors 1 and 2, the electric current flows between the electrode 3 and the portion of the conductor 1 to be welded. The heat generated between the electrode 3 and the conductor 1 increases due to the contact resistance caused by the oxide film 7 and dust.
[0006]
As a result, the amount of heat generated between the portions to be welded of the conductors 1 and 2 is reduced, so that the welding connection between the portions to be welded of the conductors 1 and 2 becomes poor, or resistance welding between the electrode 3 and the conductor 1 is performed. Inconveniences, such as being done, arise. Since the oxide film 7 and dust on the electrode surface and the surface of the portion to be welded hinder resistance welding, such an oxide film 7 and dust are referred to as resistance welding obstacles in this specification.
[0007]
For example, Patent Literature 1 proposes a method of cleaning an electrode surface by polishing the electrode surface using a cleaning plate. By polishing the electrode surface as in this method, a resistance welding obstacle such as an oxide film on the electrode surface can be removed, so that it is possible to reduce resistance welding defects due to the resistance welding obstacle. However, in the proposed method, since the electrode surface is cleaned by removing the resistance welding obstacle by polishing the electrode surface, there is a problem that it takes time to clean the electrode surface. In addition, since the electrode surface is cleaned by polishing, there is also a problem that the electrode is quickly worn. Furthermore, it is difficult for the proposed method to clean the surface of the resistance welding portion of the conductor.
[0008]
The present invention has been made to solve the above-described problems, and its object is to easily remove resistance welding obstacles on the surface of an electrode used for resistance welding and the surface of a portion to be welded of a conductor, It is an object of the present invention to provide a resistance welding method, a resistance welding electrode cleaning method, and a resistance welding apparatus that can satisfactorily perform resistance welding between portions to be welded where a plurality of conductors are in contact with each other.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides means for solving the above problems with the following configuration. That is, in the resistance welding method according to the present invention, in a state where the portions to be welded of the plurality of conductors are in contact with each other, the portions to be welded are sandwiched between the paired electrodes from both sides thereof, and a voltage is applied between the paired electrodes. Then, in a resistance welding method for welding and joining the portions to be welded due to heat generated due to the contact resistance between the portions to be welded, one side of the paired electrodes is brought into contact with one side of the portions to be welded in contact with each other, and A voltage is applied between the paired electrodes in a state where the electrode on the side is arranged with the other side to be welded with an interval, and an arc is generated between the electrode and the part to be welded arranged with the interval. Then, the resistance welding obstacles on the respective surfaces of the electrode and the portion to be welded are removed, and after this cleaning, the electrode on the other side is brought into contact with the portion to be welded, and the portions to be welded of the plurality of conductors are paired. It is characterized by performing the sandwiching by resistance welding by forming electrodes.
[0010]
Further, in the method for cleaning a resistance welding electrode of the present invention, the welding target portions of a plurality of conductors are held in contact with each other, the welding target portions are sandwiched between paired electrodes from both sides thereof, and the electrodes formed between the pairs are interposed. The electrodes forming the pair of resistance welding for welding and joining the portions to be welded by heat generated due to the contact resistance between the portions to be welded are disposed to face each other with an interval therebetween, and a voltage is applied between the electrodes. The method is characterized in that an arc is applied to generate an arc to remove a resistance welding obstacle on the opposing electrode surfaces of a pair of electrodes.
[0011]
The resistance welding apparatus according to the present invention has a pair of electrodes sandwiching portions of a plurality of conductors to be welded which are brought into contact with each other from both sides thereof, and applies a voltage between the paired electrodes to form a plurality of conductors. In the resistance welding apparatus for welding and joining the portions to be welded by heat generated due to the contact resistance between the portions to be welded, one side of the paired electrodes forms a fixed-side electrode, and the other side forms a moving-side electrode. An electrode moving mechanism that moves the moving-side electrode in the forward and backward directions with respect to the fixed-side electrode, and the fixed-side electrode abuts on one side of the welding target where multiple conductors come into contact. In this state, the moving electrode disposed on the other side to be welded is moved by the electrode moving mechanism toward the other side to be welded, and the moving side electrode is moved to the welding target part. Before contact, the moving side electrode and the fixed side electrode An arc is applied between the electrode on the moving side and the portion to be welded by applying a voltage between the electrodes to remove resistance welding obstacles on the surfaces of the electrode on the moving side and the portion to be welded facing the electrode. The cleaning control unit detects a current on an energizing path for applying a voltage between the moving-side electrode and the fixed-side electrode, and detects an arc between the moving-side electrode and the welding target based on the detected current. An arc generation detection unit that detects the occurrence, and an applied voltage control that changes the applied voltage between the moving side electrode and the fixed side electrode from the arc generation voltage to the resistance welding voltage after the arc generation is detected. After the cleaning of the respective surfaces of the moving-side electrode and the welding target portion using the arc, resistance welding is performed subsequently.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0013]
In the resistance welding process according to the first embodiment, for example, first, as shown in FIG. 1A, one side (2) of the welding target portions of the plurality of conductors 1 and 2 that are brought into contact with each other is paired. And the other electrode 3 is disposed at an interval from the welding target portion (1) on the other side.
[0014]
Then, the electrode 3 is gradually moved toward the electrode 4 while applying a predetermined voltage between the electrodes 3 and 4 based on the power of the power source 5 (in other words, the electrode 3 is moved to the conductor 1). Gradually approach the welding target part of The voltage applied between the electrodes 3 and 4 at this time is, for example, about several hundred volts. The power supply 5 may employ either an AC power supply or a DC power supply.
[0015]
Then, as shown in FIG. 1B, when the electrode 3 approaches the welding target portion of the conductor 1 due to the movement of the electrode 3, the electrode 3 moves between the electrode 3 and the welding target portion of the conductor 1. Arc A rc Occurs. This arc A rc Thus, resistance welding obstacles such as oxide film 7 and dust on the surface of the electrode 3 and the surface of the portion to be welded of the conductor 1 facing the electrode surface are scattered and removed. The electrode surface and the surface of the portion of the conductor 1 to be welded are cleaned.
[0016]
Arc A rc Cleaning is performed instantaneously, and the movement of the electrode 3 toward the conductor 1 is caused by the arc A. rc Is performed continuously regardless of the occurrence of Then, as shown in FIG. 1 (c), the electrode 3 is brought into contact with the portion of the conductor 1 to be welded, and the portions to be welded of the conductors 1 and 2 are contacted by the electrodes 3 and 4 from both sides thereof. A voltage is applied between the electrodes 3 and 4 while applying a predetermined pressing force from the electrodes 3 and 4 to the portions of the conductors 1 and 2 to be welded. At this time, a current resulting from the application of a voltage between the electrodes 3 and 4 conducts the welding target portions of the conductors 1 and 2, and heat is generated in the welding target portions due to the contact resistance between the welding target portions. Due to this heat, the portions to be welded are joined to each other, and resistance welding is performed.
[0017]
The voltage applied between the electrodes 3 and 4 when performing resistance welding may be, for example, about several volts, which is much higher than the voltage applied between the electrodes 3 and 4 when generating an arc (for example, about several hundred volts). Low voltage. For this reason, it is preferable to reduce the voltage applied between the electrodes 3 and 4 from the voltage for arc generation to the voltage for resistance welding after the cleaning by the arc is completed. The timing of the voltage drop may be, for example, when the end of the cleaning by the arc is detected, or when a set time has elapsed after the end of the cleaning by the arc is detected, or when the electrode 3 is connected to the conductor 1 by welding. It may be at the time of contact with the target portion. Further, when the completion of the cleaning by the arc is detected, the application of the voltage between the electrodes 3 and 4 is temporarily stopped, and then, after the electrode 3 contacts the welding target portion of the conductor 1, the resistance welding between the electrodes 3 and 4 is performed. May be started.
[0018]
In the first embodiment, resistance welding is performed by the above-described steps, and the following effects can be obtained. That is, in the resistance welding process of the first embodiment, resistance welding is performed after removing the resistance welding obstacle on the surface of the electrode 3 and the surface of the portion to be welded of the conductor 1 by the arc. In particular, in this embodiment, not only the electrode 3 but also the surface of the portion to be welded of the conductor 1 to which the electrode 3 contacts at the time of resistance welding is cleaned. Due to the welding obstacle, the contact resistance between the abutting electrode 3 and the conductor 1 is increased, which hinders resistance welding between the portions to be welded of the conductors 1 and 2, and the electrode 3 is welded to the conductor 1. Such as a problem of being joined to the target portion by resistance welding) can be more reliably avoided.
[0019]
Further, in the resistance welding process of the first embodiment, the electrodes 3 and 3 used for resistance welding are prepared without preparing dedicated cleaning equipment for cleaning the surface of the electrode 3 and the surface of the portion to be welded of the conductor 1. The surface of the electrode 3 and the portion of the conductor 1 to be welded can be cleaned only by generating an arc between the electrode 3 and the portion of the conductor 1 to be welded using the electrode 4. Thereby, equipment cost can be reduced.
[0020]
Further, in the resistance welding step of the first embodiment, cleaning of the surfaces of the electrodes 3 and the portions to be welded of the conductor 1 and resistance welding of the conductors 1 and 2 can be continuously performed. Therefore, as a step separate from the resistance welding step, a step of cleaning the surface of the electrode 3 or the portion of the conductor 1 to be welded is not required. Thereby, resistance welding failure can be prevented without lowering manufacturing efficiency.
[0021]
Further, since the resistance welding obstacle on the electrode surface is removed instantaneously by arc instead of polishing, the time required for cleaning can be greatly reduced. Further, the wear of the electrode can be suppressed to a small level. As a result, the frequency of electrode replacement can be reduced, so that maintenance work can be reduced and component costs can be reduced.
[0022]
Hereinafter, an example of a resistance welding apparatus capable of performing the resistance welding process of the first embodiment will be described. FIG. 2 shows a characteristic portion of the resistance welding apparatus according to the embodiment of the present invention. The resistance welding apparatus includes a pair of electrodes 3 and 4, an AC or DC power supply 5 for applying a voltage between the electrodes 3 and 4, and a power supply path passing through the power supply 5 and the electrodes 3 and 4. It comprises a current detecting means 6 for detecting a current, an electrode moving mechanism 8 for moving the electrode 3, and a control device 10 for controlling the operation of the resistance welding device.
[0023]
That is, in the first embodiment, the electrode 3 is a moving-side electrode, and the electrode 4 is a fixed-side electrode. The electrode moving mechanism 8 moves the electrode 3 on the moving side with respect to the electrode 4 on the fixed side in the forward and backward directions. The fixed electrode 4 is not displaced in a state in which it is in contact with the portion to be welded of the conductor 2 as shown in FIG. 2, and can be moved at other times (ie, an electrode moving mechanism). Connected to the same). Of course, the fixed-side electrode 4 may be configured to be fixed to, for example, a base and not move.
[0024]
The control device 10 includes an arc generation detection unit 12, an applied voltage control unit 13, an arc cleaning control unit 14, and a resistance welding control unit 15.
[0025]
The arc cleaning control section 14 includes an electrode movement start command section 20 and a voltage application start command section 21. For example, when a signal for instructing the start of resistance welding is applied to the arc cleaning control unit 14, the electrode movement start command unit 20 outputs an electrode movement start signal to the electrode moving mechanism 8. When the electrode moving mechanism 8 receives the electrode moving start signal, for example, as shown in FIG. 1, the electrode 3 on the moving side, which is arranged with an interval from the conductor 1, is connected to the electrode 4 on the fixed side (the conductor 1). For example, it is gradually moved toward the side at a set moving speed. The resistance welding start command signal is generated, for example, when a resistance welding start instruction operation means (for example, a start button or a start switch) provided in the resistance welding apparatus is operated, or when, for example, the automatic operation of the conductors 1 and 2 is performed. When the installation function is provided, the automatic cleaning function is added to the arc cleaning control unit 14 when the automatic installation of the conductors 1 and 2 to the set position for performing the resistance welding is completed.
[0026]
Further, when the resistance welding start command signal is applied to the arc cleaning control unit 14, the voltage application start command unit 21 outputs a voltage application start signal to the applied voltage control unit 13. The applied voltage control unit 13 has a built-in memory (not shown). The memory has a voltage (for example, about several hundred volts) set for generating an arc and a voltage (for example, about several hundred volts) set for resistance welding. (About several volts) is stored in advance. When a voltage application start signal is applied from the voltage application start command unit 21, the applied voltage control unit 13 reads out a voltage for arc generation from a built-in memory, and the voltage for arc generation is applied between the electrodes 3 and 4. The power supply 5 is controlled so as to be applied.
[0027]
Note that the output of the electrode movement start command signal to the electrode moving mechanism 8 of the electrode movement start command unit 20 and the output of the voltage application start command signal to the applied voltage control unit 13 of the voltage application start command unit 21 have the same timing. May be performed at different times. Specifically, for example, the electrode movement start command unit 20 and the voltage application start command unit 21 may output signals simultaneously when the resistance welding start command signal is applied to the arc cleaning control unit 14. In this case, the movement of the electrode 3 on the moving side by the electrode moving mechanism 8 and the application of the voltage between the electrodes 3 and 4 under the control of the applied voltage control unit 13 are started almost simultaneously.
[0028]
Further, for example, when a resistance welding start command signal is applied to the arc cleaning control unit 14, the voltage application start command unit 21 outputs a signal. The signal output may be performed when a set time has elapsed from when the signal was added to the unit 14. In this case, the movement of the electrode 3 on the moving side by the electrode moving mechanism 8 is started after the voltage application between the electrodes 3 and 4 under the control of the applied voltage control unit 13 is started.
[0029]
Further, for example, when the resistance welding start command signal is applied to the arc cleaning control unit 14, the electrode movement start command unit 20 outputs a signal, and when the resistance welding start command signal is applied to the arc cleaning control unit 14, The voltage application start command unit 21 may output a signal when the set time has elapsed. In this case, after the movement of the moving electrode 3 by the electrode moving mechanism 8 is started, the application of the voltage between the electrodes 3 and 4 under the control of the applied voltage control unit 13 is started.
[0030]
As described above, the electrode 3 on the moving side is moved toward the conductor 1 by the electrode moving mechanism 8, and the gap between the electrode 3 on the moving side and the welding target portion of the conductor 1 becomes very narrow. When the voltage is applied between the electrodes 3 and 4 (that is, the voltage is applied between the electrode 3 on the moving side and the welding target portion of the conductor 1), the welding between the electrode 3 on the moving side and the conductor 1 is performed. Arc A between target part rc Occurs.
[0031]
Arc A between the moving electrode 3 and the portion of the conductor 1 to be welded rc Occurs, the energizing current on the energizing path passing through the electrodes 3 and 4 and the power supply 5 temporarily increases in accordance with the occurrence of the arc. Utilizing this current change, the arc occurrence detection unit 12 detects the arc occurrence. The arc occurrence detecting section 12 includes a memory 17 and a comparing section 18. The memory 17 stores a threshold value for arc generation in advance. The threshold value is obtained, for example, as follows.
[0032]
That is, for example, when a current is flowing through an energizing path passing through the electrodes 3 and 4 and the power supply 5, the current detecting means 6 outputs, for example, a voltage signal (current detection signal) corresponding to the magnitude of the energizing current. It has a configuration to For example, when an arc is generated, the magnitude of the current detection signal output from the current detection means 6 is obtained in advance by an experiment or the like, and based on the obtained magnitude of the current detection signal at the time of arc generation, an arc is generated. An arc detection threshold value for detecting occurrence is obtained.
[0033]
The arc detection threshold value thus obtained is stored in the memory 17 of the arc occurrence detection unit 12 in advance. When the current detection signal is being output from the current detection means 6, the comparison unit 18 captures the current detection signal every moment. Then, the comparing unit 18 compares the magnitude of the received current detection signal with a threshold for arc detection in the memory 17 and determines whether the magnitude of the current detection signal exceeds the threshold for arc detection. Judge. When the comparison unit 18 determines that the magnitude of the current detection signal exceeds the threshold value for arc detection as a result of the comparison, the comparison unit 18 determines that an arc has occurred and notifies the occurrence of the arc. Is output to the resistance welding control unit 15.
[0034]
When receiving the arc generation notification signal, the resistance welding controller 15 outputs a voltage interruption signal to the applied voltage controller 13. When receiving the voltage interruption signal, the applied voltage control unit 13 interrupts the voltage application between the electrodes 3 and 4.
[0035]
In addition, the resistance welding control unit 15 continues to move the moving electrode 3 by the electrode moving mechanism 8 even after the arc is generated, and continuously moves the moving electrode 3 to a predetermined stop position. Here, the stop position of the moving-side electrode 3 is set to a position where the moving-side electrode 3 can contact the conductor 1 and apply a predetermined load to the conductor 1 from the moving-side electrode 3. ing. It should be noted that a load is applied from the moving-side electrode 3 to the conductor 1 using an elastic force such as a spring.
[0036]
The resistance welding controller 15 sends a voltage application restart signal to the applied voltage controller 13 after detecting that the moving electrode 3 has stopped moving at the set stop position based on information from the electrode moving mechanism 8, for example. Is output. Upon receiving the voltage application restart signal, the applied voltage control unit 13 reads the set voltage for resistance welding stored in the built-in memory, and starts applying the voltage between the electrodes 3 and 4 at the set voltage for resistance welding. The power supply 5 is controlled so as to be controlled. By the control operation of the resistance welding control unit 15, welding is performed by applying a voltage between the electrodes 3 and 4 in a state where the portions to be welded of the conductors 1 and 2 are pressed by the electrodes 3 and 4. The target portions generate heat due to contact resistance and are joined to perform resistance welding.
[0037]
The resistance welding control unit 15 stops the voltage application between the electrodes 3 and 4 when, for example, a set time has elapsed since the pressurization of the conductors 1 and 2 by the electrodes 3 and 4 to the welding target portion is started. Then, the resistance welding control operation ends. Further, the resistance welding control unit 15 controls the electrode moving mechanism 8 to retreat the movable electrode 3 with respect to the fixed electrode 4 to return to, for example, a set standby position, and to perform the next resistance welding operation. Prepare for.
[0038]
The welding resistance device according to the first embodiment is configured as described above. For example, this device is configured such that the user of the device only operates the resistance welding start button or switch, and the electrode 3 and the conductor by arc are used. 1 and the resistance welding of the conductors 1 and 2 can be continuously and automatically performed.
[0039]
The resistance welding step and the resistance welding using the resistance welding apparatus shown in the first embodiment are not particularly limited, but one example thereof will be described below. For example, FIG. 3 shows a perspective view of an example of a wound coil component. The wound type coil component 30 has a coil 32 formed by winding a flat winding 31 which is a conductor, and the coil 32 is embedded in a block 33 made of a magnetic material. . The wire-wound coil component 30 is provided with metal terminals 34 (34a, 34b) that are conductors for connecting the coil 32 to the outside. The end of the flat winding 31 is connected to the metal terminal 34.
[0040]
The wound coil 30 is manufactured as follows. For example, a flat coil 31 is wound to form a coil 32 as shown in FIG. 4A, and an end of the coil 32 and a metal terminal 34 are welded. The resistance welding process and the resistance welding device shown in the first embodiment can be used for welding the flat winding portions 31a and 31b at the ends of the coil 32 and the metal terminals 34.
[0041]
Thereafter, the coil 32 and the metal terminal 34 are arranged inside a mold for molding the block body 33, and the mold is filled with a magnetic material. Thus, a block 33 in which the coil 32 and a part of the metal terminal 34 are embedded as shown in FIG. 4B is formed. A part of the metal terminal 34 (34a, 34b) protrudes from the side surface of the block body 33, and then the protruding portion of the metal terminal 34 (34a, 34b) is shown in FIG. 4 (c). Then, it is bent following the side surface and the bottom surface of the block body 33. Thus, the coil-type coil component 30 shown in FIG. 3 can be manufactured.
[0042]
Hereinafter, a second embodiment will be described. In the description of the second embodiment, the same components as those of the first embodiment are denoted by the same reference numerals, and the overlapping description of the common portions will be omitted.
[0043]
The second embodiment has a feature in the moving-side electrode 3, and the configuration other than the moving-side electrode 3 is the same as that of the first embodiment. That is, in the second embodiment, the moving-side electrode 3 has a structure for concentrating charges. Specifically, for example, as shown in FIG. 5A, a configuration is provided in which the electrode surface of the moving-side electrode 3 is rounded, and charges are concentrated on the rounded overhanging portion P. Alternatively, for example, as shown in FIG. 5B, a part of the electrode 3 on the moving side is formed as a projecting surface 3T, and the area of the contact surface 3T where the electrode 3 contacts the conductor 1 is reduced to reduce the contact. The electric charge is concentrated on the surface 3T. Alternatively, instead of making the respective electrode surfaces of the paired electrodes 3 and 4 have the same area, for example, as shown in FIG. 5C, the entire movable electrode 3 is thinner than the fixed electrode 4. Then, the electrode surface of the movable-side electrode 3 is made smaller than the electrode surface of the fixed-side electrode 4 to concentrate electric charges. For example, in the case of the configurations shown in FIGS. 5B and 5C, when the electrode surface of the portion where the moving-side electrode 3 abuts on the conductor 1 has a circular shape, the circular electrode is used. The diameter φ of the surface is formed as thin as 0.5 mm or less.
[0044]
As described above, by concentrating the electric charge between the electrodes 3 and 4 partially, the energy in the electric charge concentrated region is increased, so that it is possible to stabilize the generation of the arc by applying the voltage between the electrodes 3 and 4. it can.
[0045]
Note that the present invention is not limited to the first and second embodiments, but can adopt various embodiments. For example, in the second embodiment, of the movable side electrode 3 and the fixed side electrode 4, only the movable side electrode 3 has a configuration for charge concentration. In addition, the electrode surface of the fixed-side electrode 4 may be rounded similarly to the electrode 3 in FIG. Further, similarly to the moving-side electrode 3 in FIG. 5B, the fixed-side electrode 4 may have a tapered shape to reduce the electrode surface in contact with the conductor 2. Further, for example, both of the electrodes 3 and 4 may be thin electrodes having a diameter of, for example, 0.5 mm or less, similarly to the moving-side electrode 3 in FIG.
[0046]
Further, by the resistance welding process and the resistance welding device shown in the first and second embodiments, cleaning of the electrode surface and the surface of the portion to be welded of the conductor and the portion between the portions to be welded of the conductors 1 and 2 are performed. When resistance welding is performed, the conductors 1 and 2 and the electrodes 3 and 4 may be arranged in the atmosphere, or may be arranged in an atmosphere of an inert gas such as argon.
[0047]
Further, the first and second embodiments are based on a technical idea of removing (cleaning) resistance welding obstacles on an electrode surface or a conductor surface using an arc. Based on the technical concept, for example, as shown in FIG. 6, a pair of electrodes 3 and 4 used for resistance welding are arranged to face each other with an interval therebetween, and a voltage is applied between the electrodes 3 and 4 to cause arcing. A rc And cleaning may be performed by removing resistance welding obstacles on both electrode surfaces of the electrodes 3 and 4. As in the first and second embodiments, this cleaning also uses an arc, so that there is no need to provide a dedicated cleaning device, and the cleaning can be performed very simply and in a short time. Also, of course, resistance cleaning failure can be prevented by cleaning both electrode surfaces of the electrodes 3 and 4.
[0048]
【The invention's effect】
According to the present invention, an electrode surface and a surface of a portion to be welded are cleaned by using an arc generated by applying a voltage between electrodes forming a pair for resistance welding to remove a resistance welding obstacle. According to the present invention, the electrode surface and the surface of the portion to be welded can be easily cleaned using the electrode used for resistance welding without preparing a dedicated facility for cleaning the electrode surface and the surface of the portion to be welded. It can be carried out. For this reason, equipment costs can be suppressed.
[0049]
In addition, since cleaning by an arc can be performed instantaneously, manufacturing efficiency can be improved. Further, since the electrode surface is cleaned by an arc instead of being polished, the wear of the electrode can be reduced. As a result, the frequency of electrode replacement can be reduced, which can reduce the labor for maintenance of the apparatus and the cost of parts.
[0050]
In the resistance welding method and the resistance welding apparatus of the present invention, the resistance welding is continuously performed after the resistance welding obstacles on the electrode surface and the surface of the portion to be welded are removed by the arc. It is not necessary to provide a cleaning step, so that the manufacturing process can be simplified and the manufacturing efficiency can be improved.
[0051]
In addition, since the resistance welding obstacle is removed not only on the electrode surface but also on the surface of the part to be resistance-welded opposite thereto, good resistance welding between the parts to be welded of a plurality of conductors is stably performed. be able to.
[0052]
There is a configuration in which the surface of the electrode is rounded and the charge is concentrated on the protruding portion of the roundness, and the configuration in which the electrode surface of the portion in contact with the welding target portion is narrowed and the charge is concentrated is provided. By concentrating the electric charges on a part between the paired electrodes, the energy in the electric charge concentrating region is increased and the generation of the arc can be stabilized. Thereby, it becomes possible to perform the cleaning of the electrode surface and the surface of the portion to be welded of the conductor with the arc more favorably.
[Brief description of the drawings]
FIG. 1 is a view for explaining an example of a resistance welding process according to the present invention.
FIG. 2 is a diagram for explaining an embodiment of the resistance welding apparatus according to the present invention.
FIG. 3 is a model diagram illustrating an example of a part that can be manufactured by performing welding using the resistance welding process and the resistance welding apparatus described in the embodiment.
FIG. 4 is a view for explaining a manufacturing process of the component shown in FIG. 3;
FIG. 5 is a diagram for explaining another example of an electrode used for resistance welding.
FIG. 6 is a diagram illustrating a method of cleaning an electrode surface using an arc.
FIG. 7 is a diagram for explaining resistance welding.
FIG. 8 is a diagram for explaining a problem that occurs in resistance welding.
[Explanation of symbols]
1,2 conductor
3 Moving side electrode
4 Fixed side electrode
6 Current detection means
7 oxide film
8. Electrode moving mechanism
12 Arc generation detector
14 Arc cleaning controller

Claims (5)

複数の導電体の溶接対象部分を互いに接触させた状態でそれら溶接対象部分をその両側から対を成す電極により挟み込み、その対を成す電極間に電圧を印加して、溶接対象部分間の接触抵抗に起因した発熱により溶接対象部分間を溶接接合する抵抗溶接方法において、接触し合う溶接対象部分の一方側に対を成す電極の一方側を当接させ他方側の電極は他方側の溶接対象部分と間隔を介し配置させた状態で対を成す電極間に電圧を印加して、前記間隔を介し配置されている電極と溶接対象部分間にアークを発生させてそれら電極と溶接対象部分のそれぞれの表面にある抵抗溶接障害物を除去し、このクリーニングの後に、前記他方側の電極を溶接対象部分に当接させて複数の導電体の溶接対象部分を対を成す電極により挟み込んで抵抗溶接を行うことを特徴とする抵抗溶接方法。In a state where the portions to be welded of a plurality of conductors are in contact with each other, the portions to be welded are sandwiched between the electrodes forming a pair from both sides thereof, and a voltage is applied between the electrodes forming the pair, so that the contact resistance between the portions to be welded is increased. In the resistance welding method for welding and joining the portions to be welded due to heat generated by the above, one side of the paired electrodes is brought into contact with one side of the portions to be welded in contact with each other, and the electrode on the other side is the portion to be welded on the other side. A voltage is applied between the paired electrodes in a state where they are arranged with an interval therebetween, and an arc is generated between the electrodes and the welding target portion which are arranged with the intervals therebetween, so that each of the electrodes and the welding target portion is generated. After removing the resistance welding obstacle on the surface, after this cleaning, the other electrode is brought into contact with the welding target portion, and the welding target portions of the plurality of conductors are sandwiched by the paired electrodes to perform resistance welding. Resistance welding method comprising Ukoto. 複数の導電体の溶接対象部分を互いに接触させた状態でそれら溶接対象部分をその両側から対を成す電極により挟み込み、その対を成す電極間に電圧を印加して、溶接対象部分間の接触抵抗に起因した発熱により溶接対象部分間を溶接接合する抵抗溶接の前記対を成す電極を間隔を介して対向配置し、それら電極間に電圧を印加しアークを発生させて、対を成す電極の対向し合う電極面にある抵抗溶接障害物を除去することを特徴とする抵抗溶接用電極のクリーニング方法。In a state where the portions to be welded of a plurality of conductors are in contact with each other, the portions to be welded are sandwiched between the electrodes forming a pair from both sides thereof, and a voltage is applied between the electrodes forming the pair, so that the contact resistance between the portions to be welded is increased. The electrodes forming the pair of resistance welding for welding and joining the portions to be welded by heat generated due to heat are opposed to each other with an interval therebetween, a voltage is applied between the electrodes to generate an arc, and the electrodes forming the pair oppose each other. A method for cleaning a resistance welding electrode, comprising: removing a resistance welding obstacle on an electrode surface to be joined. 複数の導電体の互いに接触させた溶接対象部分をその両側から挟み込む対を成す電極を有し、その対を成す電極間に電圧を印加して、複数の導電体の溶接対象部分間の接触抵抗に起因した発熱により溶接対象部分間を溶接接合する抵抗溶接装置において、前記対を成す電極の一方側は固定側の電極と成し、他方側は移動側の電極と成しており、移動側の電極を固定側の電極に対して進退方向に移動させる電極移動機構と、複数の導電体の接触し合う溶接対象部分の一方側に固定側の電極を当接させた状態で他方側の溶接対象部分と間隔を介して配置された移動側の電極をその他方側の溶接対象部分に向けて電極移動機構により移動させて当該移動側の電極が溶接対象部分に当接する前に移動側の電極と固定側の電極間に電圧を印加して移動側の電極と溶接対象部分間にアークを発生させて移動側の電極と当該電極に対向する溶接対象部分とのそれぞれの表面にある抵抗溶接障害物を除去するアーククリーニング制御部と、移動側の電極と固定側の電極との間に電圧を印加するための通電経路上の電流を検出し当該検出電流に基づいて移動側の電極と溶接対象部分間のアークの発生を検出するアーク発生検出部と、アーク発生が検出された後に移動側の電極と固定側の電極との間の印加電圧をアーク発生用の電圧から抵抗溶接用の電圧に変化させる印加電圧制御部とを有しており、アークを利用した移動側の電極と溶接対象部分のそれぞれの表面のクリーニングが行われた後に引き続いて、抵抗溶接が行われることを特徴とする抵抗溶接装置。It has a pair of electrodes sandwiching the portions of the plurality of conductors to be welded that are brought into contact with each other from both sides, and applies a voltage between the paired electrodes to contact resistance between the portions of the plurality of conductors to be welded. In the resistance welding apparatus for welding and joining the portions to be welded by heat generated due to, one side of the paired electrodes forms a fixed side electrode, the other side forms a moving side electrode, and the moving side An electrode moving mechanism that moves the electrode in the forward and backward directions with respect to the fixed side electrode, and welding the other side in a state where the fixed side electrode is in contact with one side of the welding target portion where the plurality of conductors come in contact with each other The electrode on the moving side, which is arranged at an interval from the target portion, is moved toward the welding portion on the other side by the electrode moving mechanism, and the electrode on the moving side is moved before the moving side electrode comes into contact with the welding target portion. Apply voltage between the fixed side electrode and the moving side An arc cleaning control unit that generates an arc between the electrode and the welding target portion to remove a resistance welding obstacle on each surface of the moving-side electrode and the welding target portion facing the electrode, and the moving-side electrode An arc generation detection unit that detects a current on an energization path for applying a voltage between the fixed-side electrode and an arc between the movable-side electrode and a welding target portion based on the detected current; Having an applied voltage control unit that changes the applied voltage between the moving-side electrode and the fixed-side electrode from the voltage for arc generation to the voltage for resistance welding after arc generation is detected, and A resistance welding apparatus characterized in that resistance welding is performed subsequently after cleaning of the respective surfaces of the used moving-side electrode and the welding target portion. 移動側の電極と固定側の電極とのうちの少なくとも移動側の電極は、その電極面に丸みが付けられて、丸みの張り出し部分に電荷を集中させる構成を備えていることを特徴とする請求項3記載の抵抗溶接装置。At least the moving-side electrode of the moving-side electrode and the fixed-side electrode is provided with a configuration in which the electrode surface is rounded to concentrate electric charges on the rounded overhanging portion. Item 4. The resistance welding apparatus according to Item 3. 移動側の電極と固定側の電極とのうちの少なくとも移動側の電極は、溶接対象部分に当接する部分の電極面が円形状と成し、当該円形状の電極面はその直径φが0.5mm以下に細く形成されていることを特徴とする請求項3記載の抵抗溶接装置。At least the moving-side electrode of the moving-side electrode and the fixed-side electrode has a circular electrode surface at a portion that abuts on a portion to be welded, and the circular electrode surface has a diameter φ of 0. 4. The resistance welding apparatus according to claim 3, wherein the resistance welding apparatus is formed to be thinner than 5 mm.
JP2003159723A 2003-06-04 2003-06-04 Resistance welding method, method for cleaning resistance welding electrode, and resistance welding apparatus Pending JP2004358516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003159723A JP2004358516A (en) 2003-06-04 2003-06-04 Resistance welding method, method for cleaning resistance welding electrode, and resistance welding apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003159723A JP2004358516A (en) 2003-06-04 2003-06-04 Resistance welding method, method for cleaning resistance welding electrode, and resistance welding apparatus

Publications (1)

Publication Number Publication Date
JP2004358516A true JP2004358516A (en) 2004-12-24

Family

ID=34052711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003159723A Pending JP2004358516A (en) 2003-06-04 2003-06-04 Resistance welding method, method for cleaning resistance welding electrode, and resistance welding apparatus

Country Status (1)

Country Link
JP (1) JP2004358516A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101870078A (en) * 2010-05-25 2010-10-27 广州市地下铁道总公司 Direct-current electric grinding method for conductive contact surfaces
CN101870079A (en) * 2010-05-25 2010-10-27 广州市地下铁道总公司 Alternating-current electric grinding method for conductive contact surfaces
CN102074397A (en) * 2011-01-26 2011-05-25 广州市地下铁道总公司 Conductive contact surface performance mutual inductance isolating real-time online diagnosing and repairing system and using method thereof
CN102161181A (en) * 2011-01-26 2011-08-24 广州市地下铁道总公司 Mutual-induction type automatic online reliability diagnosing and repairing system for long-distance multi-node train line and use method thereof
CN102161180A (en) * 2011-01-26 2011-08-24 广州市地下铁道总公司 System for reliably and automatically diagnosing and repairing long-distance multi-node train line on line and using method thereof
CN102169769A (en) * 2011-01-26 2011-08-31 广州市地下铁道总公司 Conductive contact surface performance online diagnosing and repairing system and using method thereof
JP2018170115A (en) * 2017-03-29 2018-11-01 住友重機械工業株式会社 Energization heating apparatus
JP7533320B2 (en) 2021-03-31 2024-08-14 トヨタ自動車株式会社 Resistance spot welding method and apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101870078A (en) * 2010-05-25 2010-10-27 广州市地下铁道总公司 Direct-current electric grinding method for conductive contact surfaces
CN101870079A (en) * 2010-05-25 2010-10-27 广州市地下铁道总公司 Alternating-current electric grinding method for conductive contact surfaces
CN102074397A (en) * 2011-01-26 2011-05-25 广州市地下铁道总公司 Conductive contact surface performance mutual inductance isolating real-time online diagnosing and repairing system and using method thereof
CN102161181A (en) * 2011-01-26 2011-08-24 广州市地下铁道总公司 Mutual-induction type automatic online reliability diagnosing and repairing system for long-distance multi-node train line and use method thereof
CN102161180A (en) * 2011-01-26 2011-08-24 广州市地下铁道总公司 System for reliably and automatically diagnosing and repairing long-distance multi-node train line on line and using method thereof
CN102169769A (en) * 2011-01-26 2011-08-31 广州市地下铁道总公司 Conductive contact surface performance online diagnosing and repairing system and using method thereof
CN102169769B (en) * 2011-01-26 2014-02-12 广州市地下铁道总公司 Conductive contact surface performance online diagnosing and repairing system and using method thereof
JP2018170115A (en) * 2017-03-29 2018-11-01 住友重機械工業株式会社 Energization heating apparatus
JP7533320B2 (en) 2021-03-31 2024-08-14 トヨタ自動車株式会社 Resistance spot welding method and apparatus

Similar Documents

Publication Publication Date Title
JP2004358516A (en) Resistance welding method, method for cleaning resistance welding electrode, and resistance welding apparatus
JP5908976B2 (en) Spot welding apparatus and spot welding method
JP5655540B2 (en) Switch device and switch device system, and switch device device including switch device or switch device system
CN109698098A (en) Electrical relay
KR100727377B1 (en) Metal unite method and solder method
CN1237268A (en) Controller for relay
JP3314407B2 (en) Method and apparatus for controlling resistance welding of coated conductive member
JP2012071333A (en) Spot welding method and spot welding apparatus
JP2014102908A (en) Contact device
JP2002164142A (en) Resistance welding device and method for the same
BRPI1100137A2 (en) Arc start method of single-sided and multi-electrode welding equipment and single-sided and multi-electrode welding equipment
JP6917279B2 (en) Electromagnetic relay
JP2006050861A (en) Welding method and apparatus of motor wire connection portion
JP6674807B2 (en) TIG welding apparatus and control method thereof
JP2515273B2 (en) Short-circuit transfer arc welding method and apparatus
JPS58196183A (en) Butt resistance welding machine for fine wire
KR20160070373A (en) Battery relay for vehicle
JP3558674B2 (en) Manufacturing method of lead wire for electrolytic capacitor
JPS6153150B2 (en)
KR101014181B1 (en) A relay
JPH0957459A (en) Resistance-welding method for laminated damping plate
JP2956761B2 (en) Capillary contact state detection device
TWI504456B (en) Welding switch component and method of switching the welding point
JP4475058B2 (en) TIG welding machine
JP2002134246A (en) Electric conduction heat caulking jointing method of insulation coated electric wire