JP2004357416A - Feeding device - Google Patents

Feeding device Download PDF

Info

Publication number
JP2004357416A
JP2004357416A JP2003152353A JP2003152353A JP2004357416A JP 2004357416 A JP2004357416 A JP 2004357416A JP 2003152353 A JP2003152353 A JP 2003152353A JP 2003152353 A JP2003152353 A JP 2003152353A JP 2004357416 A JP2004357416 A JP 2004357416A
Authority
JP
Japan
Prior art keywords
power supply
spring
supply device
motor
coil spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003152353A
Other languages
Japanese (ja)
Other versions
JP2004357416A5 (en
JP4416438B2 (en
Inventor
Naohisa Koyanagi
尚久 小柳
Katsuhito Sohara
勝仁 蘇原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Parts Ind Co Ltd
Original Assignee
Tokyo Parts Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Parts Ind Co Ltd filed Critical Tokyo Parts Ind Co Ltd
Priority to JP2003152353A priority Critical patent/JP4416438B2/en
Priority to CNB2004100472367A priority patent/CN100505480C/en
Publication of JP2004357416A publication Critical patent/JP2004357416A/en
Publication of JP2004357416A5 publication Critical patent/JP2004357416A5/ja
Application granted granted Critical
Publication of JP4416438B2 publication Critical patent/JP4416438B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a motor equipped with a feeding device that secures stable electrical contact and high reliability in its life by suppressing surges and harmonic oscillations, that is good in assembly workability, and that has versatility as a component, too. <P>SOLUTION: On a part of a position near one end of a motor 10, a pair of feeding terminals 11 are provided positioned at the other end of the motor 10. Furthermore, a pair of electrodes 41 positioned at the feeding terminals 11 and supplying electric power to the motor 10 are provided on a circuit board 40. The feeding device 50 whose side is partially fixed to the side of the motor 10 with an adhesive or a double-sided tape is gripped between the feeding terminals 11 and the electrodes 41 so formed, and the electrodes 41 of the circuit board 40 are each electrically connected to the feeding terminals 11 of the motor 10. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
この発明は、主にページャなどの携帯機器に搭載される起振装置用の直流モータの給電装置に関するものである。
【0002】
【従来の技術】
近年の携帯機器に搭載される各電子部品は表面実装型が多く、印刷配線板にリフロー半田により配線されるようになってきている。
なお、リフロー半田ができない部品については、従来は、手半田方式やコネクタ式の非半田付で配線されるようになっている。しかしながら、実状は手半田付け方式は、作業効率が悪いこととアフタメンテナンスが悪い問題がある。
【0003】
また、コネクタ式は、ソケット部が高価であったり、ソケット部の半田付け作業を含む取付作業の繁雑性、さらに、ソケット部を取り付けることによる薄型や小型化が出来ない問題が有った。このようなことで、最近はこれらの問題を解決する無半田接触方式が多用されている。
【0004】
この無半田接触方式としてコイルスプリングの圧縮性を利用したものが知られており、最近これを携帯電話機器の起振装置の偏平形振動モータの装着にも採用され始めている。
これは、ハウジングの円柱状突起に挿着された導電性の圧縮コイルばねがモータのコイル給電端子部と回路基板に設けられた電極間に設けられて電気的接続を行っているものがある。(例えば、引用文献1参照)
また、薄型化を図るために、モータ本体を固定するゴムダンパーを挿通した一対のコイルばねが、モータの給電端子部と回路基板の電極間に介在されて電気的接続を行っているものがある。(例えば、引用文献2参照)
【0005】
さらに、電気的接触安定化を図るために、モータのブラケットに設けられた樹脂製の筒状のばねガイドに収容され、このモータの外部端子にその一端が半田付けされたコイルばねが回路基板の電極に接触して電気的接続を行っているものや(例えば、引用文献3参照)、あるいは、モータ本体を保持する絶縁性の弾性体の一部に囲まれ、このモータの外部端子に固定されたコイルばねが、そのモータの給電端子部と回路基板の電極間に介在されて電気的接続を行っているものがある。(例えば、引用文献4参照)
【0006】
【特許文献1】実開平2−141883号公報
【特許文献2】特開平8−140301号公報
【特許文献3】特開平10−117460号公報
【特許文献4】特開2002−44907号公報
【0007】
【発明が解決しようとする課題】
しかしながら、コイルばねはサージングと呼ばれる共振現象が発生しやすい。
また、このサージングによりコイルばねの接触部または電極の表面に施され貴金属のメッキが剥がれたり接触点の移動等の電気的接触不具合を招く恐れがある。さらに、このサージングにより、コイルばねが破損するとの寿命低下の問題も生じる。また、コイルばねは正常な電気的接触を阻害する高周波振動を抑制することができない恐れもある。
そして、資源の有効活用や機器の小型・薄型化の見知から、モータのガタを押さえる絶縁性弾性体(クッション)のサイズを最小限に抑える必要があった。 また、半田付け作業の中止など組立作業を簡素化することと、搭載部品の汎用性を拡大し生産効率を向上しなければならない問題があった。
【0008】
そこで、本発明は上記の問題を解決し、特に安定した電気的接触と過酷な振動にも耐える信頼性とを確保し、また、作業性が良く、部品としても汎用性が高い偏平形モータの給電装置を提供しようというものである。
【0009】
【課題を達成するための手段】
上記課題は、請求項1に記載の発明のように、モータの側方に導出された平板状の給電端子と、この給電端子の極と対向した回路基板の電極とに挟持されることによりそれらを電気的接続をさせる弾性を有する給電装置であって、この給電装置は前記給電端子の極と前記回路基板の電極を短絡する極の数に対応した金属製のばねと、このばねを収容する絶縁性の弾性部材とでなり、この弾性部材には前記ばねが収容されるばねの数と同数の孔が形成されているとともに、その厚さ寸法は前記ばねの自由長より短く、また、前記給電端子と前記回路基板の電極の間隔より広く形成され、前記挟持においては前記ばねと前記弾性部材が同時に前記給電端子の極と前記回路基板の電極を押圧することで安定した電気的接触と過酷な振動にも耐える高信頼性の確保を達成することができる。
【0010】
さらに、請求項2に記載の発明のように、そのばねを圧縮コイルばねにすれば、請求項3に記載のような弾性部材に設けられた孔に容易に装着できるとともに、エラストマ等の成型性の良い弾性部材で容易に一体成型できる。
また、上記ばねを板ばねとすれば、ばねを連続して成型することで容易に多数の給電装置を形成できる。
さらに請求項5記載のように、その給電装置の少なくとも一側面を、前記偏平形モータの少なくとも一部に装着することにより、作業性の改善や部品調達の効率改善を達成できる。
この給電装置を製造するにあたっては、請求項6記載のように、一体成型とすることも可能で、多数の給電装置が同時に形成可能となる。
【0011】
【第1の実施例】
図1は、本発明の実施の形態を示す要部断面図である。偏平形で振動を発生するモータ10は、携帯電話機器の上ハウジング20と下ハウジング30に装着された回路基板40との間にクッション61、62を介して載置されている。また、このモータ10の一端部近傍の側方に導出された、このモータ10の他端方に面する平板状の給電端子11が設けられており、さらに、この給電端子11の極と対向し、回路基板40にはこのモータ10に電源を供給する一対の電極41が印刷パターン面により設けられている。このように形成された給電端子11と電極41の間には、側面がモータ10の側面に接着剤や両面テープの接着部材70にて一部固定された給電装置50が挟持され回路基板40の電極41とモータ10の給電端子11をそれぞれ電気的に接続をしている。なお、上ハウジングには、円環状またはモータの外径と相似するように配置されたモータ10のラジアル方向の移動を防止するガイド21が設けられている。
【0012】
図2は、この給電装置50の構成を示す分解斜視図である。図2において、給電装置50は一対の圧縮で用いるコイルばね51とダンパー52で構成されている。コイルばね51は、断面が円や角の金属線材で形成されている。一方、ダンパー52は、弾性部材として天然ゴムやウレタンゴム等の合成ゴムあるいはそれらゴムを発泡させたもの、成型性の良いエラストマ等で構成されている。また、ダンパー52には、一対の縦の孔52a、52bが設けられている。この孔52a、52bの内径は、コイルばね51の外径と同じ寸法あるいはそれ以下でコイルばね51が挿通可能な大きさに設定されている。
また、給電端子11と電極41に挟持される方向のダンパー52の厚さ寸法bは、給電端子11と電極41間の距離a(図1に示す)より大きく、さらに、コイルばね51の自由長cはダンパー52の厚さ寸法bより大きく形成されている。
【0013】
なお、図1および図2に示した本発明に係る給電装置50の外形は、略立方体を呈しているので、ダンパー52の孔52aと52bの貫通方向と平行な側面52cに両面接着テープ等の接着部材70が貼り付けられ、モータ10の給電端子11が位置するモータ10の側面に装着されているが、これは一例であって基本的には給電装置の少なくとも一部をモータ本体や導通された給電端子の少なくとも一部に装着すればよい。
なお、この装着を接着方式で行う場合は弾性を有する接着剤を用いてもよい。また、コイルばね51は全体を貴金属メッキを施してもよい。さらに、ダンパー52は、合成樹脂の発泡構造で形成し弾力性と柔軟性を持たせたり、または、コイルばね51をダンパー52と一体成形してもよい。
【0014】
図3(a)は、コイルばね51をダンパー52の孔52a、52bに挿入した状態を示す断面図である。コイルばね51の外径は孔52a、52bの内径と同じ寸法あるいは若干小さめに設定する。そのようにすると、ダンパー52自体が弾力性を有しているのでコイルばね51を孔52a、52bに容易に挿入できる。
