JP2004353957A - Detonation wave generator - Google Patents

Detonation wave generator Download PDF

Info

Publication number
JP2004353957A
JP2004353957A JP2003152331A JP2003152331A JP2004353957A JP 2004353957 A JP2004353957 A JP 2004353957A JP 2003152331 A JP2003152331 A JP 2003152331A JP 2003152331 A JP2003152331 A JP 2003152331A JP 2004353957 A JP2004353957 A JP 2004353957A
Authority
JP
Japan
Prior art keywords
air
combustion chamber
detonation wave
cylinder
inner cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003152331A
Other languages
Japanese (ja)
Other versions
JP3692127B2 (en
Inventor
Tetsuto Tamura
哲人 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003152331A priority Critical patent/JP3692127B2/en
Publication of JP2004353957A publication Critical patent/JP2004353957A/en
Application granted granted Critical
Publication of JP3692127B2 publication Critical patent/JP3692127B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a generator for providing a detonation wave used for breaking and cutting. <P>SOLUTION: This detonation wave generator is provided with a first combustion chamber A for generating unburnt gas of an incomplete combustion state by igniting by an ignition means, and a second combustion chamber B for forming turbulent flow agitating air, by delivering high temperature-high pressure air forward from the outer periphery of an inner cylinder 1 in front of this first combustion chamber A; continuously supplies the unburnt gas of the incomplete combustion state of the first combustion chamber A in the second combustion chamber B; continuously generates the sudden explosive expansion in the inner cylinder 1, while generating an intense heat flame, by mixing with the turbulent flow agitating air generated in the second combustion chamber B; successively propagates the expansion to a front detonation wave generating chamber C; successively generates a pressure wave in this detonation wave generating chamber C; superimposedly generates a detonation wave; and can deliver this detonation wave from a tip nozzle part. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、連鎖反応によって反応を激化させて熱爆発を起こさせ、かつ燃焼速度が爆発より速い速度で吐出させて、各種用途に利用できるようにした爆轟波発生装置に関する。
【0002】
【従来の技術】
この種の爆轟波発生装置で、小型で実用化されたものは存在しない。
【0003】
この爆轟波に似る衝撃波が知られ、その発生装置は、本発明者が既に開発したものとして知られている(例えば、特許文献1、特許文献2参照。)。
【0004】
【特許文献1】
特許第3105179号公報
【特許文献2】
特許第3105182号公報
【0005】
【発明が解決しようとする課題】
ところで従来の衝撃波は、破砕,粉砕に広く用いられているが、硝子,陶器,金属の切削に弱いので、ガス,液体燃料を使って発生させた爆轟波を使って処理すると、硬いものはダイヤモンドまで切削,粉砕ができる。これは、空気のような発熱性の混合気中を強い衝撃波が通過すると、波面の背後で燃焼反応が起こり衝撃波と燃焼波の連合波が形成される。これを爆轟波と言う。この衝撃波は燃焼波の発熱によってその運動が支持される。一般に、衝撃波が受ける波動抵抗は波面の背後にひきおこす流体運動に起因し、運動域の拡大と共に、衝撃波は次第に減衰するが、爆轟波では衝撃波が引き金となって、化学エネルギーが先ず熱エネルギーに変換され、その内、丁度この波動抵抗を打ち消すのに必要な分だけが運動エネルギーに変換されるので、爆轟波は減衰すること無く自走する。これをチャプ・マンジューゲと言い、その自走する傅播速度は一種の固有値として求められる。
【0006】
爆轟波と衝撃波の伝播機構の大きな違いは、爆轟波においてはその伝播速度を決めるものは媒質の物理化学的性質で、衝撃波のように外的要因、飛行機の飛行マッハ数とか衝撃管の圧力比とかではないという点である。
【0007】
しかも、両者の最大の特徴は、衝撃波は発生装置から出れば減衰するが、爆轟波は直進する時は減衰なく、衝突のとき熱に変換してしまう点と、もう一つの利点は、爆轟波は或る条件で圧力波とも導波管で簡単に搬送する事が可能であることである。
【0008】
この発明は、叙上の点に着目してなされたもので、強い爆轟波を利用して、岩石の掘削,切削,破砕,硬質ガラス,陶器,コンクリート,金属類,宝石の原石等のカット,破砕,粉砕,更に採石用岩盤掘削,熱穿孔,熱破壊,リモートコントロールによる水中穿孔,同じく高所採石現場にビデオカメラによる中空,空冷穿孔機など、衝撃波の何倍も効率よく働く発生装置が、簡単かつ軽量に提供でき、とくに採石には防音、防塵装置安全据え付け可能な爆轟波発生装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
この発明は、以下の構成を備えることにより上記課題を解決できるものである。
【0010】
(1)外周に空気供給と熱交換を兼ねた空気供給路を有する多重構造の筒構成を備えた燃焼筒に相当する内筒の基板部には、燃料噴射ノズルと空気供給用の小孔と点火手段を設け、前記燃料噴射ノズルより噴射される気化ガスに空気供給用の小孔より供給される少量空気を供給して高速旋回渦流を形成させて、点火手段により点火させて不完全燃焼状態の未燃ガスを生成させる第一燃焼室と、この第一燃焼室の前方に前記内筒の外周より前方に向けて高温高圧空気を吐出させて、乱流撹拌空気として形成できる第二燃焼室とを設け、第一燃焼室の前記不完全燃焼状態の未燃ガスを第二燃焼室内に連続供給して、第二燃焼室内で生成された乱流撹拌空気と混合して高熱火炎を生成し乍ら内筒内に急激な爆発膨脹を連続生成させ、順次と前方の爆轟波発生室に伝播させ、かつこの爆轟波発生室内に圧力波を発生させて順次と重畳して爆轟波を生成し、この爆轟波を先端のノズル部より吐出させることができるようにしたことを特徴とする爆轟波発生装置。
【0011】
(2)内筒の基板部の小孔より第一燃焼室内に吐出させる空気量と、第二燃焼室に乱流空気として吐出させる空気の供給量とは、全体量を100%とすると20%:80%程度の分割比であることを特徴とする前記(1)記載の爆轟波発生装置。
【0012】
(3)筒状の内筒は、外筒と中筒との二重で抱持させ、外筒と中筒との二重構造の環状通路には、各筒の基部を保持する基端部に穿った燃焼空気供給孔と接続させたパイプを挿通し、このパイプより燃焼用空気を送給し、かつ中筒と内筒との間で未燃ガスの旋回流を起こさせ、第一燃焼室に続く第二燃焼室の前方に向けた多数の空気吐出ノズルよりの吐出された乱流状態の燃焼空気内に前記旋回流の未燃ガスを導入させて爆轟波を生成できるようにしたことを特徴とする前記(1)記載の爆轟波発生装置。
【0013】
【発明の実施の形態】
以下に、この発明の一実施の形態を説明する。
【0014】
始めに、図1によりこの発明の基本的構成の概要を説明する。
【0015】
1は、燃焼筒に相当する筒状の内筒、2はこの内筒1の基部を固着した基板部で、中央に各種燃料供給用のノズル3、点火栓4、その他図示しない温度センサ等を設けてある。5は前記内筒1の外周に配設される中筒、6は最外層の外筒を示し、内筒1、中筒5および外筒6は同心円形に配設される。7は空気供給孔を示し、基板部2に環状に多数形成し、外筒6と中筒5との間の空気供給路8に均等に加圧供給できるようになっている。
【0016】
9は、外筒6の先端部内側と中筒5の先端部に形成される切欠部を示し、空気供給路8の折返部を形成して、空気供給路8を通過して来る空気を、中筒5と内筒1との間の旋回流路10への導入部を形成している。11は旋回流路10を形成する旋回羽根を示し、この旋回羽根11の基端縁を内筒1に一体的に固着し、外端縁を中筒5に固着し、この中筒5の両端を自由端として形成して置くことにより、内筒1の熱膨張による内筒1の伸縮作用に中筒5に従動できるようにしてある。
【0017】
12は、基板部2において、空気供給路8より内筒1内に通ずる環状に配した燃焼空気供給用の小孔であって、燃料ノズル3より導入される燃料ガスを、点火栓4の働きにより燃焼させるための空気を、空気供給路8に供給される空気の全体の約20%程度供給できる構成となっており、第一燃焼室Aを構成し、旋回状態で未完燃焼ガス領域として機能する。
【0018】
13は、内筒1の第一燃焼室Aの前方において、旋回流路10の端部に相当する箇所で、内筒1の周壁に環状に、しかも内筒筒1の内筒壁に沿って斜め内方に向かって略同一に配した多数の空気吐出ノズルを示し、さらにこの空気吐出ノズル13は、捻回した羽根13aを設けて内筒1の前方に向けて鋭角に形成するもので、旋回流路10を通過することによって熱交換されて温度上昇した空気をそれぞれの空気吐出ノズル13によって内筒1内に吐出させると共に、それぞれの空気吐出ノズル13より吐出される旋回空気の相互の衝突によって撹拌した乱流状態を呈する第二燃焼室Bを形成できる。
【0019】
14は、この第二燃焼室Bの前方に形成される急激な爆発膨脹が連続して拡播して、圧力波を発生して順次と重畳する爆轟波発生室Cに続く爆轟波吐出ノズルを示す。
【0020】
15は、内筒1の先端に設けた爆轟波吐出ノズル14の外周に形成される消音マフラーを示す。
【0021】
叙上の構成に基づいて作用を説明する。
【0022】
まず、燃料ノズル3より、気体または液体の燃料、例えばケロシンを用いて内筒1内の第一燃焼室Aに噴霧し、かつ空気供給路8より分岐した、小孔12より供給される約20%の旋回する助燃空気とによって高速旋回渦流の混合気体が形成され、この混合気体に点火栓4の、例えばジェットエンジン用の点火栓プラグが間歇点火されて、不完全燃焼の活性燃焼気体が得られて前方へ進行する。
【0023】
他方、空気供給路8を通り、切欠部9で内側に反転した供給空気は、旋回流路10を通り、内筒1の燃焼温度で加熱された内筒1を冷却し、かつ熱交換された高温旋回空気は、第二燃焼室Bの入口の外周壁に設けられた、多数の空気吐出ノズル13によって内筒1内に乱流状態で吐出し、第一燃焼室Aで生成した活性化した未完全燃焼ガスを取り込み、空気混合ガス20%が、80%の乱流高圧空気と混合拡散し、急激な爆発的火炎燃焼を起こし、さらに急激な熱膨脹を派生して圧力波を生成し、燃焼波と重畳して爆轟波発生室Cにおいて、驚異的な爆発エネルギーに変換できるものである。
【0024】
なお爆轟波は、吐出ノズル14より前方に吐出されるが、その際の轟音を緩和するため、消音マフラー15を設けてあるので実用上騒音を排除できる。
【0025】
なお、前記した第二燃焼室Bから爆轟波発生室Cに至る爆轟波エネルギーの生成は、前方の爆轟波や圧力波などの波に後方の波が被さって速度を増し、そして更にこの被さった波が前の波に被さり、急激に成長して行くものと認められ、衝突によって始めて熱に変換され、同時に熱爆発、熱破壊となるもので、この爆轟波は音速状態の衝撃波が空中で減衰するのに対し、空中では減衰しないで直進できる特徴を有するため、爆轟波吐出ノズル14の先端に、図示しない好みの直状の導波管を接続することにより、爆轟波による穿孔効果を向上できる。
【0026】
以上この発明の基本的構成と、作用について説明したが、以下に他の具体的構成について実施の形態として説明する。
【0027】
なお、図1と実質同一な構成および作用を呈する箇所には、同一の符号を付し、説明の詳細は省く。そして、特徴ある構成を以下に項を分けて説明する。
【0028】
〔中筒5と外筒6との間の空気供給路8内のパイプ構成〕
空気供給路8には、燃焼用空気の供給のためのパイプ8aを、基板部2の内側で、中筒5と外筒6との間に開口した空気供給孔7に基端を接続固着し、その先端を、中筒9の切欠部9で反対方向に曲折して、旋回流路10内へ空気を供給できるように構成するもので、これにより外筒6を、内筒1,中筒5の熱膨脹に影響されないようにすると共に、爆轟波吐出ノズルを含めた各部構成部品の分解組立操作を有効に行われせることができる。
【0029】
〔第二燃焼室Bの空気吐出ノズル13〕
空気吐出ノズル13には捻回した羽根13aを縦通介在させ、この捻回した羽根13aの働きによって、吐出する空気が有効に旋回流となって吐出することができるが、空気吐出ノズル13は環状に多数配設してあるので、隣り合う空気吐出ノズル13からの旋回流が互いに混合して乱流状態を呈すると共に、第二燃焼室B内において圧力波が発生し、第一燃焼室Aから送り込まれる活性化状態の未完全燃焼ガスの高速燃焼が進行すると共に、圧力波は次第に増大し、順次と送り込まれる波が、波の重量作用を受けて、衝撃波,圧力波,燃焼波が加わって爆撃波となり爆轟波発生室Cでは驚異的な高エネルギーの爆轟波を生成できるものである。
【0030】
〔燃焼筒として働く内筒1の過熱防止装置〕
内筒1内の第二燃焼室Bで爆轟的燃焼をさせる為に、燃焼時の筒内は乱流拡散火炎と言う高熱火炎が走る。そのため内筒1の金属が塑性,溶融するおそれがあり、この防止の為に内筒1を冷却する上に、水冷すると冷却の効率は良いが、装置の熱を40%〜50%の熱をうばい、熱の損失という不都合に加え、形状が大きく、水の循環機器と水の冷却装置を含むと、装置全体が50%大きくなる。それに引き換え、反転式の供給空気を用いた空冷方式、即ち本発明における旋回流路10による供給空気の冷却作用により、燃焼用の供給空気80%で内筒1の金属の耐熱温度まで冷却が出来る金属、例えば2400℃まで耐え得るモリブデン製の内筒1の熱を熱交換により除去するばかりでなく、その熱を100%高圧高温燃焼空気として、内筒1内に旋回流として吐出させて有効利用することができるため、装置効率の30%を稼いだもので、単純計算だが、水冷の効率60%で空冷130%だとすると、空冷は水冷の約2倍の効率で、かつ水冷の半分の大きさで済むことが分る。
【0031】
〔旋回流路10による急冷熱交換構造〕
旋回流路10は、内筒1と中筒5との間に形成されるが、旋回流路10を構成する旋回羽根10aによって流路の旋回数を30とし、内筒1の直径をRとすれば、R×π×30の長さが形成されたことに相当し、旋回羽根10aが無い場合の約100倍程度の長さの冷却パイプが形成されたと同等となると共に、この旋回流路10を流れる空気は高圧となり、かつ熱交換されて高速に通過し、有効な熱交換を行うことができる。その結果、内筒1内での高温高圧な爆轟現象にも耐え得る。
【0032】
〔希釈空気による温度センサを使用した温度調整〕
内筒1の塑性防止のため、内筒1の中に例えば図2に示すように3箇所に温度センサSが埋め込んである。そしてこの指示測定値は図示しない遠隔地に設けた操作盤とコンピューターに接続され、内筒1に通ずる逆止弁を備えたパイプ16に設けた希釈空気調整弁17と繋がり、一番温度の高いところの温度センサの指示で希釈空気調整弁17が働いて、希釈空気が内筒1内に導入されて、危険な高温状態を瞬時に安全な温度に降下させて、温度の調整をすることができるように構成されている。
【0033】
〔内筒1の熱膨脹による外筒6の逃げ構造〕
この装置の内筒1,外筒6は、いずれも肉厚は厚く形成するものであるが、ことに内筒1は爆轟波の発生により高温となり、外筒6に対し、大きく伸長ないし収縮する。そのため、外筒6を内筒1と一体的に結合する場合には、外筒6と内筒1との間で伸縮による歪が派生し、内筒1が著しい損傷を生じて、破損という予測し得ない事故に発展する虞があるので、外筒6は先端において内筒1または爆轟波吐出ノズル14の構成部材18と連結し、基端部6aには一定間隔を置いてビス19を必要数基板部2に向けて突出させ、外筒6の基端部6aを基板部2の内側に設けた環状溝20内に配設すると共に、環状溝20の内端に穿ったビス19の挿通孔21よりビス19の頭部19aを外部に突出させ、ビス19の頭部19aと環状溝20の外部との間にコイルスプリング22を介在させて、このコイルスプリング22の弾性張力によって外筒6の基端部6aを伸縮可能に支持させることにより、上記不都合を解消する構成としてある。
【0034】
〔爆轟波,圧力波搬送のための導波管管構成〕
爆轟波の吐出ノズル14にはその先端に導波管23を接続できるように構成し、直進性の爆轟波を導通させることができるもので、例えば導波管23が1m程度のものを用いてインチパイプ岩石花崗岩で15m/H穿孔できることを確認している。
【0035】
この構成を用いることにより、他に岩石の掘削,切削,破砕,硬質ガラス,陶器,コンクリート,金属類,宝石の原石等のカットを効率よく実行できる。
【0036】
以上、この発明の実施の形態を説明したが、単にケロシンなどの灯油やガス等の液体または気体燃料を用いて、有効な爆轟波を発生させることが可能であって、あらゆる硬質な物質の破壊や穿孔など、土木用は勿論のこと工業用、広くは産業用に用いられてきわめて有効である。
【図面の簡単な説明】
【図1】この発明の基本的構成を示す爆轟波発生装置の縦断説明図
【図2】同じく一実施の形態を示す縦断面図
【図3】爆轟波吐出ノズル14と導波管との関係を示す分解した一部の斜面図
【符号の説明】
A 第一燃焼室
B 第二燃焼室
C 爆轟波発生室
S 温度センサ
1 内筒
2 基板部
3 燃料ノズル
4 点火栓
5 中筒
6 外筒
6a 基端部
7 空気供給孔
8 空気供給路
8a パイプ
9 切欠部
10 旋回流路
10a 旋回羽根
11 旋回羽根
12 小孔
13 空気吐出ノズル
13a 捻回した羽根
14 爆轟波吐出ノズル
15 消音マフラー
16 パイプ
17 希釈空気調整弁
18 構成部材
19 ビス
19a 頭部
20 環状溝
21 挿通孔
22 コイルスプリング
23 導波管
24 パッキン
25 ナット
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a detonation wave generator that intensifies a reaction by a chain reaction to cause a thermal explosion and discharges the fuel at a combustion speed faster than the explosion, so that the device can be used for various applications.
[0002]
[Prior art]
No detonation wave generator of this type has been practically used in a small size.
[0003]
A shock wave resembling this detonation wave is known, and its generating device is known to have been developed by the present inventors (for example, see Patent Documents 1 and 2).
[0004]
[Patent Document 1]
Japanese Patent No. 3105179 [Patent Document 2]
Japanese Patent No. 3105182
[Problems to be solved by the invention]
By the way, conventional shock waves are widely used for crushing and crushing, but they are weak in cutting glass, pottery and metal, so if they are processed using detonation waves generated using gas or liquid fuel, they will be hard It can cut and grind diamonds. This is because when a strong shock wave passes through an exothermic mixture such as air, a combustion reaction occurs behind the wavefront, and a combined wave of the shock wave and the combustion wave is formed. This is called a detonation wave. The motion of the shock wave is supported by the heat generated by the combustion wave. Generally, the wave resistance experienced by a shock wave is caused by the fluid motion that occurs behind the wavefront, and the shock wave gradually attenuates as the range of motion expands.However, in a detonation wave, the shock wave triggers, and chemical energy is first converted to thermal energy. The detonation wave is self-propelled without attenuating, since only that necessary to cancel this wave resistance is converted into kinetic energy. This is called chap manjuge, and the self-propelled speed is obtained as a kind of eigenvalue.
[0006]
The major difference between the detonation wave and the shock wave propagation mechanism is that in the detonation wave, what determines the speed of propagation is the physicochemical properties of the medium, such as external factors such as the shock wave, the flight Mach number of the airplane and the shock tube. It is not a pressure ratio.
[0007]
Moreover, the biggest feature of both is that the shock wave is attenuated when it comes out of the generator, but the detonation wave is not attenuated when going straight, it is converted to heat in the event of a collision. A roaring wave is that, under certain conditions, a pressure wave can be easily conveyed through a waveguide.
[0008]
The present invention has been made with a focus on the above points, and uses a strong detonation wave to excavate, cut, and crush rock, cut hard glass, pottery, concrete, metals, gemstones, and the like. , Crushing, crushing, rock drilling for quarrying, thermal drilling, thermal destruction, underwater drilling by remote control, and a hollow and air-cooled drilling machine using a video camera at the same quarrying place at high altitude It is an object of the present invention to provide a detonation wave generator which can be provided simply and lightly, and which can be installed particularly in soundproofing and dustproofing devices for quarrying.
[0009]
[Means for Solving the Problems]
The present invention can solve the above-mentioned problem by providing the following configuration.
[0010]
(1) A fuel injection nozzle, a small hole for air supply, and a fuel injection nozzle are provided on a substrate portion of an inner cylinder corresponding to a combustion cylinder having a multi-layered cylinder structure having an air supply path for air supply and heat exchange on the outer periphery. An ignition means is provided, and a small amount of air supplied from a small hole for supplying air is supplied to the vaporized gas injected from the fuel injection nozzle to form a high-speed swirling vortex, which is ignited by the ignition means to cause an incomplete combustion state. A first combustion chamber that generates unburned gas, and a second combustion chamber that discharges high-temperature, high-pressure air forward from the outer periphery of the inner cylinder forward of the first combustion chamber to form turbulent stirring air. The incombustible gas in the incomplete combustion state of the first combustion chamber is continuously supplied to the second combustion chamber, and mixed with the turbulent stirring air generated in the second combustion chamber to generate a high-temperature flame. However, rapid explosion and expansion are continuously generated in the inner cylinder, Propagate to the wave generation chamber, generate pressure waves in the detonation wave generation chamber, and superimpose them sequentially to generate detonation waves so that the detonation waves can be discharged from the nozzle at the tip. A detonation wave generator characterized by the following.
[0011]
(2) The amount of air discharged into the first combustion chamber from the small holes in the substrate portion of the inner cylinder and the amount of air supplied as turbulent air into the second combustion chamber are 20% when the total amount is 100%. : The detonation wave generator according to the above (1), wherein the splitting ratio is about 80%.
[0012]
(3) The cylindrical inner cylinder is held by the outer cylinder and the middle cylinder in a double manner, and the annular passage having the double structure of the outer cylinder and the middle cylinder has a base end for holding the base of each cylinder. Through a pipe connected to a combustion air supply hole drilled in the pipe, feeds combustion air from this pipe, and causes a swirling flow of unburned gas between the middle cylinder and the inner cylinder to cause the first combustion A detonation wave can be generated by introducing the swirling flow of unburned gas into the turbulent combustion air discharged from a number of air discharge nozzles directed forward of the second combustion chamber following the chamber. The detonation wave generator according to the above (1), characterized in that:
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, one embodiment of the present invention will be described.
[0014]
First, an outline of a basic configuration of the present invention will be described with reference to FIG.
[0015]
Reference numeral 1 denotes a cylindrical inner cylinder corresponding to a combustion cylinder, and 2 denotes a substrate portion to which the base of the inner cylinder 1 is fixed. In the center, a nozzle 3 for supplying various fuels, a spark plug 4, and other temperature sensors (not shown) are provided. It is provided. Reference numeral 5 denotes a middle cylinder disposed on the outer periphery of the inner cylinder 1, and 6 denotes an outer cylinder of the outermost layer. The inner cylinder 1, the middle cylinder 5 and the outer cylinder 6 are arranged concentrically. Reference numeral 7 denotes an air supply hole, which is formed in a large number in an annular shape in the substrate portion 2 so that the air can be uniformly supplied to the air supply passage 8 between the outer cylinder 6 and the middle cylinder 5.
[0016]
Reference numeral 9 denotes a notch formed inside the distal end portion of the outer cylinder 6 and at the distal end portion of the middle cylinder 5, and forms a folded portion of the air supply passage 8 so that air passing through the air supply passage 8 is formed. An introduction portion into the swirling flow path 10 between the middle cylinder 5 and the inner cylinder 1 is formed. Reference numeral 11 denotes a swirl vane forming a swirl flow path 10, a base end of the swirl vane 11 is integrally fixed to the inner cylinder 1, an outer end is fixed to the middle cylinder 5, and both ends of the middle cylinder 5. Is formed as a free end so that the middle cylinder 5 can follow the expansion and contraction of the inner cylinder 1 due to the thermal expansion of the inner cylinder 1.
[0017]
Reference numeral 12 denotes a ring-shaped small hole for supplying combustion air, which extends from the air supply passage 8 to the inside of the inner cylinder 1 in the substrate portion 2. Can be supplied to the air supply passage 8 in an amount of about 20% of the total air supplied to the air supply passage 8. The first combustion chamber A is constituted and functions as an uncompleted combustion gas region in a swirling state. I do.
[0018]
Reference numeral 13 denotes a portion in front of the first combustion chamber A of the inner cylinder 1 at a position corresponding to the end of the swirl flow path 10, which is annular on the peripheral wall of the inner cylinder 1 and along the inner cylinder wall of the inner cylinder 1. It shows a number of air discharge nozzles that are disposed substantially obliquely inward, and the air discharge nozzles 13 are provided with twisted blades 13a and formed at an acute angle toward the front of the inner cylinder 1, The air whose temperature has been increased due to heat exchange by passing through the swirling flow path 10 is discharged into the inner cylinder 1 by the respective air discharge nozzles 13, and the collision of the swirling air discharged from the respective air discharge nozzles 13 with each other. Thus, the second combustion chamber B exhibiting the turbulent flow state can be formed.
[0019]
Reference numeral 14 denotes a detonation wave discharge that follows a detonation wave generation chamber C in which a rapid explosion and expansion formed in front of the second combustion chamber B continuously spreads, generates pressure waves, and sequentially superimposes. Shows a nozzle.
[0020]
Reference numeral 15 denotes a muffler formed on the outer periphery of the detonation wave discharge nozzle 14 provided at the tip of the inner cylinder 1.
[0021]
The operation will be described based on the configuration described above.
[0022]
First, the fuel nozzle 3 sprays gas or liquid fuel, for example, kerosene, into the first combustion chamber A in the inner cylinder 1, and is supplied from the small holes 12 branched from the air supply passage 8. % Of the swirling auxiliary air, a high-speed swirling vortex gas mixture is formed, and the mixed gas is intermittently ignited by an ignition plug 4, for example, a spark plug for a jet engine, to obtain an incompletely combusted active combustion gas. And proceed forward.
[0023]
On the other hand, the supply air that has passed through the air supply passage 8 and turned inward at the notch 9 has passed through the swirl flow passage 10, cooled the inner cylinder 1 heated at the combustion temperature of the inner cylinder 1, and exchanged heat. The high-temperature swirling air is discharged in a turbulent state into the inner cylinder 1 by a number of air discharge nozzles 13 provided on the outer peripheral wall at the entrance of the second combustion chamber B, and is activated in the first combustion chamber A. The incomplete combustion gas is taken in, and 20% of the air mixed gas is mixed and diffused with the turbulent high-pressure air of 80%, causing rapid explosive flame combustion, further generating rapid thermal expansion, generating a pressure wave, and burning. In the detonation wave generation chamber C, it can be converted into a surprising explosion energy by being superimposed on the waves.
[0024]
Although the detonation wave is discharged forward from the discharge nozzle 14, a noise reduction muffler 15 is provided to alleviate the roaring sound at that time, so that the noise can be practically eliminated.
[0025]
The generation of the detonation wave energy from the second combustion chamber B to the detonation wave generation chamber C increases the speed by the wave such as the detonation wave or the pressure wave in the front being covered by the wave in the rear, and further increases. It is recognized that this wave covers the previous wave and grows rapidly, and is converted into heat only by collision, and at the same time, heat explosion and thermal destruction.This detonation wave is a sonic shock wave Has a characteristic that it can travel straight without attenuating in the air, whereas the tip of the detonation wave discharge nozzle 14 is connected to a favorite straight waveguide (not shown) to provide a detonation wave. Piercing effect can be improved.
[0026]
While the basic configuration and operation of the present invention have been described above, other specific configurations will be described below as embodiments.
[0027]
The portions having substantially the same configuration and operation as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted. The characteristic configuration will be described below in different sections.
[0028]
[Pipe configuration in air supply path 8 between middle cylinder 5 and outer cylinder 6]
A pipe 8a for supplying combustion air is fixedly connected to the air supply passage 8 at the base end of an air supply hole 7 opened between the middle cylinder 5 and the outer cylinder 6 inside the substrate portion 2. The tip is bent in the opposite direction at the cutout 9 of the middle cylinder 9 so that air can be supplied into the swirl flow path 10, whereby the outer cylinder 6 is divided into the inner cylinder 1 and the middle cylinder 9. 5 is not affected by the thermal expansion, and the disassembling and assembling operation of each component including the detonation wave discharge nozzle can be effectively performed.
[0029]
[Air discharge nozzle 13 of second combustion chamber B]
The twisted blades 13a are vertically interposed in the air discharge nozzle 13, and the function of the twisted blades 13a allows the discharged air to be effectively swirled and discharged. Since a large number are arranged in a ring, the swirling flows from the adjacent air discharge nozzles 13 mix with each other to exhibit a turbulent state, and a pressure wave is generated in the second combustion chamber B, so that the first combustion chamber A As the high-speed combustion of the incomplete combustion gas in the activated state sent from the reactor progresses, the pressure wave gradually increases, and the sequentially sent wave is subjected to the weight effect of the wave, and the shock wave, the pressure wave, and the combustion wave are added. In the detonation wave generating chamber C, the detonation wave can generate a surprisingly high energy detonation wave.
[0030]
[Overheating prevention device for inner cylinder 1 acting as combustion cylinder]
In order to cause detonation combustion in the second combustion chamber B in the inner cylinder 1, a high-temperature flame called a turbulent diffusion flame runs in the cylinder at the time of combustion. Therefore, there is a possibility that the metal of the inner cylinder 1 may be plasticized and melted. To prevent this, the cooling of the inner cylinder 1 is improved by cooling with water, but the heat of the device is reduced by 40% to 50%. In addition to the disadvantages of exposure and heat loss, the large size, including the water circulation equipment and the water cooling device, increases the size of the entire device by 50%. On the other hand, by the air-cooling method using the reversing supply air, that is, the cooling operation of the supply air by the swirling flow path 10 in the present invention, the supply air for combustion can be cooled to the heat resistant temperature of the metal of the inner cylinder 1 by 80% of the supply air for combustion. In addition to removing the heat of the inner cylinder 1 made of metal, for example, molybdenum that can withstand up to 2400 ° C. by heat exchange, the heat is discharged as 100% high-pressure high-temperature combustion air into the inner cylinder 1 as a swirling flow for effective utilization. 30% of the efficiency of the equipment can be obtained, and it is a simple calculation. If it is 60% of the water cooling efficiency and 130% of the air cooling, the air cooling is about twice the efficiency of the water cooling and half the size of the water cooling. It turns out that it is enough.
[0031]
[Quenching heat exchange structure with swirling flow path 10]
The swirl flow path 10 is formed between the inner cylinder 1 and the middle cylinder 5. The number of swirl of the flow path is set to 30 by the swirler vanes 10 a constituting the swirl flow path 10, and the diameter of the inner cylinder 1 is R. This is equivalent to the formation of a length of R × π × 30, which is equivalent to the formation of a cooling pipe approximately 100 times as long as the case where the swirling blade 10a is not provided. The air flowing through 10 has a high pressure and is heat-exchanged and passes at high speed, so that effective heat exchange can be performed. As a result, it can withstand the high temperature and high pressure detonation phenomenon in the inner cylinder 1.
[0032]
[Temperature adjustment using a temperature sensor with dilution air]
In order to prevent plasticity of the inner cylinder 1, temperature sensors S are embedded in the inner cylinder 1, for example, at three locations as shown in FIG. The indicated measured value is connected to a control panel and a computer provided in a remote place (not shown), and is connected to a dilution air adjusting valve 17 provided in a pipe 16 provided with a check valve communicating with the inner cylinder 1, so that the highest temperature is obtained. However, the dilution air adjusting valve 17 is actuated by the instruction of the temperature sensor, and the dilution air is introduced into the inner cylinder 1 to instantaneously reduce a dangerous high temperature state to a safe temperature and adjust the temperature. It is configured to be able to.
[0033]
[Escape structure of outer cylinder 6 due to thermal expansion of inner cylinder 1]
Both the inner cylinder 1 and the outer cylinder 6 of this device are formed to be thicker. Particularly, the inner cylinder 1 becomes hot due to the generation of the detonation wave, and greatly expands or contracts with respect to the outer cylinder 6. I do. Therefore, when the outer cylinder 6 is integrally connected to the inner cylinder 1, distortion due to expansion and contraction is generated between the outer cylinder 6 and the inner cylinder 1. Since there is a risk of developing an accident that cannot occur, the outer cylinder 6 is connected to the inner cylinder 1 or the constituent member 18 of the detonation wave discharge nozzle 14 at the distal end, and screws 19 are provided at regular intervals at the base end 6a. The base member 6a of the outer cylinder 6 is disposed in an annular groove 20 provided inside the substrate part 2 so as to protrude toward the required number of substrate parts 2, and a screw 19 drilled at the inner end of the annular groove 20 is provided. The head 19 a of the screw 19 projects outside through the insertion hole 21, and a coil spring 22 is interposed between the head 19 a of the screw 19 and the outside of the annular groove 20. The above-mentioned inconvenience is avoided by supporting the base end 6a of There as Shosuru configuration.
[0034]
[Waveguide configuration for detonation and pressure wave transport]
The detonation wave discharge nozzle 14 is configured such that a waveguide 23 can be connected to the tip of the nozzle and can conduct a straight forward detonation wave. For example, a waveguide 23 having a length of about 1 m is used. It has been confirmed that 15m / H can be drilled with inch pipe rock granite.
[0035]
By using this configuration, rock excavation, cutting, crushing, hard glass, pottery, concrete, metals, gemstones, and the like can be efficiently executed.
[0036]
Although the embodiment of the present invention has been described above, it is possible to generate an effective detonation wave simply by using a liquid or gaseous fuel such as kerosene or gas such as kerosene, It is very effective when used for civil engineering as well as industrial use, such as destruction and perforation, and widely for industrial use.
[Brief description of the drawings]
1 is a longitudinal sectional view of a detonation wave generator showing a basic configuration of the present invention; FIG. 2 is a longitudinal sectional view showing an embodiment of the same; FIG. 3 is a detonation wave discharge nozzle 14 and a waveguide; Partial exploded perspective view showing the relationship of [Description of symbols]
A First combustion chamber B Second combustion chamber C Detonation wave generation chamber S Temperature sensor 1 Inner cylinder 2 Substrate 3 Fuel nozzle 4 Ignition plug 5 Middle cylinder 6 Outer cylinder 6a Base end 7 Air supply hole 8 Air supply path 8a Pipe 9 Notch 10 Swirl channel 10a Swirl blade 11 Swirl blade 12 Small hole 13 Air discharge nozzle 13a Twisted blade 14 Detonation wave discharge nozzle 15 Silence muffler 16 Pipe 17 Dilution air regulating valve 18 Component member 19 Screw 19a Head Reference Signs List 20 annular groove 21 insertion hole 22 coil spring 23 waveguide 24 packing 25 nut

Claims (3)

外周に空気供給と熱交換を兼ねた空気供給路を有する多重構造の筒構成を備えた燃焼筒に相当する内筒の基板部には、燃料噴射ノズルと空気供給用の小孔と点火手段を設け、前記燃料噴射ノズルより噴射される気化ガスに空気供給用の小孔より供給される少量空気を供給して高速旋回渦流を形成させて、点火手段により点火させて不完全燃焼状態の未燃ガスを生成させる第一燃焼室と、この第一燃焼室の前方に前記内筒の外周より前方に向けて高温高圧空気を吐出させて、乱流撹拌空気として形成できる第二燃焼室とを設け、第一燃焼室の前記不完全燃焼状態の未燃ガスを第二燃焼室内に連続供給して、第二燃焼室内で生成された乱流撹拌空気と混合して高熱火炎を生成し乍ら内筒内に急激な爆発膨脹を連続生成させ、順次と前方の爆轟波発生室に伝播させ、かつこの爆轟波発生室内に圧力波を発生させて順次と重畳して爆轟波を生成し、この爆轟波を先端のノズル部より吐出させることができるようにしたことを特徴とする爆轟波発生装置。A fuel injection nozzle, a small hole for air supply, and an ignition means are provided on a substrate portion of an inner cylinder corresponding to a combustion cylinder having a multi-layered cylinder structure having an air supply path for air supply and heat exchange on the outer periphery. A small amount of air supplied from a small hole for air supply is supplied to the vaporized gas injected from the fuel injection nozzle to form a high-speed swirling vortex, which is ignited by the ignition means, and the incombustible uncombusted state is provided. A first combustion chamber that generates gas, and a second combustion chamber that discharges high-temperature and high-pressure air forward from the outer periphery of the inner cylinder toward the front of the first combustion chamber to form turbulent stirring air is provided. The unburned gas in the incompletely-combusted state of the first combustion chamber is continuously supplied to the second combustion chamber, and mixed with the turbulent agitated air generated in the second combustion chamber to generate a high-temperature flame. Continuously generate sudden explosion and expansion in the cylinder, detonation waves sequentially and forward Propagating to the chamber, and generating pressure waves in the detonation wave generation chamber to generate a detonation wave by superimposing them sequentially, so that this detonation wave can be discharged from the nozzle at the tip. A detonation wave generator. 内筒の基板部の小孔より第一燃焼室内に吐出させる空気量と、第二燃焼室に乱流空気として吐出させる空気の供給量とは、全体量を100%とすると20%:80%程度の分割比であることを特徴とする請求項1記載の爆轟波発生装置。The amount of air discharged into the first combustion chamber from the small holes in the substrate portion of the inner cylinder and the amount of air supplied as turbulent air to the second combustion chamber are 20%: 80% when the total amount is 100%. 2. The detonation wave generator according to claim 1, wherein the splitting ratio is of the order of magnitude. 筒状の内筒は、外筒と中筒との二重で抱持させ、外筒と中筒との二重構造の環状通路には、各筒の基部を保持する基端部に穿った燃焼空気供給孔と接続させたパイプを挿通し、このパイプより燃焼用空気を送給し、かつ中筒と内筒との間で未燃ガスの旋回流を起こさせ、第一燃焼室に続く第二燃焼室の前方に向けた多数の空気吐出ノズルよりの吐出された乱流状態の燃焼空気内に前記旋回流の未燃ガスを導入させて爆轟波を生成できるようにしたことを特徴とする請求項1記載の爆轟波発生装置。The cylindrical inner cylinder was embraced as a double of the outer cylinder and the middle cylinder, and the annular passage of the double structure of the outer cylinder and the middle cylinder was pierced at the base end holding the base of each cylinder. Insert a pipe connected to the combustion air supply hole, feed combustion air from this pipe, and cause a swirling flow of unburned gas between the middle cylinder and the inner cylinder, followed by the first combustion chamber The swirling flow of unburned gas is introduced into turbulent combustion air discharged from a number of air discharge nozzles directed forward of the second combustion chamber to generate a detonation wave. The detonation wave generator according to claim 1, wherein
JP2003152331A 2003-05-29 2003-05-29 Detonation wave generator Expired - Fee Related JP3692127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003152331A JP3692127B2 (en) 2003-05-29 2003-05-29 Detonation wave generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003152331A JP3692127B2 (en) 2003-05-29 2003-05-29 Detonation wave generator

Publications (2)

Publication Number Publication Date
JP2004353957A true JP2004353957A (en) 2004-12-16
JP3692127B2 JP3692127B2 (en) 2005-09-07

Family

ID=34047573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003152331A Expired - Fee Related JP3692127B2 (en) 2003-05-29 2003-05-29 Detonation wave generator

Country Status (1)

Country Link
JP (1) JP3692127B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010236843A (en) * 2009-03-31 2010-10-21 Masumi Co Ltd Detonation generating device
JP4932828B2 (en) * 2005-04-12 2012-05-16 ジルカ バイオマス パワー エルエルシー Integrated biomass energy system
RU2459150C2 (en) * 2009-09-25 2012-08-20 Институт гидродинамики им. М.А. Лаврентьева Сибирского отделения Российской академии наук (ИГиЛ СО РАН) Detonation combustion method of flammable mixtures, and device for its implementation
CN103017172A (en) * 2011-12-08 2013-04-03 崔惠子 Spiral type super high temperature incineration furnace
JP2013100983A (en) * 2013-01-16 2013-05-23 Paloma Co Ltd Pulse combustor and instantaneous water heater
JP5967783B1 (en) * 2015-09-11 2016-08-10 株式会社エヌ・エス・ピイ Jet burner and grinding dryer
RU2595005C2 (en) * 2014-08-01 2016-08-20 Федеральное государственное бюджетное учреждение науки Институт гидродинамики им. М.А. Лаврентьева Сибирского отделения Российской академии наук Method of fuel combustion and detonation device for its implementation
KR20170013286A (en) * 2014-05-23 2017-02-06 도날드 조셉 스테인 Implosion reactor tube
CN110260311A (en) * 2019-07-22 2019-09-20 广州合隆智能设备有限公司 Commercial gas turbine is pressurized double mixing burners
WO2021049052A1 (en) * 2019-09-13 2021-03-18 三菱重工業株式会社 Cooling flow-path structure, burner, and heat exchanger
WO2021049054A1 (en) * 2019-09-13 2021-03-18 三菱重工業株式会社 Cooling flow-path structure, burner, and heat exchanger
CN116025484A (en) * 2023-02-28 2023-04-28 北京大学 Continuous detonation solid rocket engine system based on solid powder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018107335A1 (en) * 2016-12-12 2018-06-21 深圳智慧能源技术有限公司 Torch for supplying cooling air by using air source energy

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4932828B2 (en) * 2005-04-12 2012-05-16 ジルカ バイオマス パワー エルエルシー Integrated biomass energy system
JP2010236843A (en) * 2009-03-31 2010-10-21 Masumi Co Ltd Detonation generating device
RU2459150C2 (en) * 2009-09-25 2012-08-20 Институт гидродинамики им. М.А. Лаврентьева Сибирского отделения Российской академии наук (ИГиЛ СО РАН) Detonation combustion method of flammable mixtures, and device for its implementation
CN103017172A (en) * 2011-12-08 2013-04-03 崔惠子 Spiral type super high temperature incineration furnace
JP2013100983A (en) * 2013-01-16 2013-05-23 Paloma Co Ltd Pulse combustor and instantaneous water heater
KR102156960B1 (en) 2014-05-23 2020-09-17 도날드 조셉 스테인 Implosion reactor tube
KR20170013286A (en) * 2014-05-23 2017-02-06 도날드 조셉 스테인 Implosion reactor tube
JP2017519175A (en) * 2014-05-23 2017-07-13 スタイン, ドナルド ジョセフSTEIN, Donald Joseph Implosion type reactor tube
RU2595005C2 (en) * 2014-08-01 2016-08-20 Федеральное государственное бюджетное учреждение науки Институт гидродинамики им. М.А. Лаврентьева Сибирского отделения Российской академии наук Method of fuel combustion and detonation device for its implementation
RU2595005C9 (en) * 2014-08-01 2017-03-02 Федеральное государственное бюджетное учреждение науки Институт гидродинамики им. М.А. Лаврентьева Сибирского отделения Российской академии наук Method of fuel combustion and detonation device for its implementation
EP3176507A4 (en) * 2014-08-01 2018-04-11 Airbus Group Innovations Sk LLC Method for the detonation combustion of fuel mixtures and apparatus for carrying out same
JP5967783B1 (en) * 2015-09-11 2016-08-10 株式会社エヌ・エス・ピイ Jet burner and grinding dryer
CN110260311A (en) * 2019-07-22 2019-09-20 广州合隆智能设备有限公司 Commercial gas turbine is pressurized double mixing burners
CN110260311B (en) * 2019-07-22 2024-02-06 浙江合隆智能设备有限公司 Commercial gas turbine supercharged double-mixing burner
WO2021049052A1 (en) * 2019-09-13 2021-03-18 三菱重工業株式会社 Cooling flow-path structure, burner, and heat exchanger
WO2021049054A1 (en) * 2019-09-13 2021-03-18 三菱重工業株式会社 Cooling flow-path structure, burner, and heat exchanger
JP7324096B2 (en) 2019-09-13 2023-08-09 三菱重工業株式会社 Cooling channel structure, burner and heat exchanger
JP7386024B2 (en) 2019-09-13 2023-11-24 三菱重工業株式会社 Cooling channel structure, burner and heat exchanger
CN116025484A (en) * 2023-02-28 2023-04-28 北京大学 Continuous detonation solid rocket engine system based on solid powder

Also Published As

Publication number Publication date
JP3692127B2 (en) 2005-09-07

Similar Documents

Publication Publication Date Title
JP6238997B2 (en) Pressure gain combustion apparatus and method
US6912857B2 (en) Torch igniter
RU2470229C2 (en) Burner
JP2004353957A (en) Detonation wave generator
CN101981380B (en) Pilot combustor in a burner
CA2783769C (en) Burner system and a method for increasing the efficiency of a heat exchanger
US5367869A (en) Laser ignition methods and apparatus for combustors
US8161725B2 (en) Compact cyclone combustion torch igniter
JP4555654B2 (en) Two-stage pulse detonation system
RU2455569C1 (en) Burner
RU2460944C2 (en) Fire-resistant burner arches
RU2468298C2 (en) Stage-by-stage fuel combustion in burner
JPH09178113A (en) Flame/pressure pulsation checking method for furnace and furnace
EP2263044B1 (en) Size scaling of a burner
JP4571612B2 (en) Gas turbine combustor and fuel supply method thereof
RU2708011C1 (en) Fuel combustion device
JPH1183017A (en) Combustor for gas turbine
EP2436982B1 (en) Combustion chamber with igniter
RU2277204C1 (en) Method of burning fuel
JP4482612B1 (en) Supersonic jet burner and operation control device of processing furnace using it.
KR100858964B1 (en) Reer burning device for small jet engine using torch
Ciccarelli et al. Flame acceleration enhancement by distributed ignition points
WO2004003434A1 (en) Thermal engine combustion chamber
KR20040009471A (en) Hydrogen gas burner for burning out of rocket&#39;s after flame gas
Zinn et al. Stagnation point reverse flow combustor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050413

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050413

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20050607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050617

R150 Certificate of patent or registration of utility model

Ref document number: 3692127

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees