JP2004354374A - Method and device for evaluating weldability onto material - Google Patents

Method and device for evaluating weldability onto material Download PDF

Info

Publication number
JP2004354374A
JP2004354374A JP2004134931A JP2004134931A JP2004354374A JP 2004354374 A JP2004354374 A JP 2004354374A JP 2004134931 A JP2004134931 A JP 2004134931A JP 2004134931 A JP2004134931 A JP 2004134931A JP 2004354374 A JP2004354374 A JP 2004354374A
Authority
JP
Japan
Prior art keywords
test
mounting portion
evaluation
welding
holding member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004134931A
Other languages
Japanese (ja)
Inventor
Yasushi Matsumoto
寧 松本
Katsuo Kazahaya
克夫 風早
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Allied Material Corp
Original Assignee
Allied Material Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Allied Material Corp filed Critical Allied Material Corp
Priority to JP2004134931A priority Critical patent/JP2004354374A/en
Publication of JP2004354374A publication Critical patent/JP2004354374A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mounting, Exchange, And Manufacturing Of Dies (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an evaluation method and an evaluation test device capable of conducting easily an evaluation test for the condition where a worked material is welded onto a material for a tool or the like. <P>SOLUTION: The first material is brought into a rotatable or reciprocatable condition, the second material is held by a holding member comprising a material having 60W/m ×K or less of thermal conductivity, the second material is formed into structure contacting with the first material, and the second material is brought into pressurization contact with the first material to measure the welding condition onto the first material, so as to be evaluated. The device of the present invention constituted into structure having the first rotatable or reciprocatable attaching part, and the second attaching part provided with a pressurizing means, to bring the second material mounted on the the second attaching part into pressurization contact with the first material mounted on the first attaching part, and the second attaching part comprises the holding member having 60W/m ×K or less of thermal conductivity. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、例えばダイヤモンドなどの硬質膜が形成された工具材料などへの溶着についての性能評価を行うための評価方法および評価装置に関する。   The present invention relates to an evaluation method and an evaluation apparatus for performing performance evaluation on welding to a tool material or the like on which a hard film such as diamond is formed.

コンピュータ、制御装置などの各種電子機器に組み込まれる電子部品として使用されるIC・LSIパッケージのアウタ・リードは、折り曲げ加工が施され、所定の形状に成形されている。この成形用工具として、例えば特許文献1に記載の工具があげられる。   The outer lead of an IC / LSI package used as an electronic component incorporated in various electronic devices such as a computer and a control device is bent and formed into a predetermined shape. As the molding tool, for example, a tool described in Patent Document 1 can be mentioned.

特開平7−211842号公報JP-A-7-212842

この工具は、リードの折り曲げ加工を行うダイおよびパンチであり、これらの工具には、リードが当たる面が摩耗したり、リード表面のハンダが溶着してリードの折り曲げの平坦性(コープラナリティ)や、リードの並列方向への曲がり(スキュー)が悪化するのを極力防止するために、少なくともリードの当たり面にはダイヤモンドなどの硬質膜が被覆されている。   This tool is a die and a punch that bends the lead. These tools have a flat surface (coplanarity) in which the lead contact surface is worn or the solder on the lead surface is welded and the lead is bent. Further, in order to minimize the deterioration of the bending (skew) of the leads in the parallel direction, at least the contact surface of the leads is coated with a hard film such as diamond.

このような工具では、ダイヤモンド膜などの摩擦抵抗の低い膜を形成することでハンダの溶着はある程度抑制され、リードの折り曲げ精度は改善されるが、それだけでは足りず、膜の表面状態などもハンダの溶着に影響する。そのために、ダイヤモンド膜自身の改良も多数行われており、それぞれの目的に応じたダイヤモンド膜が開発されている。そして、そのダイヤモンド膜の性能を評価するためには、特許文献1の実施例に記載されているように、LSIリードの折り曲げ機構を備えた成形装置に組み込んで、Fe−Ni合金にハンダメッキをしたリードの成形テストなどを行い、1つの試験品について多いものでは100万ショット以上の加工を行って評価している。   In such tools, the formation of a film with low frictional resistance, such as a diamond film, suppresses solder welding to some extent and improves the bending accuracy of the lead, but this is not sufficient, and the surface condition of the film is not sufficient. Affects welding. For this purpose, many improvements have been made to the diamond film itself, and diamond films have been developed according to the respective purposes. Then, in order to evaluate the performance of the diamond film, as described in an example of Patent Document 1, the Fe-Ni alloy was incorporated into a forming apparatus having a bending mechanism of an LSI lead by solder plating. The lead is subjected to a molding test and the like, and one test product is evaluated by processing at least one million shots.

しかしながら、上記のように実機上でリードを加工して評価するには、試験回数が極度に多くなるため長時間を要し、しかも工具メーカーで成形装置を保有して評価試験を行うことは現実的でないため、ユーザーのテストラインにおいて評価してもらう必要があるが、迅速に正確で安定した評価を行うことが困難である。   However, as described above, it takes a long time to process and evaluate the lead on the actual machine because the number of tests is extremely large, and it is not practical for a tool maker to carry out an evaluation test with a molding device. Since it is not appropriate, it is necessary to have the user evaluate on a test line. However, it is difficult to perform an accurate and stable evaluation quickly.

特に、ユーザーで評価試験を行った場合、そのユーザー固有の評価試験しかできず、他のユーザーにも適用可能な幅広い評価を行うことは不可能であった。そのため、ユーザーごとに評価を行う必要が生じていた。   In particular, when an evaluation test is performed by a user, only an evaluation test specific to the user can be performed, and it is impossible to perform a wide evaluation applicable to other users. Therefore, it has been necessary to evaluate each user.

以上のことから、本発明の目的は、工具などで加工を行った際に、工具への被加工物の溶着状態を迅速かつ正確に評価でき、実際の加工を行うことなく幅広い性能評価を可能とする評価方法および評価装置を提供することである。   From the above, it is an object of the present invention to quickly and accurately evaluate the state of welding of a workpiece to a tool when processing with a tool or the like, enabling a wide range of performance evaluations without performing actual processing. To provide an evaluation method and an evaluation device.

本発明の評価方法は、第1の材料へ第2の材料が溶着する状態の試験を行う評価方法であって、
前記第1の材料は回転または往復運動可能な状態とし、前記第2の材料を熱伝導率が60W/m・K以下の材料からなる保持部材により保持して、前記第2の材料が前記第1の材料に接触可能な構造とし、前記第2の材料を前記第1の材料に加圧接触させることにより前記第1の材料への溶着状態を測定することを特徴とする。
The evaluation method of the present invention is an evaluation method for performing a test of a state where the second material is welded to the first material,
The first material is capable of rotating or reciprocating, and the second material is held by a holding member made of a material having a thermal conductivity of 60 W / m · K or less, and the second material is held in the second material. A structure capable of contacting the first material is provided, and the state of welding to the first material is measured by bringing the second material into pressure contact with the first material.

この評価方法は、第1の材料を回転または往復運動をさせ、第2の材料を保持部材に装着した上で第2の材料を第1の材料の面に加圧接触させる。そして、第1の材料の表面に溶着した第2の材料の溶着状態を測定する。このような方法で行うことにより、一定の条件で連続的に加圧接触させて溶着させることが可能になるため、評価試験を迅速かつ正確に行うことができる。また保持部材は熱伝導率が60W/m・K以下の材料からなっている。これは、第2の材料と第1の材料との摩擦により発生した熱が保持部材を通じて逃げるのを防止し、溶着を発生させて効率よく評価試験を行うためである。なお、保持部材そのものは特に材料を選定せず、保持部材と第2の材料との間に熱伝導率が60W/m・K以下の材料からなる断熱材などを設ける方法で行っても同様の効果が得られる。   In this evaluation method, the first material is rotated or reciprocated, the second material is mounted on the holding member, and then the second material is brought into pressure contact with the surface of the first material. Then, the welding state of the second material deposited on the surface of the first material is measured. By performing such a method, it is possible to perform continuous pressure contact and welding under certain conditions, so that an evaluation test can be performed quickly and accurately. The holding member is made of a material having a thermal conductivity of 60 W / m · K or less. This is to prevent heat generated by friction between the second material and the first material from escaping through the holding member, generate welding, and perform an evaluation test efficiently. The material of the holding member itself is not particularly selected, and the same applies even when a method of providing a heat insulating material made of a material having a thermal conductivity of 60 W / m · K or less between the holding member and the second material is used. The effect is obtained.

本発明の評価方法では、第1の材料として、超硬合金などの基材上にダイヤモンド膜などの硬質膜を被覆した材料を選定した試験が適している。このような材料では、摩耗や溶着が起こりにくく実機上での試験を行うには多大な時間を要するので、本発明の評価方法による試験が効果的である。また、第2の材料として、軟質金属または樹脂など溶着し易い材料を使った試験が適している。   In the evaluation method of the present invention, a test in which a material in which a hard film such as a diamond film is coated on a base material such as a hard metal is selected as the first material is suitable. With such a material, abrasion and welding hardly occur, and a large amount of time is required for conducting a test on an actual machine. Therefore, the test by the evaluation method of the present invention is effective. Also, a test using a material that is easily welded, such as a soft metal or a resin, is suitable as the second material.

また、本発明の評価試験装置は、第1の材料へ第2の材料が溶着する状態の試験を行うための評価試験装置であって、
回転または往復運動可能な第1の取付部と、加圧手段を設けた第2の取付部を有し、前記第1の取付部に装着された第1の材料に対し、前記第2の取付部に装着された第2の材料を加圧接触させる構造であり、前記第2の取付部は熱伝導率が60W/m・K以下の保持部材からなることを特徴とする。
Further, the evaluation test device of the present invention is an evaluation test device for performing a test of a state in which the second material is welded to the first material,
A first mounting portion capable of rotating or reciprocating; and a second mounting portion provided with a pressurizing means, wherein the second mounting portion is attached to a first material mounted on the first mounting portion. A second material attached to the part is brought into pressure contact with the second part, and the second mounting part is formed of a holding member having a thermal conductivity of 60 W / m · K or less.

本発明の評価装置では回転または往復運動が可能な第1の取付部を有し、この第1の取付部に第1の材料を取り付けて回転または往復運動させることが可能である。また、これとは別に第2の取付部を有しており、第2の取付部には加圧手段が設けられた構造になっている。第2の取付部には第2の材料が装着され、第2の取付部は加圧手段により第1の取付部の運動方向に対して垂直方向に移動可能である。このような構造の装置により、第1の材料を回転または往復運動させながら第2の材料を加圧接触させ、第1の材料に第2の材料を溶着させてその溶着状態を測定することが可能である。第1の材料の移動速度や第2の材料の加圧力などを適宜設定でき、様々な条件における溶着状態の評価試験を迅速かつ正確に行うことができる。第2の取付部は、熱伝導率が60W/m・K以下の材料からなることが必要であり、第2の材料と第1の材料との摩擦により発生した熱が保持部材を通じて逃げるのを防止し、溶着を発生させて効率よく評価試験を行うためである。   The evaluation device of the present invention has a first mounting portion that can rotate or reciprocate, and can rotate or reciprocate by attaching a first material to the first mounting portion. In addition, a second mounting portion is provided separately from the second mounting portion, and the second mounting portion has a structure in which pressurizing means is provided. A second material is mounted on the second mounting portion, and the second mounting portion is movable in a direction perpendicular to the movement direction of the first mounting portion by the pressing means. With the device having such a structure, the second material is brought into pressure contact with the first material while rotating or reciprocating, and the second material is welded to the first material, and the welded state is measured. It is possible. The moving speed of the first material, the pressing force of the second material, and the like can be appropriately set, and the evaluation test of the welding state under various conditions can be performed quickly and accurately. The second mounting portion needs to be made of a material having a thermal conductivity of 60 W / m · K or less, and prevents heat generated by friction between the second material and the first material from escaping through the holding member. This is for preventing the occurrence of the welding and efficiently performing the evaluation test.

本発明の評価方法によれば、工具材料などへの溶着性の試験を行うのに、短時間で正確に行うことができる。そして、試験条件も様々なもので試験が可能であり、ユーザーごとに異なる使用条件に対応した評価試験を行うことができる。また、本発明の評価装置によれば、簡単な試験材料により正確な試験を行うことができ、試験条件も容易に設定できるので、様々な使用条件に対応した評価試験を容易に行うことができる。   ADVANTAGE OF THE INVENTION According to the evaluation method of this invention, it can be accurately performed in a short time, when performing the test of the welding property to tool materials. The test can be performed under various test conditions, and an evaluation test corresponding to different use conditions can be performed for each user. Further, according to the evaluation apparatus of the present invention, an accurate test can be performed with a simple test material, and the test conditions can be easily set, so that an evaluation test corresponding to various use conditions can be easily performed. .

本発明の評価方法に使用する評価装置の一例を図1に示す。この評価装置では、装置本体1の上面に軸状で回転可能な第1の取付部2が設けられている。第1の取付部2上には円盤状に形成された第1の材料6が装着され、これも回転可能である。また、これとは別に装置本体1に第2の取付部3が設けられており、装置本体1に固定された支柱4と一体に設けられている。第2の取付部3は、熱伝導率が60W/m・K以下の材料からなっており、例えば、アルミナ、サファイア、炭化珪素、窒化珪素、ジルコニア、サーメットなどの材料が使用できる。支柱4は水平方向に移動可能であり、適当な位置で固定させることが可能である。支柱4には第2の取付部3が設けられ、第2の取付部3には第2の材料7が装着される。支柱4と第2の取付部3との間にはバネなどの加圧手段5が設けられて第2の材料7が第1の材料6に対して加圧接触可能な構造になっている。加圧手段5は、バネ以外の例として重りを乗せて加圧する構造のものや、エアシリンダーを取り付けた構造のものでも構わない。   FIG. 1 shows an example of an evaluation device used in the evaluation method of the present invention. In this evaluation device, an axially rotatable first mounting portion 2 is provided on an upper surface of a device main body 1. A first material 6 formed in the shape of a disc is mounted on the first mounting portion 2 and is also rotatable. In addition, a second mounting portion 3 is provided on the apparatus main body 1 separately from this, and is provided integrally with a column 4 fixed to the apparatus main body 1. The second mounting portion 3 is made of a material having a thermal conductivity of 60 W / m · K or less. For example, materials such as alumina, sapphire, silicon carbide, silicon nitride, zirconia, and cermet can be used. The column 4 can be moved in the horizontal direction, and can be fixed at an appropriate position. The column 4 is provided with a second mounting portion 3, and the second material 7 is mounted on the second mounting portion 3. Pressing means 5 such as a spring is provided between the support 4 and the second mounting portion 3 so that the second material 7 can be brought into pressure contact with the first material 6. The pressurizing means 5 may have a structure in which a weight is applied to pressurize as an example other than a spring, or a structure in which an air cylinder is attached.

なお、各種試験条件に対応できるようにするため、第1の取付部2や第2の取付部3にはヒーターやペルチェ素子を組み込み、第1の材料6や第2の材料7を個別に加熱したり冷却したりする機能を付加したり、超音波振動を与える装置を組み込むことも有効である。また、装置全体を真空チャンバーで囲い、真空雰囲気での評価ができるようにすることも可能である。   In order to be able to cope with various test conditions, a heater and a Peltier element are incorporated in the first mounting part 2 and the second mounting part 3, and the first material 6 and the second material 7 are individually heated. It is also effective to add a function of cooling or cooling, or to incorporate a device for applying ultrasonic vibration. It is also possible to enclose the entire apparatus in a vacuum chamber so that evaluation in a vacuum atmosphere can be performed.

第1の材料6として、基材6b上に硬質膜6aが形成されたものがあげられる。硬質膜6aとして、ダイヤモンド、ダイヤモンドライクカーボン(DLC)、TiN、TiC、CrN、SiC、Si、Alなどからなる膜があり、基材6bとして、超硬合金、Mo、W、SiN、SiC、単結晶Si、多結晶Siなどがある。このような基材6bに硬質膜6aを形成したものを工具材料として使用した場合、被加工材料が溶着することは少なく、実際に加工しながら溶着状態の評価試験を行うには多大な時間を要するが、本発明の評価方法によれば短時間で正確に行うことが可能になる。また、第2の材料7として、軟質金属または樹脂などがあげられ、軟質金属として、Sn、Ag、Pb、Pd、Sb、Pt、Au、Al、Cu、In、Ni、Ga、Zn、Geなどの単一または合金からなるハンダやロー材がある。また、Tiなどの硬質金属であっても評価試験は可能である。 Examples of the first material 6 include a material in which a hard film 6a is formed on a base material 6b. As hard films 6a, diamond, diamond-like carbon (DLC), TiN, TiC, CrN, SiC, there are Si 3 N 4, Al 2 O 3 and the like film, as the substrate 6b, the cemented carbide, Mo, W , SiN, SiC, single-crystal Si, polycrystalline Si, and the like. When a material in which the hard film 6a is formed on such a base material 6b is used as a tool material, the material to be processed is rarely welded, and it takes a lot of time to perform an evaluation test of a welded state while actually working. In short, according to the evaluation method of the present invention, accurate evaluation can be performed in a short time. The second material 7 includes a soft metal or a resin, and the soft metal includes Sn, Ag, Pb, Pd, Sb, Pt, Au, Al, Cu, In, Ni, Ga, Zn, and Ge. Solder or brazing material consisting of a single or alloy. An evaluation test is possible even with a hard metal such as Ti.

上記のような装置により、第1の材料6を所定の回転数で回転させておき、第2の材料7が所定の位置にくるように支柱を移動させて固定する。そして、加圧手段5により第2の取付部3および第2の材料7を下方向に加圧し、第2の材料7を第1の材料6の上面に加圧接触させる。この状態で一定時間保持し、第1の材料6の上面に第2の材料7を溶着させて、その溶着状態を測定する。   With the above-described apparatus, the first material 6 is rotated at a predetermined number of revolutions, and the support is moved and fixed so that the second material 7 is at a predetermined position. Then, the second mounting portion 3 and the second material 7 are pressed downward by the pressing means 5 to bring the second material 7 into press contact with the upper surface of the first material 6. In this state, the second material 7 is welded to the upper surface of the first material 6 for a certain period of time, and the welded state is measured.

(本発明例1)
半導体パッケージのアウターリードの曲げ加工用パンチおよびダイにハンダが溶着する試験の代用評価試験として以下の条件で試験を行った。市販のボールオンディスク型摩擦摩耗試験機を使用し、熱伝導率が60W/m・K以下の材料からなる保持部材を第2の取付部3として装置に組み込んだ。第1の材料6として、超硬合金の基材の面に鏡面加工を施し表面粗さを0.005μmRaとしたもの、および同じ材質の超硬合金の面に気相合成法によりダイヤモンド膜(表面粗さ0.025μmRa)を被覆したものの2種類の材料を用い、第1の取付部2に装着した。また、第2の材料7として、100%Snのハンダの固形物を用い、第2の取付部3に装着した。試験条件は、第1の材料6の回転数を500min−1、第2の材料7の加圧力を1Nとし、潤滑液などは使用せず乾式にて第1の材料6を回転させることで行った。また、第2の材料7の接触位置は、第1の材料6の回転中心から1mmの位置とした。以上の条件で上記2種類の第1の材料6の評価試験を行った結果、約2分間回転させることで溶着の状態が異なる結果が得られ、溶着状態の違いが明らかになった。
(Example 1 of the present invention)
A test was performed under the following conditions as a substitute evaluation test for a test in which solder was welded to a punch and a die for bending the outer lead of a semiconductor package. Using a commercially available ball-on-disk friction and wear tester, a holding member made of a material having a thermal conductivity of 60 W / m · K or less was incorporated in the apparatus as the second mounting portion 3. As the first material 6, a surface of a cemented carbide base material is mirror-finished to a surface roughness of 0.005 μm Ra, and a diamond film (surface Two kinds of materials coated with a roughness of 0.025 μm Ra) were mounted on the first mounting portion 2. In addition, a solid material of 100% Sn solder was used as the second material 7 and was attached to the second mounting portion 3. The test conditions were such that the rotation speed of the first material 6 was 500 min −1 , the pressure of the second material 7 was 1 N, and the first material 6 was rotated dry without using a lubricating liquid or the like. Was. The contact position of the second material 7 was set at a position 1 mm from the rotation center of the first material 6. As a result of performing an evaluation test of the above two types of first materials 6 under the above conditions, a result of different welding states was obtained by rotating the first material 6 for about 2 minutes, and the difference between the welding states became clear.

(比較例1)
本発明例1と同じ材質の超硬合金を用い、半導体パッケージのアウターリードの曲げ加工用パンチおよびダイを各2ヶ製作した。これらのパンチおよびダイのうち各1ヶは、リードと接触する部分を鏡面加工して表面粗さを0.005μmRaとした。また残りの各1ヶは、リードと接触する部分に本発明例1と同様のダイヤモンド膜(表面粗さ0.025μmRa)を被覆した。これらを、半導体パッケージのアウターリード加工装置に取り付け、100%Snのハンダがメッキされたアウターリードの曲げ加工を行った。その結果、3万回の加工を行った時点でダイヤモンド膜を被覆していないものに溶着が始まり、両者の溶着状態の差が明確になるまでには10万回の加工が必要で、この評価試験に約1ヶ月を要した。
(Comparative Example 1)
Using a cemented carbide of the same material as in Example 1 of the present invention, two punches and two dies for bending the outer lead of the semiconductor package were manufactured. Each of these punches and dies had a surface roughness of 0.005 μm Ra by mirror-finish the portion in contact with the lead. The remaining one was coated with a diamond film (surface roughness: 0.025 μmRa) similar to that of Example 1 of the present invention in a portion in contact with the lead. These were mounted on an outer lead processing device for a semiconductor package, and the outer leads plated with 100% Sn solder were bent. As a result, welding started on the material not covered with the diamond film at the time of 30,000 times of processing, and 100,000 times of processing was required until the difference between the two welding states became clear. The test took about one month.

(本発明例2)
実施例1と同様に評価試験を行った。第1の材料6として、超硬合金の基材の面に鏡面加工を施し表面粗さを0.008μmRaとしたもの、および同じ材質の超硬合金の面に気相合成法によりダイヤモンド膜(表面粗さ0.025μmRa)を被覆したものの2種類の材料を用い、第1の取付部2に装着した。また、第2の材料7として、96.5%Sn−3%Ag−0.5%Cuのハンダの固形物を用い、第2の取付部3に装着した。試験条件は、実施例1と同様の条件で行った。その結果、約2分間回転させることで溶着の状態が異なる結果が得られ、溶着状態の違いが明らかになった。
(Example 2 of the present invention)
An evaluation test was performed in the same manner as in Example 1. As the first material 6, a surface of a cemented carbide base material is mirror-finished to a surface roughness of 0.008 μmRa, and a diamond film (surface) is formed on a cemented carbide surface of the same material by a vapor phase synthesis method. Two kinds of materials coated with a roughness of 0.025 μm Ra) were mounted on the first mounting portion 2. Further, a solid material of 96.5% Sn-3% Ag-0.5% Cu solder was used as the second material 7, and was attached to the second mounting portion 3. The test conditions were the same as in Example 1. As a result, a result in which the welding state was different by rotating for about 2 minutes was obtained, and the difference in the welding state became clear.

(比較例2)
本発明例2と同じ材質の超硬合金を用い、半導体パッケージのアウターリードの曲げ加工用パンチおよびダイを各2ヶ製作した。これらのパンチおよびダイのうち各1ヶは、リードと接触する部分を鏡面加工して表面粗さを0.008μmRaとした。また残りの各1ヶは、リードと接触する部分に実施例1と同様のダイヤモンド膜(表面粗さ0.025μmRa)を被覆した。これらを、半導体パッケージのアウターリード加工装置に取り付け、96.5%Sn−3%Ag−0.5%Cuのハンダがメッキされたアウターリードの曲げ加工を行った。その結果、5万回の加工を行った時点でダイヤモンド膜を被覆していないものに溶着が始まり、両者の溶着状態の差が明確になるまでには20万回の加工が必要で、この評価試験に約2ヶ月を要した。
(Comparative Example 2)
Two punches and two dies for bending the outer leads of the semiconductor package were manufactured using a cemented carbide of the same material as that of Example 2 of the present invention. In each of these punches and dies, a portion in contact with the lead was mirror-finished to have a surface roughness of 0.008 μmRa. The remaining one was coated with a diamond film (having a surface roughness of 0.025 μm Ra) similar to that in Example 1 at the portion in contact with the lead. These were attached to an outer lead processing device of a semiconductor package, and the outer lead plated with 96.5% Sn-3% Ag-0.5% Cu solder was bent. As a result, when 50,000 times of processing were performed, welding started on the one not covered with the diamond film, and 200,000 times of processing was required until the difference between the two welding states became clear. The test took about two months.

(本発明例3)
半導体パッケージのアウターリードの切断加工用パンチおよびダイにハンダが溶着する試験の代用評価試験として以下の条件で試験を行った。第1の材料6として、超硬合金の基材の面に鏡面加工を施し表面粗さを0.010μmRaとしたもの、および同じ材質の超硬合金の面に気相合成法によりダイヤモンド膜(表面粗さ0.020μmRa)を被覆したものとの2種類の材料を用い、第1の取付部2に装着した。また、第2の材料7として、100%Pbのハンダの固形物を用い、第2の取付部3に装着した。試験条件は、実施例1と同様の条件で行った。その結果、約2分間回転させることで溶着の状態が異なる結果が得られ、溶着状態の違いが明らかになった。
(Example 3 of the present invention)
A test was performed under the following conditions as a substitute evaluation test for a test in which solder was welded to a punch and a die for cutting an outer lead of a semiconductor package. As the first material 6, a surface of a cemented carbide substrate is mirror-finished to a surface roughness of 0.010 μmRa, and a diamond film (surface The first mounting portion 2 was mounted using two types of materials, one coated with a roughness of 0.020 μm Ra). In addition, a solid material of 100% Pb solder was used as the second material 7 and was attached to the second mounting portion 3. The test conditions were the same as in Example 1. As a result, a result in which the welding state was different by rotating for about 2 minutes was obtained, and the difference in the welding state became clear.

(比較例3)
本発明例3と同じ材質の超硬合金を用い、半導体パッケージのアウターリードの切断加工用パンチおよびダイを各2ヶ製作した。これらのパンチおよびダイのうち各1ヶは、リードと接触する部分を鏡面加工して表面粗さを0.010μmRaとした。また残りの各1ヶは、リードと接触する部分に実施例1と同様のダイヤモンド膜(表面粗さ0.020μmRa)を被覆した。これらを、半導体パッケージのアウターリード加工装置に取り付け、100%Pbのハンダがメッキされたアウターリードの切断加工を行った。その結果、5万回の加工を行った時点でダイヤモンド膜を被覆していないものに溶着が始まり、両者の溶着状態の差が明確になるまでには20万回の加工が必要で、この評価試験に約2ヶ月を要した。
(Comparative Example 3)
Two punches and two dies for cutting the outer leads of the semiconductor package were manufactured using a cemented carbide of the same material as that of Inventive Example 3. Each of these punches and dies has a surface roughness of 0.010 μmRa by mirror-finish the portion in contact with the lead. The remaining one was coated with a diamond film (surface roughness 0.020 μmRa) similar to that in Example 1 at the portion in contact with the lead. These were attached to an outer lead processing device for a semiconductor package, and the outer leads plated with 100% Pb solder were cut. As a result, when 50,000 times of processing were performed, welding started on the one not covered with the diamond film, and 200,000 times of processing was required until the difference between the two welding states became clear. The test took about two months.

本発明の評価試験装置の一例を示す概念図。FIG. 1 is a conceptual diagram illustrating an example of an evaluation test device according to the present invention.

符号の説明Explanation of reference numerals

1 装置本体
2 第1の取付部
3 第2の取付部
4 支柱
5 加圧手段
6 第1の材料
7 第2の材料
DESCRIPTION OF SYMBOLS 1 Apparatus main body 2 1st mounting part 3 2nd mounting part 4 support | pillar 5 pressurizing means 6 1st material 7 2nd material

Claims (4)

第1の材料へ第2の材料が溶着する状態の試験を行う評価方法であって、
前記第1の材料は回転または往復運動可能な状態とし、前記第2の材料を熱伝導率が60W/m・K以下の材料からなる保持部材により保持して、前記第2の材料が前記第1の材料に接触可能な構造とし、前記第2の材料を前記第1の材料に加圧接触させることにより前記第1の材料への溶着状態を測定することを特徴とする評価方法。
An evaluation method for performing a test of a state in which a second material is welded to a first material,
The first material is capable of rotating or reciprocating, and the second material is held by a holding member made of a material having a thermal conductivity of 60 W / m · K or less, and the second material is held in the second material. An evaluation method comprising: a structure capable of contacting the first material; and measuring a state of welding to the first material by bringing the second material into pressure contact with the first material.
前記第2の材料は、軟質金属または樹脂であることを特徴とする請求項1記載の評価方法。   The evaluation method according to claim 1, wherein the second material is a soft metal or a resin. 前記第1の材料は、基材上に硬質膜を被覆したものであることを特徴とする請求項1または2記載の評価方法。   3. The evaluation method according to claim 1, wherein the first material is obtained by coating a hard film on a base material. 第1の材料へ第2の材料が溶着する状態の試験を行うための評価試験装置であって、
回転または往復運動可能な第1の取付部と、加圧手段を設けた第2の取付部を有し、前記第1の取付部に装着された第1の材料に対し、前記第2の取付部に装着された第2の材料を加圧接触させる構造であり、前記第2の取付部は熱伝導率が60W/m・K以下の保持部材からなることを特徴とする評価試験装置。
An evaluation test apparatus for performing a test of a state in which a second material is welded to a first material,
A first mounting portion capable of rotating or reciprocating; and a second mounting portion provided with a pressurizing means, wherein the second mounting portion is attached to a first material mounted on the first mounting portion. An evaluation test apparatus having a structure in which a second material mounted on a part is brought into pressure contact with the second part, wherein the second mounting part is formed of a holding member having a thermal conductivity of 60 W / m · K or less.
JP2004134931A 2003-05-08 2004-04-30 Method and device for evaluating weldability onto material Pending JP2004354374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004134931A JP2004354374A (en) 2003-05-08 2004-04-30 Method and device for evaluating weldability onto material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003130809 2003-05-08
JP2004134931A JP2004354374A (en) 2003-05-08 2004-04-30 Method and device for evaluating weldability onto material

Publications (1)

Publication Number Publication Date
JP2004354374A true JP2004354374A (en) 2004-12-16

Family

ID=34067049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004134931A Pending JP2004354374A (en) 2003-05-08 2004-04-30 Method and device for evaluating weldability onto material

Country Status (1)

Country Link
JP (1) JP2004354374A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006255741A (en) * 2005-03-16 2006-09-28 Jfe Steel Kk Method for evaluating scuffing property of press die, and its testing apparatus
JP2007273729A (en) * 2006-03-31 2007-10-18 Nec Electronics Corp Lead cutting apparatus and manufacturing method of semiconductor device
CN110864581A (en) * 2019-10-16 2020-03-06 柴树林 Preparation process of fin for efficient heat exchanger

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006255741A (en) * 2005-03-16 2006-09-28 Jfe Steel Kk Method for evaluating scuffing property of press die, and its testing apparatus
JP4677804B2 (en) * 2005-03-16 2011-04-27 Jfeスチール株式会社 Method for evaluating squeezing property of press mold and test apparatus therefor
JP2007273729A (en) * 2006-03-31 2007-10-18 Nec Electronics Corp Lead cutting apparatus and manufacturing method of semiconductor device
CN110864581A (en) * 2019-10-16 2020-03-06 柴树林 Preparation process of fin for efficient heat exchanger

Similar Documents

Publication Publication Date Title
JP4610811B2 (en) Probe manufacturing method and apparatus
JP5838637B2 (en) Ultrasonic welding apparatus and knurled surface processing method of ultrasonic welding tool used in ultrasonic welding apparatus
JP6806984B2 (en) Martensitic stainless steel die for optical parts Elliptical vibration cutting method
EP2700734B1 (en) Press forming die, and method of manufacturing press forming die protection film
JP2016136549A (en) Heat dissipation substrate and module for semiconductor using the same
JP6493111B2 (en) Sequential forming method, sequential forming apparatus and sequential forming method tool
EP1672685A1 (en) Substrate for device bonding, device bonded substrate, and method for producing same
JP2004354374A (en) Method and device for evaluating weldability onto material
JP4257385B2 (en) Work clamp structure of cutting device
JP2010065281A (en) Apparatus for imparting tension to vapor-deposition mask
US20090108266A1 (en) Friction Control in Apparatus Having Wide Bandgap Semiconductors
Guo et al. Microstructure evolution and growth behavior of Cu/SAC105/Cu joints soldered by thermo-compression bonding
JP5485117B2 (en) Zygote
US3446932A (en) Method of and apparatus for the spark discharge deposition of metals onto conductive surfaces
Yan et al. Effect of metal buffer layer on the thermal interface performance of liquid metal alloy on copper plate
JP2016082224A (en) Heat dissipation substrate and module for semiconductor using the same
JP2671531B2 (en) Turbine blade erosion shield brazing equipment
JP2011005541A (en) Wire working tool and device for manufacturing coil spring
JP4147258B2 (en) Work cutting method and cutting device
Hsu et al. Fluxless tin bonding of silicon chips to iron substrates
JP3766065B2 (en) Probe tip cleaning member
JP2565650B2 (en) Mechanical saw blade strengthening processing device
Lambracht et al. Thermal fatigue resistance in Pb-based solder alloys for electronic packaging
CN109427352A (en) E-machine manufacturing device
JP2002246408A (en) Heater dowel for wire bonding