また、挿入後は、孔52a、52bの内面がコイルばね51の外面を押さえているので簡単に抜け落ちることはない。そして、コイルばね51の自由長はダンパー52の厚さより長く設定されているので、挿入されたコイルばね51は端部はダンパー52の両端あるいは片側より露出されることになる。
【0015】
図3(b)にコイルばね51の端部形状の他の例を示す。このコイルばね51bはその端部51cをコイル巻き軸方向へ折り曲げて切断端面を給電端子11へ対向させたものである。
このように切断端面を給電端子11のパターン面に接触させると、切断端面でパターン面を突くことにより確実な導通が得られる。
さらに端部51c同士を近接させて隣り合わせに位置させる。一般にモータ10の給電部は小さく、給電端子11の極間隔は非常に小さい場合が多い。その場合でも端部を確実にパターン面に接触させる必要がある。端部51cを隣り合わせにすれば間隔の小さな極のパターン面にもコイルばねをそれぞれ確実に接触させることができる。
端部51cは、コイルばね51を回転させれば容易にその間隔を設定できるので、様々な間隔の給電端子パターン面に合わせることが可能となる。
このような端部を折り曲げる構成は、電極41側にも用いることができるため、ばねの端部の位置設定さえ変更すれば様々な種類の給電端子、電極に対応することが可能となる。
【0016】
図4は前記のように構成された給電装置50をモータ10の側面に取付けた状態を示す斜視図である。コイルばね51の一端が給電端子11のそれぞれの極11a、11bに乗るようにダンパー52はモータ10の側面に接着部材70により固着されている。さらに、このように給電装置50が装着されたモータ11は上ハウジング20のガイド21に嵌め込まれている。なお、ガイド21には、図1に示す回路基板40の電極41に対向した切り欠き部21aが設けられており、この切り欠き部21aにモータ10の給電端子11がガタ無く嵌め込まれる。
なお、ガイド21は図4においては円筒状で示したが、モータの外径に合わせた支柱状のものを円環状に配置してもよい。
【0017】
図5は、図1におけるモータ10の給電部周辺を拡大して示す要部断面図である。図5において、コイルばね51は給電端子11の極と回路基板40の電極41に挟持されている。言い換えると、コイルばね51は給電端子11の極と回路基板40の電極41とを押圧し、それぞれの極間を短絡し電気的導通を形成している。また、同じようにダンパー52は給電端子11と回路基板40の電極41に挟持されている。言い換えると、ダンパー52は給電端子11と回路基板40の電極41のコイルばね51の接触部の周辺を押圧している。
【0018】
コイルばね51とダンパー52でなる給電装置50は、コイルばね51をダンパ52の開孔に挿通した状態に予め造っておけば、必要時即モータに取付できるので取付作業も簡素化できる。さらに、モータの機種が異なっても共通してこの給電装置50が使用できる利点がある。また、この給電装置50をモータ10に取り付けて供給することにより、携帯電話機器等の生産工程においては組立作業の簡素化が図れる。
さらに、ダンパー52はモータ10の上下のガタを押さえるクッション61、62と異なる防振特性を選ぶことができるので、さらに優れた制振特性を有することができる。
【0019】
図6は、コイルばね51とダンパー52のばね特性を示したものである。
なお、図6において、X軸はたわみまたは圧縮量、Y軸は荷重または押圧力を表している。この特性図からも言えるが、コイルばね51は金属線から形成されているので直線性特性を有し、ダンパー52はゴムばね構造であるので非直線性特性のばね特性を有している。この特性図に示す、ばねの荷重−たわみ特性は、ばねの圧縮−押圧力特性に置き換えることができる。
【0020】
ここにおいて前記のように構成された状態において、給電端子11と電極41の距離a、ダンパー52の厚さb、コイルばね51の自由長cとし、またコイルばね51のダンパー52より露出された長さをS1、また、コイルばねの51の圧縮量をS2とすると次の関係が成り立つ。
S1=c−b
S2=c−a=S1+b−a
このことを図6で説明をすると、上ハウジング20と下ハウジング30が組み合わされ始めると、コイルばね51がまずS1の量が圧縮され、このS1を過ぎた時点でダンパー52も同時に圧縮され最終的にS2の量が圧縮される。これにより圧縮S2におけるダンパー52の押圧力はP1であり、コイルばね51の押圧の強さはP2となる。図6よりP2はP1より遙かに大きいことが分かる。 このことは、ダンパー52は給電端子と電極を押圧していると共に、これよりさらに強い力でコイルばね51がその接触部を押圧していることを示している。
【0021】
このように、コイルばね51の押圧力はダンパー52のものより遙かに強く、またそれぞれ独立したばね機能を作用しているので電気的接触不良を起こすことはない。また、ダンパー52はゴムばね特有の粘弾性により応力に対するヒズミの追従の時間遅れがあるので、高周波に対する絶縁効果が著しく大きく、コイルばね51の端部と電極41や給電端子11の極との接触部に加えられる微振動を吸収でき、振動それにより接触面の摩耗、メッキの剥がれを防止でき安定した接触を維持する効果がある。
【0022】
また、コイルばね51は金属製であるので、共振現象によりサージングを起こし易い。しかしながら、始めからダンパー52の孔52a、52bはそれぞれコイルばね51の外径に接触していることと、ダンパー52はゴムばね特有の変形に対する体積不変の非圧縮性を有しており、上ハウジング20と下ハウジングに装着された回路基板40に挟持され押圧されることにより孔52a、52bの内径の一部は狭められ、その面が挿通したコイルばね51の外径を押す。これにより、コイルばね51のに与えられた振動の一部が吸収されたり、ばねの振幅が遅れたりしてサージングが起きにくくする。この結果、サージングに起因する接触部の突発的不導通やコイルばね51を長時間過酷な振動で使用しても破損することはない。
【0023】
上記実施の形態による給電装置は、開孔が形成された弾性部材にコイルばねを装着し、あらかじめ給電装置50を造っておくようにしたものである。
このような給電装置を製造するには、弾性部材を射出成形で成型するときにばねを同時に成型する方法を用いることができる。
図7は、圧縮コイルバネを成型性の良いエラストマにより、弾性部材の成型と同時に給電装置として一体成型する工程を示している。
【0024】
図7に示すとおり、射出成形に用いられる金型は上金型69と下金型66で構成されている。
下金型66は、ダンパ62を形成するエラストマEが注入されるキャビティ63を有する下型64と、コイルバネ61が装着されるピン65で構成されている。
そして上金型69は、ピン65が挿通される挿通孔67が形成された上型68で構成されている。
キャビティ63の深さはダンパ62の高さbに設定し、ピン65には自由長cの圧縮コイルばね61を装着する。(図7(a))
【0025】
上金型69と下金型66を型締めするとピン65が挿通孔67に挿通されコイルばね61はbの高さまで圧縮される。
この状態でエラストマEをキャビティ63へ注入すると、コイルバネ61は圧縮された状態でダンパ62と一体に成形される。(図7(b))
一体に成形されたダンパ62とコイルばね61を金型から取り出すとコイルばね61は自由長cまで伸張する。伸張したコイルばね61の両端部はダンパ62から突出することになる。
このように一体成型すると、ダンパの孔にばねを装着するよりも容易にピンへ装着でき、金型の取り数を多くする等で一度に多数の給電装置を作成することが可能となる。
またキャビティの形状を比較的自由に設定できるため、装着するモータの形状に合わせることが可能となる。
【0026】
図8および図9にこの給電装置の他の実施の形態を示す。給電装置80は屈曲を利用する板ばね81とダンパ82で構成されている。他の構成で、前述の実施の形態と同様のものは同一の番号を付してその説明を省略する。
略C字状に形成された板ばね81は上部81aが給電端子11と接し、下部81bが電極41と接する。上部81aと下部81bの自由長fは電極41と給電端子11間の距離aより大きく、さらにダンパ82の寸法bより大きくなっている。
【0027】
この給電装置80を形成するには、図9(a)に示すように、幅寸法bに設定されたキャビティ83を有する下金型86に板ばね81を圧縮して装着し、上金型89を型締めした後エラストマEをキャビティ83へ注入する。
その後給電装置80を金型から取り出すと、板ばね81の上部81aおよび下部81bは圧縮から開放されダンパ82から突出し、その間隔が自由長fとなる。
このようにばねとして板ばねを用いると、図10に示すように連続した状態で板ばね81ばねを形成できる。連続して形成した板ばねを金型に装着後連結部81cを切断すれば多数の給電装置を容易に製造することができる。
なお、上述の各実施の形態では、給電端子11あるいは電極41を一対としたが、導通部の数はこれに限定されず複数可能である。また、ばねの配置も一列に限らず三角状配置、平衡に複数列配置と種々可能である。
【0028】
【発明の効果】
以上説明したように、請求項1に記載した発明によると、モータの側方に導出された平板状の給電端子と、この給電端子の極と対向した回路基板の電極との間を、サージングや高周波振動を抑制して、安定した電気的接触を得ることができ、過酷な振動にも耐える高信頼性がある導通が可能となる。
【0029】
さらに、請求項2乃至4の構成によると、給電装置を容易に形成することができ、請求項5に記載の構成によるとその給電装置をモータに容易に装着し使用可能となる。
さらに請求項6記載の製造方法によるとばねと弾性部材を同時に一体化できるので、多量に早く製造できるようになる。
【図面の簡単な説明】
【図1】本発明の実施の形態例を示す要部断面図である。
【図2】図1に示した給電装置の構成を示す分解斜視図である。
【図3】図1に示した給電装置の断面図である。
【図4】本発明でなる給電装置を装着したモータの斜視図でである。
【図5】図1に示した給電装置周辺を拡大した要部断面図である。
【図6】本発明に係るコイルばねとダンパーのばね特性を示した図である。
【図7】図1に示した給電装置を製造する方法を示す図である。
【図8】本発明の他の実施の形態を示す要部断面図である。
【図9】図8に示した給電装置の製造方法を示す図である。
【図10】図8に示した給電装置に用いる一部品の斜視図である。
【符号の説明】
10 モータ
11 給電端子
20 上ハウジング
21 ガイド
30 下ハウジング
40 回路基板
41 電極
50 給電装置
51 コイルばね
52 ダンパー
61、62 クッション
70 接着部材
[0001]
[Industrial applications]
The present invention relates to a power supply device of a DC motor for a vibration generator mainly mounted on a portable device such as a pager.
[0002]
[Prior art]
In recent years, each electronic component mounted on a portable device is often of a surface mount type, and is being wired to a printed wiring board by reflow soldering.
Conventionally, components that cannot be reflow soldered are wired by hand soldering or connector type non-soldering. However, in practice, the manual soldering method has problems of poor work efficiency and poor after-maintenance.
[0003]
In addition, the connector type has a problem that the socket portion is expensive, the mounting operation including soldering operation of the socket portion is complicated, and furthermore, the mounting of the socket portion does not allow a thin and small size. For these reasons, a solderless contact method that solves these problems has been frequently used recently.
[0004]
As this solderless contact method, a method utilizing the compressibility of a coil spring is known, and recently, this method has begun to be used for mounting a flat type vibration motor of a vibration generating device of a portable telephone device.
In some cases, a conductive compression coil spring inserted into a cylindrical projection of a housing is provided between a coil power supply terminal portion of a motor and an electrode provided on a circuit board to perform electrical connection. (See, for example, Reference 1)
Further, in order to reduce the thickness, there is a type in which a pair of coil springs through which a rubber damper for fixing a motor body is inserted are interposed between a power supply terminal portion of the motor and an electrode of a circuit board to perform electrical connection. . (See, for example, Reference 2)
[0005]
Further, in order to stabilize electrical contact, a coil spring, which is housed in a resin-made cylindrical spring guide provided on a bracket of the motor and one end of which is soldered to an external terminal of the motor, is provided on the circuit board. It is surrounded by one that makes electrical connection by contacting the electrodes (see, for example, Patent Document 3) or a part of an insulating elastic body that holds the motor body and is fixed to the external terminals of the motor. In some cases, a coiled spring is interposed between a power supply terminal of the motor and an electrode of a circuit board to make electrical connection. (See, for example, Reference 4)
[0006]
[Patent Document 1] Japanese Utility Model Application Laid-Open No. 2-141883 [Patent Document 2] Japanese Patent Application Laid-Open No. 8-140301 [Patent Document 3] Japanese Patent Application Laid-Open No. 10-117460 [Patent Document 4] Japanese Patent Application Laid-Open No. 2002-44907 ]
[Problems to be solved by the invention]
However, a coil spring tends to cause a resonance phenomenon called surging.
Further, this surging may cause an electrical contact failure such as peeling of the plating of the noble metal applied to the contact portion of the coil spring or the surface of the electrode or movement of the contact point. Further, this surging also causes a problem of shortening the service life when the coil spring is broken. Further, the coil spring may not be able to suppress high-frequency vibrations that hinder normal electrical contact.
In view of effective use of resources and reduction in size and thickness of the device, it was necessary to minimize the size of the insulating elastic body (cushion) for suppressing the play of the motor. Further, there is a problem that the assembling work must be simplified, such as stopping the soldering work, and the versatility of the mounted components must be expanded to improve the production efficiency.
[0008]
Therefore, the present invention solves the above-mentioned problems, and in particular, secures stable electrical contact and reliability that withstands severe vibration, and also has good workability, and a flat motor having high versatility as a component. It is intended to provide a power supply device.
[0009]
[Means for achieving the object]
The above object is attained by sandwiching between a flat power supply terminal led out to the side of the motor and an electrode of a circuit board facing the pole of the power supply terminal, as in the invention of claim 1. A power supply device having an elasticity for electrically connecting the power supply device, the power supply device accommodates a metal spring corresponding to the number of poles for short-circuiting the pole of the power supply terminal and the electrode of the circuit board, and accommodates the spring. The insulating member is formed of an insulating elastic member, and the elastic member has the same number of holes as the number of springs in which the springs are housed, and has a thickness dimension shorter than the free length of the spring. It is formed wider than the distance between the power supply terminal and the electrode of the circuit board, and in the sandwiching, the spring and the elastic member simultaneously press the pole of the power supply terminal and the electrode of the circuit board to provide stable electrical contact and severe High enough to withstand severe vibrations It can be achieved ensuring dependability.
[0010]
Further, if the spring is a compression coil spring as in the invention according to the second aspect, the spring can be easily mounted in the hole provided in the elastic member as described in the third aspect, and the moldability of the elastomer or the like can be improved. It can be easily molded integrally with a good elastic member.
If the spring is a leaf spring, a large number of power supply devices can be easily formed by continuously molding the spring.
Further, by mounting at least one side of the power supply device to at least a part of the flat motor, it is possible to achieve improvement in workability and improvement in parts procurement efficiency.
In manufacturing the power supply device, the power supply device may be integrally formed, and a large number of power supply devices may be formed at the same time.
[0011]
[First Embodiment]
FIG. 1 is a cross-sectional view of a main part showing an embodiment of the present invention. The flat type motor 10 that generates vibration is mounted between cushions 61 and 62 between an upper housing 20 and a circuit board 40 mounted on a lower housing 30 of the mobile phone device. A flat power supply terminal 11 is provided on the side near the other end of the motor 10. The power supply terminal 11 has a flat plate shape and faces the other end of the motor 10. The circuit board 40 is provided with a pair of electrodes 41 for supplying power to the motor 10 with a printed pattern surface. Between the power supply terminal 11 and the electrode 41 thus formed, a power supply device 50 whose side surface is partially fixed to the side surface of the motor 10 with an adhesive or a double-sided tape adhesive member 70 is sandwiched. The electrode 41 and the power supply terminal 11 of the motor 10 are electrically connected to each other. The upper housing is provided with a guide 21 for preventing the motor 10 from moving in the radial direction, which is arranged in an annular shape or similar to the outer diameter of the motor.
[0012]
FIG. 2 is an exploded perspective view showing the configuration of the power supply device 50. In FIG. 2, the power supply device 50 includes a pair of coil springs 51 and a damper 52 used for compression. The coil spring 51 is formed of a metal wire having a circular or square cross section. On the other hand, the damper 52 is made of an elastic member made of synthetic rubber such as natural rubber or urethane rubber, or a foam of such rubber, or an elastomer having good moldability. The damper 52 has a pair of vertical holes 52a and 52b. The inner diameters of the holes 52a and 52b are set to the same size as or smaller than the outer diameter of the coil spring 51, and to a size that allows the coil spring 51 to be inserted.
The thickness b of the damper 52 in the direction sandwiched between the power supply terminal 11 and the electrode 41 is larger than the distance a between the power supply terminal 11 and the electrode 41 (shown in FIG. 1). c is formed larger than the thickness dimension b of the damper 52.
[0013]
Since the outer shape of the power supply device 50 according to the present invention shown in FIGS. 1 and 2 has a substantially cubic shape, a double-sided adhesive tape or the like is provided on a side surface 52c parallel to the direction in which the holes 52a and 52b of the damper 52 penetrate. The adhesive member 70 is attached and mounted on the side surface of the motor 10 where the power supply terminal 11 of the motor 10 is located. The power supply terminal may be attached to at least a part of the power supply terminal.
When this mounting is performed by an adhesive method, an adhesive having elasticity may be used. Further, the entire coil spring 51 may be plated with a noble metal. Further, the damper 52 may be formed of a synthetic resin foam structure to have elasticity and flexibility, or the coil spring 51 may be formed integrally with the damper 52.
[0014]
FIG. 3A is a cross-sectional view illustrating a state where the coil spring 51 is inserted into the holes 52a and 52b of the damper 52. The outer diameter of the coil spring 51 is set to be equal to or slightly smaller than the inner diameter of the holes 52a and 52b. In this case, the coil spring 51 can be easily inserted into the holes 52a and 52b because the damper 52 itself has elasticity.
After the insertion, the inner surfaces of the holes 52a and 52b press the outer surface of the coil spring 51, so that they do not easily fall off. Since the free length of the coil spring 51 is set to be longer than the thickness of the damper 52, the end of the inserted coil spring 51 is exposed from both ends or one side of the damper 52.
[0015]
FIG. 3B shows another example of the end shape of the coil spring 51. The coil spring 51b has its end 51c bent in the coil winding axis direction so that the cut end face faces the power supply terminal 11.
When the cut end surface is brought into contact with the pattern surface of the power supply terminal 11 in this manner, reliable conduction can be obtained by protruding the pattern surface at the cut end surface.
Further, the end portions 51c are brought close to each other and positioned adjacent to each other. In general, the power supply portion of the motor 10 is small, and the pole interval between the power supply terminals 11 is often very small. Even in such a case, it is necessary to surely bring the end portion into contact with the pattern surface. If the ends 51c are adjacent to each other, the coil springs can be reliably brought into contact with the pattern surfaces of the poles having a small interval.
The distance between the end portions 51c can be easily set by rotating the coil spring 51, so that the end portions 51c can be adjusted to the power supply terminal pattern surfaces at various intervals.
Since such a configuration in which the end is bent can be used also on the electrode 41 side, it is possible to cope with various types of power supply terminals and electrodes by changing the position setting of the end of the spring.
[0016]
FIG. 4 is a perspective view showing a state in which the power supply device 50 configured as described above is attached to a side surface of the motor 10. The damper 52 is fixed to the side surface of the motor 10 by an adhesive member 70 so that one end of the coil spring 51 rides on each of the poles 11a and 11b of the power supply terminal 11. Further, the motor 11 on which the power supply device 50 is mounted as described above is fitted into the guide 21 of the upper housing 20. The guide 21 has a notch 21a facing the electrode 41 of the circuit board 40 shown in FIG. 1, and the power supply terminal 11 of the motor 10 is fitted into the notch 21a without play.
Although the guide 21 is shown in a cylindrical shape in FIG. 4, a pillar-shaped guide according to the outer diameter of the motor may be arranged in an annular shape.
[0017]
FIG. 5 is an enlarged cross-sectional view of a main part showing the vicinity of a power supply unit of the motor 10 in FIG. 5, the coil spring 51 is sandwiched between the pole of the power supply terminal 11 and the electrode 41 of the circuit board 40. In other words, the coil spring 51 presses the pole of the power supply terminal 11 and the electrode 41 of the circuit board 40, and short-circuits between the respective poles to form electrical conduction. Similarly, the damper 52 is sandwiched between the power supply terminal 11 and the electrode 41 of the circuit board 40. In other words, the damper 52 presses the periphery of the contact portion between the power supply terminal 11 and the coil spring 51 of the electrode 41 of the circuit board 40.
[0018]
If the power supply device 50 including the coil spring 51 and the damper 52 is formed in advance in a state where the coil spring 51 is inserted into the opening of the damper 52, the power supply device 50 can be mounted on the motor as needed, so that the mounting operation can be simplified. Further, there is an advantage that the power supply device 50 can be used in common even if the type of the motor is different. In addition, by attaching the power supply device 50 to the motor 10 and supplying the power, the assembly work can be simplified in the production process of a mobile phone device or the like.
Further, since the damper 52 can select vibration damping characteristics different from those of the cushions 61 and 62 for suppressing the play at the top and bottom of the motor 10, it is possible to have more excellent vibration damping characteristics.
[0019]
FIG. 6 shows the spring characteristics of the coil spring 51 and the damper 52.
In FIG. 6, the X axis represents the amount of deflection or compression, and the Y axis represents the load or pressing force. As can be seen from this characteristic diagram, the coil spring 51 has a linear characteristic because it is formed of a metal wire, and the damper 52 has a spring characteristic of a non-linear characteristic because it has a rubber spring structure. The load-deflection characteristics of the spring shown in this characteristic diagram can be replaced with the compression-pressure characteristics of the spring.
[0020]
Here, in the state configured as described above, the distance a between the power supply terminal 11 and the electrode 41, the thickness b of the damper 52, the free length c of the coil spring 51, and the length of the coil spring 51 exposed from the damper 52 are set. Assuming that S1 is S1 and the compression amount of the coil spring 51 is S2, the following relationship is established.
S1 = c−b
S2 = ca = S1 + ba
This will be described with reference to FIG. 6. When the upper housing 20 and the lower housing 30 start to be combined, the coil spring 51 first compresses the amount of S1. The amount of S2 is compressed. Thus, the pressing force of the damper 52 in the compression S2 is P1, and the pressing strength of the coil spring 51 is P2. FIG. 6 shows that P2 is much larger than P1. This indicates that the damper 52 is pressing the power supply terminal and the electrode, and the coil spring 51 is pressing the contact portion with a stronger force.
[0021]
As described above, the pressing force of the coil spring 51 is much stronger than that of the damper 52, and the coil springs 51 operate independently of each other, so that there is no possibility of poor electrical contact. Further, since the damper 52 has a time delay of the following of the stress to the stress due to the viscoelasticity peculiar to the rubber spring, the insulating effect against the high frequency is remarkably large, and the contact between the end of the coil spring 51 and the electrode 41 or the pole of the power supply terminal 11 is caused. The micro vibration applied to the portion can be absorbed, and thereby the vibration can be prevented from abrasion of the contact surface and the peeling of the plating, so that there is an effect of maintaining a stable contact.
[0022]
Further, since the coil spring 51 is made of metal, surging is easily caused by a resonance phenomenon. However, from the beginning, the holes 52a and 52b of the damper 52 are each in contact with the outer diameter of the coil spring 51, and the damper 52 has a volume-invariant non-compressive property against the deformation peculiar to the rubber spring. A part of the inner diameter of the holes 52a and 52b is narrowed by being sandwiched and pressed between the circuit board 40 and the circuit board 40 mounted on the lower housing, and the surface thereof pushes the outer diameter of the inserted coil spring 51. As a result, a part of the vibration applied to the coil spring 51 is absorbed or the amplitude of the spring is delayed, so that surging hardly occurs. As a result, there is no possibility of sudden disconnection of the contact portion due to surging or breakage even if the coil spring 51 is used with severe vibration for a long time.
[0023]
In the power supply device according to the above embodiment, a coil spring is mounted on an elastic member having an opening, and the power supply device 50 is manufactured in advance.
In order to manufacture such a power supply device, it is possible to use a method of simultaneously molding a spring when an elastic member is molded by injection molding.
FIG. 7 shows a step of integrally molding the compression coil spring as a power supply device simultaneously with the molding of the elastic member using an elastomer having good moldability.
[0024]
As shown in FIG. 7, a mold used for injection molding is composed of an upper mold 69 and a lower mold 66.
The lower mold 66 includes a lower mold 64 having a cavity 63 into which the elastomer E forming the damper 62 is injected, and a pin 65 to which the coil spring 61 is mounted.
The upper mold 69 includes an upper mold 68 in which an insertion hole 67 into which the pin 65 is inserted is formed.
The depth of the cavity 63 is set to the height b of the damper 62, and a compression coil spring 61 having a free length c is mounted on the pin 65. (FIG. 7 (a))
[0025]
When the upper mold 69 and the lower mold 66 are clamped, the pin 65 is inserted into the insertion hole 67, and the coil spring 61 is compressed to the height b.
When the elastomer E is injected into the cavity 63 in this state, the coil spring 61 is formed integrally with the damper 62 in a compressed state. (FIG. 7 (b))
When the integrally formed damper 62 and coil spring 61 are taken out of the mold, the coil spring 61 extends to a free length c. Both ends of the extended coil spring 61 project from the damper 62.
By integrally molding in this manner, it is possible to mount the power supply device on the pin more easily than mounting the spring in the hole of the damper, and it is possible to produce a large number of power supply devices at once by increasing the number of dies.
Also, since the shape of the cavity can be set relatively freely, it is possible to match the shape of the motor to be mounted.
[0026]
8 and 9 show another embodiment of the power supply device. The power supply device 80 includes a leaf spring 81 that utilizes bending and a damper 82. In other configurations, the same components as those in the above-described embodiment are denoted by the same reference numerals, and description thereof is omitted.
The upper part 81 a of the leaf spring 81 formed in a substantially C shape is in contact with the power supply terminal 11, and the lower part 81 b is in contact with the electrode 41. The free length f of the upper part 81a and the lower part 81b is larger than the distance a between the electrode 41 and the power supply terminal 11, and is larger than the dimension b of the damper 82.
[0027]
In order to form the power supply device 80, as shown in FIG. 9A, the leaf spring 81 is compressed and mounted on a lower die 86 having a cavity 83 set to a width dimension b, and an upper die 89 is formed. After the mold is clamped, the elastomer E is injected into the cavity 83.
Thereafter, when the power supply device 80 is removed from the mold, the upper portion 81a and the lower portion 81b of the leaf spring 81 are released from the compression and protrude from the damper 82, and the interval therebetween becomes a free length f.
When the leaf spring is used as the spring, the leaf spring 81 can be formed in a continuous state as shown in FIG. A large number of power supply devices can be easily manufactured by cutting the connecting portion 81c after attaching a continuously formed leaf spring to a mold.
In the above-described embodiments, the power supply terminal 11 or the electrode 41 is paired. However, the number of conducting portions is not limited to this, and a plurality of conducting portions can be provided. Further, the arrangement of the springs is not limited to one row, and various arrangements such as a triangular arrangement and a plurality of equilibrium arrangements are possible.
[0028]
【The invention's effect】
As described above, according to the first aspect of the present invention, the surging or the gap between the flat plate-shaped power supply terminal led out to the side of the motor and the electrode of the circuit board facing the pole of the power supply terminal. High-frequency vibration can be suppressed, stable electrical contact can be obtained, and highly reliable conduction can withstand severe vibration.
[0029]
Further, according to the configurations of claims 2 to 4, the power supply device can be easily formed, and according to the configuration of claim 5, the power supply device can be easily mounted on the motor and used.
Further, according to the manufacturing method of the sixth aspect, since the spring and the elastic member can be integrated at the same time, it is possible to manufacture a large amount and quickly.
[Brief description of the drawings]
FIG. 1 is a sectional view of a main part showing an embodiment of the present invention.
FIG. 2 is an exploded perspective view showing the configuration of the power supply device shown in FIG.
FIG. 3 is a sectional view of the power supply device shown in FIG.
FIG. 4 is a perspective view of a motor equipped with a power supply device according to the present invention.
FIG. 5 is an enlarged sectional view of a main part around the power supply device shown in FIG. 1;
FIG. 6 is a diagram showing spring characteristics of a coil spring and a damper according to the present invention.
FIG. 7 is a diagram illustrating a method of manufacturing the power supply device illustrated in FIG. 1;
FIG. 8 is a cross-sectional view of a main part showing another embodiment of the present invention.
9 is a diagram illustrating a method for manufacturing the power supply device illustrated in FIG.
10 is a perspective view of one component used in the power supply device shown in FIG.
[Explanation of symbols]
Reference Signs List 10 Motor 11 Power supply terminal 20 Upper housing 21 Guide 30 Lower housing 40 Circuit board 41 Electrode 50 Power supply device 51 Coil spring 52 Dampers 61, 62 Cushion 70 Adhesive member

Claims (6)

モータの側方に導出された平板状の給電端子と、この給電端子の極と対向した回路基板の電極とに挟持されることによりそれらを電気的接続をさせる弾性を有する給電装置であって、この給電装置は前記給電端子の極と前記回路基板の電極を短絡する数に対応した金属製のばねと、このばねを収容する絶縁性の弾性部材とでなり、この弾性部材には前記ばねが収容されるばねの数と同数の孔が形成されているとともに、その厚さ寸法は前記ばねの自由長より短く、前記給電端子と前記回路基板の間隔より広く形成され、前記挟持においては前記ばねと前記弾性部材が同時に前記給電端子の極と前記回路基板の電極を押圧することを特徴とする給電装置。A flat-shaped power supply terminal led out to the side of the motor and a power supply device having elasticity for electrically connecting them by being sandwiched between electrodes of a circuit board opposed to the poles of the power supply terminal, The power supply device includes a metal spring corresponding to the number of short-circuits between the poles of the power supply terminal and the electrodes of the circuit board, and an insulating elastic member that accommodates the spring. The same number of holes as the number of springs to be accommodated are formed, the thickness dimension thereof is shorter than the free length of the spring, and wider than the gap between the power supply terminal and the circuit board. And the elastic member simultaneously presses a pole of the power supply terminal and an electrode of the circuit board. 上記バネは圧縮コイルバネであることを特徴とする請求項1記載の給電装置。The power supply device according to claim 1, wherein the spring is a compression coil spring. 上記孔はあらかじめ弾性部材に開けられ、上記圧縮コイルバネを上記孔へ挿通したことを特徴とする請求項2記載の給電装置。The power supply device according to claim 2, wherein the hole is formed in the elastic member in advance, and the compression coil spring is inserted into the hole. 上記バネは屈曲を利用する板状のバネであることを特徴とする請求項1記載の給電装置。The power supply device according to claim 1, wherein the spring is a plate-shaped spring that utilizes bending. その給電装置の少なくとも一側面が、前記モータの少なくとも一部に装着されている請求項1乃至4に記載の給電装置。The power supply device according to claim 1, wherein at least one side surface of the power supply device is mounted on at least a part of the motor. 射出成形金型内にバネを装着する工程と、そのバネを圧縮する行程とを有し、圧縮されたバネが収容され型締めされ金型内に弾性部材を射出して給電装置を形成する工程と、形成された給電装置が金型から取り出され、上記圧縮されたバネが伸張して上記弾性部材の表面から突出する工程よりなる給電装置の製造方法。A step of mounting a spring in the injection molding die, and a step of compressing the spring, wherein the compressed spring is housed, the mold is clamped, and an elastic member is injected into the die to form a power supply device. And a step of taking out the formed power supply device from the mold, expanding the compressed spring and projecting from the surface of the elastic member.
JP2003152353A 2003-05-29 2003-05-29 Power supply device Expired - Fee Related JP4416438B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003152353A JP4416438B2 (en) 2003-05-29 2003-05-29 Power supply device
CNB2004100472367A CN100505480C (en) 2003-05-29 2004-05-28 Power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003152353A JP4416438B2 (en) 2003-05-29 2003-05-29 Power supply device

Publications (3)

Publication Number Publication Date
JP2004357416A true JP2004357416A (en) 2004-12-16
JP2004357416A5 JP2004357416A5 (en) 2006-04-20
JP4416438B2 JP4416438B2 (en) 2010-02-17

Family

ID=34047590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003152353A Expired - Fee Related JP4416438B2 (en) 2003-05-29 2003-05-29 Power supply device

Country Status (2)

Country Link
JP (1) JP4416438B2 (en)
CN (1) CN100505480C (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012089568A3 (en) * 2010-12-28 2013-08-08 Robert Bosch Gmbh Brush holder assembly for a carbon brush
JP2015174053A (en) * 2014-03-17 2015-10-05 旭サナック株式会社 electrostatic coating machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012089568A3 (en) * 2010-12-28 2013-08-08 Robert Bosch Gmbh Brush holder assembly for a carbon brush
JP2015174053A (en) * 2014-03-17 2015-10-05 旭サナック株式会社 electrostatic coating machine

Also Published As

Publication number Publication date
CN100505480C (en) 2009-06-24
JP4416438B2 (en) 2010-02-17
CN1574553A (en) 2005-02-02

Similar Documents

Publication Publication Date Title
US7652401B2 (en) Flat vibration motor
KR100412333B1 (en) Vibrating actuator and feeding mechanism thereof
US6908347B2 (en) Compression type connector and the connecting structure thereof
US7646122B2 (en) Fixing holder for vibration generating device
JP2004261740A (en) Vibrator and mobile terminal equipment mounted with the vibrator
KR20050089988A (en) Vibration-generating small motor and portable electronic apparatus
US20010022476A1 (en) Electromagnetic vibrator and device incorporating the same
JP2655802B2 (en) Coil type contact and connector using the same
KR20010098836A (en) Speaker for an electronic instrument
JP4416438B2 (en) Power supply device
CN102857063B (en) Linear vibration electric motor
JP3125220B1 (en) Connectors for electronic components
JP2000133338A (en) Electric connection device and electronic appliance using it
US7525225B2 (en) Vibration generating motor
JP3556592B2 (en) Connector for vibration parts
JP2002042922A (en) Electric connector and its manufacturing method
KR20040007662A (en) Connector for electro-acoustic component and connection structure thereof
JP2002075502A (en) Method and connector for electrical connection, and electronic component holder
CN200959550Y (en) Flat vibration source and electric connector
KR200290556Y1 (en) terminal of multipurpose buzzer
KR100279702B1 (en) Surface-Mount Miniature Acoustic Transducer_
CN220401951U (en) Basin frame structure and sounding device
KR200290557Y1 (en) terminal of multipurpose buzzer
CN200984550Y (en) Flat type vibration source and electric connector
JP2006140008A (en) Electrical contact, its repeated structure and electronic device using the electrical contact

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060302

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees