JP2004353755A - Block element with optimized circular arc groove for reducing stress concentration - Google Patents

Block element with optimized circular arc groove for reducing stress concentration Download PDF

Info

Publication number
JP2004353755A
JP2004353755A JP2003151861A JP2003151861A JP2004353755A JP 2004353755 A JP2004353755 A JP 2004353755A JP 2003151861 A JP2003151861 A JP 2003151861A JP 2003151861 A JP2003151861 A JP 2003151861A JP 2004353755 A JP2004353755 A JP 2004353755A
Authority
JP
Japan
Prior art keywords
stress
arc groove
saddle
block element
top surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003151861A
Other languages
Japanese (ja)
Other versions
JP4321119B2 (en
Inventor
Takehito Hattori
勇仁 服部
Daisuke Kobayashi
大介 小林
Tatsuya Matsunami
辰哉 松波
Yuji Suzuki
裕二 鈴木
Yoshihiro Maekawa
佳大 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003151861A priority Critical patent/JP4321119B2/en
Publication of JP2004353755A publication Critical patent/JP2004353755A/en
Application granted granted Critical
Publication of JP4321119B2 publication Critical patent/JP4321119B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Transmissions By Endless Flexible Members (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To calculate an optimal shape of a circular arc groove in a block element for a no-end block belt which has a neck portion and a pair of saddle portions placed in both sides of the neck portion and in which a circular arc groove for reducing stress concentration is formed in a boundary between the neck portion and the saddle portion in terms of improving the durability of the block element. <P>SOLUTION: The ratio of the depth from the position corresponding to a saddle top face and the radius of a circular arc of the circular arc groove for reducing stress concentration formed in the boundary between the neck portion and the saddle portion is set to such a value as to substantially equalize the stress at the position corresponding to the saddle top face and the stress at the bottom of the circular arc. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、無端ブロックベルトのブロック要素に係り、その首部とサドル部の境界に設けられた円弧溝に於ける応力集中に対するブロック要素の改良に係わる。
【0002】
【従来の技術】
首部とその両側に延在する一対のサドル部とを有するブロック要素の前記一対のサドル部上に一対の無端ベルトを担持さて無端ブロックベルトを構成し、かかる無端ブロックベルトを2つのV型プーリ対間に掛け渡して無段変速機を構成することが知られており、そのような無端ブロックベルトの基本的構成は、例えば下記の特許文献1に示されている。尚、この特許文献に記載の発明は、そのような無端ブロックベルトに於ける金属ベルトの引っ張り応力をベルトの幅方向に均一化し、その疲労に対する寿命の延長を図るものである。
【特許文献1】
特開2002−54689
【0003】
この種の無端ブロックベルトは、一般に添付の図5に示す如き構造を有している。図5は無端ブロックベルトの一例を隣接する2つのブロック要素の間にて無端ベルトを切断した状態にて示す図である。無端ブロックベルトは、多数が環をなすよう順に配列されたブロック要素10と一対の無端ベルト12とからなる。尚、図示の例では各無端ベルト12は2枚重ねの構造のものとなっている。各ブロック要素10は、頭部14と、首部16と、その両側に延在する一対のサドル部18とを有し、これらの一対のサドル部上に一対の無端ベルト12が担持され、サドル部18の両端20にて2つのV型プーリ対間に掛け渡されている。2つのV型プーリ対の一方のプーリの円錐状をなすベルト係合面の一部が22として示されている。
【0004】
かかる構造に於いて2つのV型プーリ対間に回転動力の伝達が行われると、プーリに係合中のブロック要素のサドル部には無端ベルトからの荷重がかかり、これによってその首部とサドル部の境界には両者間の角度を縮小しようとするような曲げモーメントが作用する。この場合、首部とサドル部の境界が鋭く切り込まれた隅部をなしていると、そこに高い応力集中が生ずるので、首部とサドル部の境界に応力集中緩和用の円弧溝24を設けることが行なわれている。かかる円弧溝は上記に特許文献1に於けるブロック要素にも設けられている。
【0005】
【発明が解決しようとする課題】
本発明は、かかるブロック要素の応力集中緩和用円弧溝について、ブロック要素の耐久性の向上の観点からその最適形状を求めることを課題としている。
【0006】
【課題を解決するための手段】
かかる課題を解決するものとして、本発明は、首部とその両側に延在する一対のサドル部とを有し、前記一対のサドル部上に一対の無端ベルトを担持して無端ブロックベルトを構成するブロック要素にして、前記首部と前記サドル部との境界に形成された応力集中緩和用円弧溝のサドル頂面に対する深さと円弧半径の比が該円弧溝のサドル頂面対応位置に於ける応力と該円弧溝の底に於ける応力とを実質的に等しくする値とされていることを特徴とするブロック要素を提案するものである。
【0007】
この場合、更に、前記円弧溝の底に対応する部位にてブロック要素の下縁輪郭を局部的に張り出させることにより前記比に対する前記円弧溝の底に於ける応力を下げ、前記サドル頂面対応位置に於ける応力と前記円弧溝の底に於ける応力とが互いに実質的に等しくなるときの該応力の値が下げられてよい。
【0008】
特に前記比は0.3〜0.75の範囲の値とされてよく、また前記円弧溝の半径は0.5〜1.5mmの範囲とされてよい。
【0009】
【発明の作用及び効果】
一対のサドル部の両端にてプーリ対の円錐面上に着座したブロック要素のサドル部に無端ベルとから荷重がかかり、これによって首部とサドル部の間にその間の角度を縮小する方向のモーメントが作用するとき、首部とサドル部の境界に高い応力集中が生ずることを回避するため、この境界に応力集中緩和用も円弧溝24が形成されるのであるが、この場合更にかかる円弧溝の各部に於ける応力についてみると、応力が高い箇所が2箇所あることが注目される。その一つは、図1に26にて示すサドル頂面に対応する位置の部分である。この部分には上記のモーメントによる応力が集中するが、それと同時に無端ブロックベルトの端が接触することがあり、特に強度上注意を要する。他の一つは、円弧溝24の底部28である。ここにも上記のモーメントによる応力が集中する。そして更に、円弧溝のサドル頂面対応位置26に於ける応力と円弧溝の底部28に於ける応力とでは、円弧溝のサドル頂面に対する深さと半径の比の大小に対してその増減の方向が互いに逆であることが注目される。
【0010】
即ち、円弧溝のサドル頂面対応位置26に於ける応力についてみると、その値は円弧溝のサドル頂面に対する深さDが小さく半径Rが大きい程大きくなり、従ってサドル頂面対応位置26に於ける応力は概して深さDと半径Rの比D/Rの減小に伴って増大する。これに対し円弧溝の底28に於ける応力は、深さDが大きく半径Rが小さい程大きくなり、従って円弧溝の底28に於ける応力は、比D/Rの増大に伴って増大する。
【0011】
そこで、もしサドル頂面対応位置26に於ける応力と底28に於ける応力の関係を比D/Rの調整により最適化することができれば、かかる応力集中緩和用円弧溝による首部とサドル部の境界に於ける応力集中の緩和効果を最大限に引き出すことができると考えられる。この考えに基づいて本件発明者らが行った実験結果が図2に示されている。
【0012】
図2のグラフは、比D/Rの変化に対するサドル頂面対応位置26に於ける応力と底28に於ける応力の変化を互いに対比させて示すものであり、白三角(△)がサドル頂面対応位置26に於ける応力を、また黒丸(●)が底28に於ける応力を示す。尚、両者の値はいずれも各D/Rの値に対応するサドル頂面対応位置26または底28に於ける応力σを、D/R=1のときの底28に於ける応力の値であるσD/R=1に対する比として示している。このようにD/Rの変化に対しサドル頂面対応位置26に於ける応力が呈する変化の方向と底28に於ける応力が呈する変化の方向とは互いに逆であり、また両者の変化を表す曲線は互いに交差する。これは、サドル頂面対応位置26に於ける応力がD/Rの増大に伴って低下する過程にて、また底28に於ける応力がD/Rの増大に伴って増大の過程にて両者が互いに等しくなるD/Rの値が存在することを意味する。図示の結果よりD/Rの値は0.3〜0.75程度の範囲とされればよく、特に0.5近辺が最も好ましいことがわかる。尚、Rの値としては、0.5〜1.5mmが適している。
【0013】
そこで、首部とサドル部との境界に形成された応力集中緩和用円弧溝のサドル頂面に対する深さDと半径Rの比D/Rがサドル頂面対応位置26に於ける応力と円弧溝の底28に於ける応力とを実質的に等しくする値とされれば、応力集中緩和用円弧溝に於いて更に応力集中が生ずる2箇所の応力を均等化し、首部とサドル部との境界に於ける応力集中を低減するための円弧溝の有効性をより一層高めることができる。
【0014】
更にまた、円弧溝の底28に於ける応力は、円弧溝の底に対応する部位に於けるブロック要素の厚さ(図5に於ける寸法B)を増大させることにより減小させることができると思われるので、円弧溝の底に対応する部位にてブロック要素の下縁輪郭を局部的に張り出させれば、図2のグラフに於ける円弧溝の底に於ける応力の曲線を同グラフに破線にて示す如く変化させ、これによってサドル頂面対応位置26に対する曲線と底28に対する曲線とが交わる点に於けるσの値をさらにΔσだけ下げることができる。
【0015】
【発明の実施の形態】
図3は本発明によるサドル部の一つの実施の形態を図5に示す従来例に倣って示す図である。図3に於いては、図5にて従来例として説明した部分に対応する部分には図5に於けると同じ符号を付し、これらの部分についての改めての説明は明細書の冗長化を避けるため省略する。図3に示す如く、本発明によれば、応力集中緩和用円弧溝24は、図2を参照して上に説明した本発明の作用及び効果を発揮すべく、上記の比D/Rが略0.5となるように形成されている。
【0016】
図4は、更に円弧溝の底に対応する部位にてブロック要素の下縁輪郭を局部的に張り出させることにより前記比に対する円弧溝の底に於ける応力を下げ、即ち図2に於ける黒丸を繋げた線を破線の如くずらせることにより、サドル頂面対応位置に於ける応力と円弧溝の底に於ける応力とが互いに実質的に等しくなるときの該応力の値を下げる実施の形態を図3の実施の形態に倣って示す図3と同様の図である。図4に於いても、図3に示した部分に対応する部分には図3に於けると同じ符号を付し、これらの部分についての改めての説明は省略する。尚、この場合、サドル頂面対応位置に於ける応力が図2に示す例に於ける如く或るD/Rの値に対して最小値を呈するような場合には、円弧溝の底の応力に対する応力線がサドル頂面対応位置に於ける応力線を丁度その最小値の位置にて横切るよう、円弧溝の底に対応する部位にてブロック要素の下縁輪郭を局部的にΔBだけ張り出させる度合を調節すればよい。
【0017】
以上に於いては本発明を一つの実施の形態とその一部についての変更による他の一つの実施が形態について詳細に説明したが、これらの実施の形態について本発明の範囲内にて種々の変更が可能であることは当業者にとって明らかであろう。
【図面の簡単な説明】
【図1】ブロック要素の首部とサドル部との境界に形成された応力集中緩和用円弧溝のサドル頂面対応位置に対する深さと円弧半径の間の相対関係の変化を示す円弧溝周りの概略断面図。
【図2】応力集中緩和用円弧溝のサドル頂面対応位置に於ける応力(△)と円弧溝の底に於ける応力(●)との対比をサドル頂面対応位置に対する深さと半径の比D/Rの変化に対して示すグラフ。
【図3】本発明によるブロック要素の一つの実施の形態を無端ブロックベルトの隣接する2つのブロック要素の間にて無端ベルトを切断した状態にて示す図。
【図4】図3に示すブロック要素の一部を更に変更した本発明によるプロック要素の他の一つの実施の形態を示す図3と同様の図。
【図5】従来のブロック要素の典型的な一例を無端ブロックベルトの隣接する2つのブロック要素の間にて無端ベルトを切断した状態にて示す図。
【符号の説明】
10…ブロック要素、12…無端ベルト、14…頭部、16…首部、18…サドル部、20…サドル部の両端、22…プーリの円錐状ベルト係合面、24…円弧溝、26…サドル頂面対応位置、28…円弧溝の底部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a block element of an endless block belt, and to an improvement of the block element against stress concentration in an arc groove provided at a boundary between a neck portion and a saddle portion.
[0002]
[Prior art]
A pair of endless belts is carried on the pair of saddle portions of the block element having a neck portion and a pair of saddle portions extending on both sides thereof to form an endless block belt, and the endless block belt is connected to two V-shaped pulley pairs. It is known to form a continuously variable transmission by bridging between the belts. A basic configuration of such an endless block belt is disclosed in, for example, Patent Document 1 below. The invention described in this patent document aims to make the tensile stress of the metal belt in such an endless block belt uniform in the width direction of the belt, thereby extending the life of the belt against fatigue.
[Patent Document 1]
JP-A-2002-54689
[0003]
An endless block belt of this type generally has a structure as shown in FIG. FIG. 5 is a view showing an example of an endless block belt in a state where the endless belt is cut between two adjacent block elements. The endless block belt includes a block element 10 and a pair of endless belts 12 arranged in order so that a large number forms a ring. In the illustrated example, each endless belt 12 has a two-layer structure. Each block element 10 has a head portion 14, a neck portion 16, and a pair of saddle portions 18 extending on both sides thereof. A pair of endless belts 12 are carried on the pair of saddle portions, and the saddle portion At both ends 20 of 18, it is stretched between two V-shaped pulley pairs. A portion of the conical belt engaging surface of one pulley of the two V-shaped pulley pairs is shown as 22.
[0004]
When rotational power is transmitted between the two V-shaped pulley pairs in such a structure, a load from the endless belt is applied to the saddle portion of the block element engaged with the pulley, whereby the neck portion and the saddle portion are A bending moment acts to reduce the angle between the two. In this case, if the boundary between the neck portion and the saddle portion forms a sharply cut corner, high stress concentration occurs there. Therefore, it is necessary to provide an arc groove 24 for reducing stress concentration at the boundary between the neck portion and the saddle portion. Is being done. Such an arc groove is also provided in the block element in Patent Document 1 described above.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to determine the optimum shape of the arc groove for reducing stress concentration of the block element from the viewpoint of improving the durability of the block element.
[0006]
[Means for Solving the Problems]
In order to solve this problem, the present invention comprises a neck portion and a pair of saddle portions extending on both sides thereof, and a pair of endless belts is carried on the pair of saddle portions to constitute an endless block belt. As a block element, the ratio of the depth of the arc groove for stress concentration formed at the boundary between the neck portion and the saddle portion to the saddle top surface and the arc radius is the stress at the position corresponding to the saddle top surface of the arc groove. The present invention proposes a block element characterized in that the stress at the bottom of the arc groove is made substantially equal.
[0007]
In this case, the stress at the bottom of the arc groove with respect to the ratio is further reduced by locally projecting the lower edge contour of the block element at a position corresponding to the bottom of the arc groove, and the saddle top surface When the stress at the corresponding location and the stress at the bottom of the arc groove are substantially equal to each other, the value of the stress may be reduced.
[0008]
In particular, the ratio may be in the range of 0.3 to 0.75, and the radius of the arc groove may be in the range of 0.5 to 1.5 mm.
[0009]
Function and effect of the present invention
A load is applied to the saddle part of the block element seated on the conical surface of the pair of pulleys at both ends of the pair of saddle parts from the endless bell, and as a result, a moment in the direction of reducing the angle between the neck part and the saddle part is reduced. In order to avoid high stress concentration at the boundary between the neck portion and the saddle portion during operation, an arc groove 24 is also formed at this boundary to relieve stress concentration. It is noted that there are two places where the stress is high when looking at the stress at the point. One of them is a position corresponding to the top surface of the saddle indicated by reference numeral 26 in FIG. The stress due to the above moment concentrates in this portion, but at the same time, the end of the endless block belt may come into contact with the portion, so that special attention is required in terms of strength. The other is the bottom 28 of the arc groove 24. Here, the stress due to the above moment is concentrated. Further, the stress at the position 26 corresponding to the saddle top surface of the arc groove and the stress at the bottom portion 28 of the arc groove indicate the direction of increase / decrease with respect to the magnitude of the ratio of the depth to the radius of the arc groove relative to the top surface of the saddle. Are noted to be opposite to each other.
[0010]
That is, regarding the stress at the saddle top surface corresponding position 26 of the circular groove, the value becomes larger as the depth D of the circular groove with respect to the saddle top surface becomes smaller and the radius R becomes larger. The stress at the surface generally increases with decreasing ratio D / R of depth D to radius R. On the other hand, the stress at the bottom 28 of the arc groove increases as the depth D increases and the radius R decreases, so that the stress at the bottom 28 of the arc groove increases with an increase in the ratio D / R. .
[0011]
Therefore, if the relationship between the stress at the saddle top surface corresponding position 26 and the stress at the bottom 28 can be optimized by adjusting the ratio D / R, the neck and saddle portions are formed by the stress concentration relief arc grooves. It is considered that the effect of alleviating stress concentration at the boundary can be maximized. FIG. 2 shows the results of experiments performed by the present inventors based on this idea.
[0012]
The graph of FIG. 2 shows the stress at the saddle top surface corresponding position 26 and the stress at the bottom 28 with respect to the change in the ratio D / R in comparison with each other. The stress at the surface corresponding position 26 and the stress at the bottom 28 are indicated by black circles (•). Both values are the stress σ at the saddle top surface corresponding position 26 or the bottom 28 corresponding to each D / R value, and the stress value at the bottom 28 when D / R = 1. It is shown as a ratio for a certain σ D / R = 1 . As described above, the direction of the change in the stress at the saddle top surface corresponding position 26 and the direction of the change in the stress at the bottom 28 with respect to the change in the D / R are opposite to each other, and represent both changes. The curves intersect each other. This is because the stress at the saddle top surface corresponding position 26 decreases as the D / R increases and the stress at the bottom 28 increases as the D / R increases. Mean that there are D / R values that are equal to each other. From the results shown in the figure, it is understood that the value of D / R may be in the range of about 0.3 to 0.75, and it is particularly preferable that the value is around 0.5. Incidentally, the value of R is preferably 0.5 to 1.5 mm.
[0013]
Thus, the ratio D / R of the depth D to the radius R of the arc groove for stress concentration formed at the boundary between the neck portion and the saddle portion with respect to the saddle top surface and the ratio of the stress at the saddle top surface corresponding position 26 to the stress at the saddle top surface 26 are determined. If the stress at the bottom 28 is made substantially equal, two stresses at which stress is further concentrated in the arc groove for relieving stress concentration are equalized, and the stress is reduced at the boundary between the neck portion and the saddle portion. Thus, the effectiveness of the arc groove for reducing the stress concentration in the groove can be further enhanced.
[0014]
Furthermore, the stress at the bottom 28 of the arc groove can be reduced by increasing the thickness of the block element (dimension B in FIG. 5) at the location corresponding to the bottom of the arc groove. Therefore, if the lower edge contour of the block element is locally protruded at a portion corresponding to the bottom of the arc groove, the curve of the stress at the bottom of the arc groove in the graph of FIG. By changing the curve as shown by the broken line in the graph, the value of σ at the point where the curve for the saddle top surface corresponding position 26 and the curve for the bottom 28 intersect can be further reduced by Δσ.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 3 is a view showing one embodiment of a saddle section according to the present invention, following the conventional example shown in FIG. In FIG. 3, portions corresponding to those described as a conventional example in FIG. 5 are denoted by the same reference numerals as those in FIG. 5, and a renewed description of these portions will be described with reference to redundancy of the specification. Omitted to avoid. As shown in FIG. 3, according to the present invention, the arc groove 24 for relieving stress concentration has the above-mentioned ratio D / R substantially in order to exhibit the function and effect of the present invention described above with reference to FIG. It is formed to be 0.5.
[0016]
FIG. 4 further reduces the stress at the bottom of the arc groove relative to said ratio by locally extending the lower edge profile of the block element at a location corresponding to the bottom of the arc groove, ie, FIG. By shifting the line connecting the black circles as a broken line, the stress at the position corresponding to the top surface of the saddle and the stress at the bottom of the arc groove become substantially equal to each other to reduce the value of the stress. FIG. 4 is a view similar to FIG. 3, showing an embodiment according to the embodiment of FIG. In FIG. 4 as well, portions corresponding to the portions shown in FIG. 3 are denoted by the same reference numerals as in FIG. 3, and the description of these portions will not be repeated. In this case, if the stress at the position corresponding to the top surface of the saddle has a minimum value for a certain D / R value as in the example shown in FIG. In the area corresponding to the bottom of the arc groove, the lower edge contour of the block element is locally extended by ΔB so that the stress line corresponding to the cross section of the stress line at the top surface of the saddle just crosses the stress line at the minimum value. What is necessary is just to adjust the degree to make it.
[0017]
In the above, the present invention has been described in detail with respect to one embodiment and another embodiment by changing a part of the embodiment. However, various changes may be made to these embodiments within the scope of the present invention. Variations will be apparent to those skilled in the art.
[Brief description of the drawings]
FIG. 1 is a schematic cross-section around an arc groove showing a change in a relative relationship between a depth and an arc radius of a circular arc groove for stress concentration formed at a boundary between a neck portion and a saddle portion of a block element with respect to a saddle top surface corresponding position; FIG.
FIG. 2 shows a comparison between the stress (△) at the position corresponding to the saddle top surface of the arc groove for stress concentration relaxation and the stress (●) at the bottom of the arc groove, and the ratio of depth and radius to the position corresponding to the saddle top surface. 4 is a graph showing changes in D / R.
FIG. 3 shows an embodiment of a block element according to the invention, with the endless belt cut between two adjacent block elements of the endless block belt.
FIG. 4 is a view similar to FIG. 3 showing another embodiment of the block element according to the present invention in which a part of the block element shown in FIG. 3 is further modified;
FIG. 5 is a view showing a typical example of a conventional block element in a state where an endless belt is cut between two adjacent block elements of an endless block belt.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Block element, 12 ... Endless belt, 14 ... Head, 16 ... Neck, 18 ... Saddle part, 20 ... Both ends of saddle part, 22 ... Conical belt engagement surface of pulley, 24 ... Arc groove, 26 ... Saddle Top surface corresponding position, 28 ... Bottom of arc groove

Claims (4)

首部とその両側に延在する一対のサドル部とを有し、前記一対のサドル部上に一対の無端ベルトを担持して無端ブロックベルトを構成するブロック要素にして、前記首部と前記サドル部との境界に形成された応力集中緩和用円弧溝のサドル頂面に対する深さと円弧半径の比が該円弧溝のサドル頂面対応位置に於ける応力と該円弧溝の底に於ける応力とを実質的に等しくする値とされていることを特徴とするブロック要素。A neck element and a pair of saddle portions extending on both sides thereof, and a block element that carries a pair of endless belts on the pair of saddle portions to form an endless block belt, the neck portion and the saddle portion. The ratio of the depth to the saddle top surface of the arc groove for stress concentration formed at the boundary of the arc and the radius of the arc is substantially the stress at the position corresponding to the saddle top surface of the arc groove and the stress at the bottom of the arc groove. A block element characterized in that the value is set to be equal to each other. 前記円弧溝の底に対応する部位にてブロック要素の下縁輪郭を局部的に張り出させることにより前記比に対する前記円弧溝の底に於ける応力を下げ、前記サドル頂面対応位置に於ける応力と前記円弧溝の底に於ける応力とが互いに実質的に等しくなるときの該応力の値が下げられていることを特徴とする請求項1に記載のブロック要素。By locally projecting the lower edge contour of the block element at a position corresponding to the bottom of the arc groove, the stress at the bottom of the arc groove with respect to the ratio is reduced, and at the position corresponding to the saddle top surface. 2. The block element according to claim 1, wherein the value of the stress when the stress and the stress at the bottom of the arc groove are substantially equal to each other is reduced. 前記比は0.3〜0.75の範囲の値とされることを特徴とする請求項1または2に記載のブロック要素。The block element according to claim 1, wherein the ratio is a value in a range of 0.3 to 0.75. 前記円弧溝の半径は0.5〜1.5mmの範囲とされることを特徴とする請求項1〜3のいずれかに記載のブロック要素。The block element according to any one of claims 1 to 3, wherein a radius of the arc groove is in a range of 0.5 to 1.5 mm.
JP2003151861A 2003-05-29 2003-05-29 Block element with optimized arc groove for stress concentration relaxation Expired - Fee Related JP4321119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003151861A JP4321119B2 (en) 2003-05-29 2003-05-29 Block element with optimized arc groove for stress concentration relaxation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003151861A JP4321119B2 (en) 2003-05-29 2003-05-29 Block element with optimized arc groove for stress concentration relaxation

Publications (2)

Publication Number Publication Date
JP2004353755A true JP2004353755A (en) 2004-12-16
JP4321119B2 JP4321119B2 (en) 2009-08-26

Family

ID=34047230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003151861A Expired - Fee Related JP4321119B2 (en) 2003-05-29 2003-05-29 Block element with optimized arc groove for stress concentration relaxation

Country Status (1)

Country Link
JP (1) JP4321119B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1032506C2 (en) 2006-09-15 2008-03-18 Bosch Gmbh Robert Transverse element for a drive belt for a continuously variable transmission.
JP2016148409A (en) * 2015-02-12 2016-08-18 本田技研工業株式会社 Element for metal belt of continuously variable transmission

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254343U (en) * 1985-09-25 1987-04-04
JPS62131143U (en) * 1986-02-12 1987-08-19
JP2000055136A (en) * 1998-06-05 2000-02-22 Honda Motor Co Ltd Metallic v-belt
JP2002168306A (en) * 2000-11-30 2002-06-14 Mitsubishi Motors Corp Element for continuously variable transmission belt and continuously variable transmission belt
JP2002168305A (en) * 2000-11-30 2002-06-14 Mitsubishi Motors Corp Element for continuously variable transmission belt and continuously variable transmission belt
JP2002286099A (en) * 2001-03-26 2002-10-03 Nissan Motor Co Ltd Belt for continuously variable transmission
JP2003004102A (en) * 2000-06-21 2003-01-08 Van Doornes Transmissie Bv Driving belt and cross member for driving belt
JP2003056649A (en) * 2001-08-10 2003-02-26 Honda Motor Co Ltd Belt for continuously variable transmission
JP2003269546A (en) * 2002-03-18 2003-09-25 Toyota Motor Corp Endless metal belt

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254343U (en) * 1985-09-25 1987-04-04
JPS62131143U (en) * 1986-02-12 1987-08-19
JP2000055136A (en) * 1998-06-05 2000-02-22 Honda Motor Co Ltd Metallic v-belt
JP2003004102A (en) * 2000-06-21 2003-01-08 Van Doornes Transmissie Bv Driving belt and cross member for driving belt
JP2002168306A (en) * 2000-11-30 2002-06-14 Mitsubishi Motors Corp Element for continuously variable transmission belt and continuously variable transmission belt
JP2002168305A (en) * 2000-11-30 2002-06-14 Mitsubishi Motors Corp Element for continuously variable transmission belt and continuously variable transmission belt
JP2002286099A (en) * 2001-03-26 2002-10-03 Nissan Motor Co Ltd Belt for continuously variable transmission
JP2003056649A (en) * 2001-08-10 2003-02-26 Honda Motor Co Ltd Belt for continuously variable transmission
JP2003269546A (en) * 2002-03-18 2003-09-25 Toyota Motor Corp Endless metal belt

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1032506C2 (en) 2006-09-15 2008-03-18 Bosch Gmbh Robert Transverse element for a drive belt for a continuously variable transmission.
WO2008031713A1 (en) 2006-09-15 2008-03-20 Robert Bosch Gmbh Transverse element for a drive belt for a continuously variable transmission
US8047939B2 (en) 2006-09-15 2011-11-01 Robert Bosch Gmbh Transverse element for a drive belt for a continuously variable transmission
JP2016148409A (en) * 2015-02-12 2016-08-18 本田技研工業株式会社 Element for metal belt of continuously variable transmission
CN105889414A (en) * 2015-02-12 2016-08-24 本田技研工业株式会社 Component for metal belt of continuously variable transmission

Also Published As

Publication number Publication date
JP4321119B2 (en) 2009-08-26

Similar Documents

Publication Publication Date Title
JP4530710B2 (en) Power transmission chain
EP0833078B1 (en) Roller chain link plate profile
KR20000070000A (en) Dual-sided poly-v drive belt and pulley therefor
KR101785746B1 (en) Push belt for a continuously variable transmission, comprising different types of transverse elements
JPH11236950A (en) Back surface drive type silent chain
JP3529832B2 (en) Multi-rib transmission belt with oblique grooves
JP5072969B2 (en) Transverse element for continuously variable transmission drive belt
EP1050697B1 (en) Power transmission chain having links with lateral spacing elements
JP2857083B2 (en) V belt for high load transmission
JP2004353755A (en) Block element with optimized circular arc groove for reducing stress concentration
EP0349434B1 (en) Grooved power transmission belt
JPH1067417A (en) Non-round steel bar chain, drive device and chain wheel therefor
JP4838142B2 (en) The structure of the cored bar less crawler
US20050003917A1 (en) Belt for continuously variable transmission
JP2007509295A (en) Ribbed belt for power transmission
JP3975791B2 (en) Endless metal belt
WO2007078189A1 (en) Drive belt and transverse element for drive belt
JPH05312238A (en) Silent chain
JP2004150570A (en) Block element crowning matching type endless block belt
JP4216214B2 (en) Assembled V-belt
JP2000310294A (en) V belt
JPH07151192A (en) Chain for power transmission
JP2008116013A (en) Cvt element
JPH06288440A (en) V-belt
JP2008144825A (en) Power transmission chain and power transmission device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090525

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees