【0001】
【発明の属する技術分野】
本発明は、外方部材及び内方部材の材料が金属とされ、転動体の材料が窒化けい素セラミックとされた転動装置に関する。
【0002】
【従来の技術】
特に高速で回転する軸受については、転動体を窒化けい素製とし、外・内輪の材料である金属との焼付き性を改善させることが行われている。また、転動体を窒化けい素にすると、該窒化けい素の熱膨張係数が外・内輪の金属材料よりも小さいため、軸受が発熱した場合でも軸受の内部すきまを確保できる。さらに、窒化けい素は金属材料に比べて密度が軽いため、軸受が高速で回転した場合でも転動体に発生する遠心力が小さい。すなわち、軸受が高速回転しても転動体と外輪軌道面での接触面圧の増加が少なく、軸受回転寿命の短期化や軌道面損傷を助長する虞れがない。
【0003】
また、ビデオテープレコーダ(VTR)やハードディスクドライブ(HDD)等の情報記録装置は、近年小型化が進む一方で、再現画像の繊細さ、情報記録容量の高密度化が望まれ、ビデオヘッドシリンダやHDDスピンドルの主軸に使用される軸受にも小径化、高速回転化、低トルク化、高回転精度化の要求がますます厳しくなる傾向にある。
【0004】
軸受として、低トルク化、高回転精度化を実現するためには、これに封入されるグリースの粘度を下げたり、封入量を減少させるといった対策が採られる場合が多い。
しかし、これらの対策は一方で内・外輪と転動体間の潤滑油膜形成を阻害する場合があり、振動による油膜切れによって生じるフレッチングや、微小焼付きによる音響寿命劣化を生じやすくなる。
そこで、従来、低トルク化、高回転精度化等が要求される軸受には、軸受鋼よりも耐焼付き性に優れ、回転寿命の長い窒化けい素を転動体とした所謂ハイブリッド型玉軸受が用いられている。
【0005】
また、パソコン等に内臓されているCPU冷却用のファンモータや、プロジェクタのランプ冷却用ファンモータなど、各種ファンモータの主軸を支持する軸受では、軸受のトルク減少(モータの省電力化)の目的で軸受の油分の少量化、低粘度化が進むと、軸受の潤滑条件が厳しくなる。このため、窒化けい素に代表されるセラミック玉を転動体に用い、内部の微小焼付きを改善した軸受が提案されている(例えば特許文献1〜3参照)。
さらに、グリース、防錆油などの油分を使用できない真空環境で用いられる軸受では、外・内輪をステンレス鋼、転動体を窒化けい素としたハイブリッド軸受が使用され、水中や、水の飛沫がかかる様な用途でも同様に、ステンレス鋼と窒化けい素の組合せ軸受が使用され、焼付き性の改善が図られている。
【0006】
【特許文献1】
特開平11−185370号公報
【特許文献2】
特開平11−223220号公報
【特許文献3】
特開2000−184652号公報
【0007】
【発明が解決しようとする課題】
しかし、同一荷重下で、外方部材、内方部材および転動体が全て金属材料とされた一般軸受と、転動体のみが窒化けい素とされたハイブリッド軸受とを使用した場合、ハイブリッド軸受では一般軸受に比較して転動体と外・内方部材の接触面の最大面圧が高くなり、特に静定格荷重の面で一般軸受に比較して不利になる場合がある。
【0008】
転がり軸受が過大な荷重を受けたり、瞬間的に大きな衝撃荷重を受けると、転動体と軌道面との間に、局部的な永久変形を生じ、この変形量は、荷重が大きくなるに従って大きくなり、ある限度を超えると軸受の円滑な回転を妨げる原因になる。この荷重の限度を知る目安としで一般的な軸受では、最大応力を受けている転動体と軌道面との接触部において4.2GPaの接触面圧を生じるような荷重を基本静定格荷重として定義している。ここで、接触面圧は荷重と同時に材料の剛性に影響される。従って、剛性の高い素材を転動体材料として用いると、低い荷重でも接触面圧が増大するため、基本静定格荷重は低くなる。すなわち、転動体と軌道面との間に変形を生じ易くなる。
【0009】
軸受を組み付ける場合や、組付け後に軸受が支持している主軸が何かにぶつかるなどして衝撃荷重が加わった場合に、実際の軸受動作荷重よりも過大な荷重が軸受へ負荷されることがある。また、HDDやファンモータなどの小型デバイスに組み込まれた軸受では、デバイスが不意に落下した場合などに受けた衝撃荷重により軸受の軌道面に圧痕(永久変形)を生じ、これがその後の回転音響を阻害する場合がある。
本発明はこのような不都合を解消するためになされたものであり、セラミック材料の耐焼付き性のメリットを維持しつつ、過大な衝撃荷重や静荷重に対しても耐性の高い転動装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するために、請求項1に係る発明は、外方部材と内方部材との間に転動体が配設され、前記外方部材及び前記内方部材が金属材料とされると共に、前記転動体が窒化けい素セラミック材料とされた転動装置において、
前記転動体の材料であるセラミックの気孔率が5%以上、20%以下であることを特徴とする。
【0011】
請求項2に係る発明は、請求項1において、前記セラミック製転動体の表面に観察される最大空孔サイズが50μm以下であることを特徴とする。
窒化けい素は、気孔率を上げると剛性が低下し、ヤング率が減少することが知られている。ここで上記の課題の原因が、転動体と軌道面の接触面圧の増大にあることから、転動体素材のヤング率を減少させることで対策が可能であると考えられるが、極端な気孔率の増加は転動体強度の低下や、表面空孔欠陥の増加を引き起こし、軸受機能へ悪影響を及ぼす可能性がある。
【0012】
そこで、本発明では、軸受機能へ悪影響を及ぼすことなく、衝撃荷重や静荷重に対して効果的な対策となる気孔率の範囲を調査した。
転動体の材料であるセラミックの気孔率を5%以上にすることによって、軸受の耐衝撃性の向上効果が確認できるが、気孔率が20%を超えるとそれ以上の改善効果は確認されず、逆に転動体の強度低下や表面空孔の増加による軸受機能への悪影響が発生する虞れがある。
また、気孔率を増加させることにより転動体表面へ発生する空孔は、転動体の表面はく離の起点となる。そのため、表面に存在する空孔の最大サイズは50μm以下、好ましくは25μm以下とする。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態の一例を図を参照して説明する。図1は本発明に係る転動装置の実施の形態の一例である深溝玉軸受を説明するための断面図、図2は静負荷試験機の概略図、図3は音響増加率と気孔率との関係を示すグラフ図、図4は転がり軸受試験機の概略図、図5は転がり軸受試験の結果を示すグラフ図である。
【0014】
図1に示すように、本発明に係る転動装置の実施の形態の一例である深溝玉軸受(#695軸受:外径φ13mm、内径φ5mm、転動体径φ2mm)1は、外輪2と内輪3の間に複数の転動体4が保持器5を介して円周方向等配に配置され、外輪2および内輪3は軸受鋼やステンレス鋼等の金属材料とされると共に、転動体4は窒化けい素セラミック材料とされている。また、保持器5は、ナイロン製の冠型保持器を用いているが、これに限らず、適宜周知の保持器材料、構造を採用してもよい。
転動体の材料であるセラミックの気孔率およびセラミック製転動体の表面に観察される最大空孔サイズが互いに異なる複数種の供試転動体(実施例1〜3、比較例1〜3)を作成した。
表1に各供試転動体の気孔率および最大空孔サイズを示す。
【0015】
【表1】
【0016】
各供試転動体は、焼結助剤として、アルミナとイットリアを含む窒化けい素原料に平均粒径80μm程度の微粒有機パウダーを適量加え、焼結体の気孔率を変化させた。加工後、完成球の密度をアルキメデス法で測定して、気孔率を求め、狙いの気孔率に近い転動体を選別して評価サンプルとした。気孔率10%の実施例2については、上記微細粒で作成したものよりもサイズの大きい有機パウダーを添加し、表面空孔サイズを大きくした比較例3も作成した。最大空孔サイズの測定は、金属顕微鏡を用いて行った。
【0017】
なお、転動体の材料として用いる多孔質窒化けい素を得る方法としては、スラリー状にした窒化けい粉末に発泡剤を添加したものや、窒化けい素粉末に熱分解性の樹脂等を多量添加したものなどがある。例えば、特開平8−217567号公報には窒化けい素粉末とシリコンからなる混合物にアルカリ性水溶液を添加し、けい素(Si)を自己発泡させながら成形したものが開示されている。
【0018】
また、特開平11−116339号公報には、平均粒径5〜12μmのα型窒化けい素粉末の表面に酸化物焼成助剤ゾルをコーティングした原料が開示され、特開平7−265626号公報には、有機繊維を添加した窒化けい素原料粉末を焼成して多孔質窒化けい素を得る方法が開示されている。また、表面の空孔を微細化かつ均一化した多孔質窒化けい素として、窒化けい素原料粉末よりも大きな短径を持つ棒状のβ−窒化けい素単結晶を添加し焼成することによって素材内部の空孔を生成する方法が特許2744938号公報に開示されている。本発明では、任意の気孔率と、表面空孔サイズが満足できる方法であればいずれの方法を用いても構わない。
【0019】
次に、上記実施例1〜3および比較例1〜3の転動体を図2の静負荷試験機にて静荷重を負荷した後、回転音響を測定して軌道面への損傷程度を評価した。静負荷試験機は、軸受の外輪2と内輪3に間座6を取り付け、内輪3側の間座6を図示しないプッシュプルゲージにて規定荷重で押して外輪2と内輪3との間に応力を印加させた。荷重は500Nとし、印加時間は1分とした。その後、回転速度1800min−1で軸受音響を測定し、荷重負荷前に測定した音響値との比を求めた。
【0020】
測定した音響増加率と気孔率の関係を図3に示す。音響増加率の値は比較例1の値を1として表している。図3から、気孔率を5%以上とすることにより、音響増加率が著しく減少していることがわかる。すなわち、荷重に対する軸受機能への影響が少ないことを示している。
また、図4に示す転がり軸受試験機により、実施例2および比較例3について耐久テストを実施した。試験軸受は図1と同一構造の深溝玉軸受1を用い、この軸受1は、モータ12によって駆動されるシャフト13とハウジング14の間に2個組で取り付けられる。また、試験軸受には間座15、ばね16、ナット17によって軸方向の予圧が負荷されている。シャフト13はカップリング18によってモータ12と連結されている。耐久試験は、転動体4の寿命に関して実施し、外輪2、内輪3が破損した場合は外・内輪のみを交換して、転動体4が破損するまで実施した。
【0021】
試験結果を図5に示す。なお、回転時間は比較例3を1として示した。図5から明らかなように、実施例2は比較例3の3倍以上回転し、長期の耐久性が確認できた。また、比較例2は比較例3の約1.4倍の回転時間にとどまった。
このようにこの実施の形態では、外方部材及び内方部材が金属材料とされると共に、転動体が窒化けい素セラミック材料とされた転動装置において、転動体の材料であるセラミックの気孔率を5%以上、20%以下とし、好ましくはセラミック製転動体の表面に観察される最大空孔サイズを50μm以下とすることにより、耐衝撃性および静負荷容量が高く、かつ長期間の耐久性に優れた転動装置を得ることができる。
【0022】
なお、本発明は上記実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。
例えば、上記実施の形態では、深溝玉軸受に本発明を適用した場合を例に採ったが、これに限定されず、深溝玉軸受以外の転動装置に本発明を適用してもよいのは勿論である。
【0023】
【発明の効果】
上記の説明から明らかなように、本発明によれば、セラミック材料の耐焼付き性のメリットを維持しつつ、過大な衝撃荷重や静荷重に対しても耐性の高い転動装置を提供することができる。
【図面の簡単な説明】
【図1】本発明に係る転動装置の実施の形態の一例である深溝玉軸受を説明するための断面図である。
【図2】静負荷試験機の概略図である
【図3】音響増加率と気孔率との関係を示すグラフ図である。
【図4】転がり軸受試験機の概略図である
【図5】転がり軸受試験の結果を示すグラフ図である
【符号の説明】
1…深溝玉軸受(転動装置)
2…外輪(外方部材)
3…内輪(内方部材)
4…転動体[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a rolling device in which a material of an outer member and an inner member is metal and a material of a rolling element is silicon nitride ceramic.
[0002]
[Prior art]
Particularly for bearings that rotate at high speed, the rolling elements are made of silicon nitride to improve the seizure with metal as the material of the outer and inner rings. Further, when the rolling element is made of silicon nitride, the internal clearance of the bearing can be ensured even when the bearing generates heat because the thermal expansion coefficient of the silicon nitride is smaller than that of the metal material of the outer and inner rings. Furthermore, since silicon nitride has a lower density than a metal material, even when the bearing rotates at high speed, the centrifugal force generated in the rolling elements is small. That is, even if the bearing rotates at a high speed, the contact surface pressure between the rolling element and the outer raceway surface is not increased so much, and there is no possibility that the bearing rotation life is shortened or the raceway surface is damaged.
[0003]
In recent years, information recording devices such as video tape recorders (VTRs) and hard disk drives (HDDs) have been reduced in size in recent years, while delicate reproduced images and higher information recording capacities have been desired. The demand for smaller diameters, higher speed rotation, lower torque, and higher rotation accuracy in bearings used for the main spindle of HDD spindles is becoming more and more strict.
[0004]
In order to realize low torque and high rotational accuracy as a bearing, measures are often taken to reduce the viscosity of the grease enclosed therein or to reduce the amount of the enclosed grease.
However, these measures may, on the other hand, hinder the formation of a lubricating oil film between the inner / outer rings and the rolling elements, and are liable to cause fretting caused by vibration of the oil film due to vibration and deterioration of acoustic life due to minute seizure.
Therefore, conventionally, a so-called hybrid type ball bearing using silicon nitride as a rolling element, which is superior in seizure resistance and has a long rotating life, to a bearing requiring low torque, high rotational accuracy, etc. is used. Have been.
[0005]
Also, for bearings that support the main shaft of various fan motors, such as a CPU cooling fan motor built into a personal computer or a projector lamp cooling fan motor, the purpose is to reduce bearing torque (motor power saving). As the oil content and the viscosity of the bearing decrease, the lubrication conditions of the bearing become severe. For this reason, bearings have been proposed in which ceramic balls typified by silicon nitride are used as rolling elements and internal micro seizures are improved (for example, see Patent Documents 1 to 3).
Furthermore, for bearings used in vacuum environments where oils such as grease and rust preventive oil cannot be used, hybrid bearings are used in which the outer and inner rings are made of stainless steel and the rolling elements are made of silicon nitride. Similarly, in various applications, a combination bearing of stainless steel and silicon nitride is used to improve seizure.
[0006]
[Patent Document 1]
JP-A-11-185370 [Patent Document 2]
JP-A-11-223220 [Patent Document 3]
JP 2000-184652 A
[Problems to be solved by the invention]
However, under the same load, when using a general bearing in which the outer member, the inner member, and the rolling elements are all made of a metal material, and a hybrid bearing in which only the rolling elements are made of silicon nitride, a hybrid bearing generally uses The maximum surface pressure of the contact surface between the rolling element and the outer / inner member is higher than that of the bearing, and may be disadvantageous in comparison with general bearings particularly in terms of static rated load.
[0008]
If a rolling bearing receives an excessive load or an instantaneous large impact load, local permanent deformation occurs between the rolling element and the raceway surface, and this deformation increases as the load increases. However, exceeding a certain limit may hinder smooth rotation of the bearing. As a guide to know the limit of this load, in a general bearing, a load that generates a contact surface pressure of 4.2 GPa at the contact portion between the rolling element receiving the maximum stress and the raceway surface is defined as a basic static load rating. are doing. Here, the contact surface pressure is affected by the rigidity of the material simultaneously with the load. Therefore, when a material having high rigidity is used as the rolling element material, the contact surface pressure increases even with a low load, and the basic static load rating decreases. That is, deformation is easily generated between the rolling elements and the raceway surface.
[0009]
When an impact load is applied when mounting a bearing, or when the main shaft supported by the bearing collides with something after the mounting, an excessive load may be applied to the bearing. is there. In addition, in the case of a bearing incorporated in a small device such as an HDD or a fan motor, an impact load received when the device is unexpectedly dropped causes indentations (permanent deformation) on the raceway surface of the bearing. May inhibit.
The present invention has been made in order to solve such inconveniences, and provides a rolling device that is highly resistant to an excessive impact load and a static load while maintaining the seizure resistance of a ceramic material. The purpose is to do.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, according to the invention according to claim 1, a rolling element is provided between an outer member and an inner member, and the outer member and the inner member are made of a metal material. A rolling device in which the rolling element is made of a silicon nitride ceramic material;
The porosity of the ceramic material of the rolling element is 5% or more and 20% or less.
[0011]
The invention according to claim 2 is characterized in that, in claim 1, the maximum pore size observed on the surface of the ceramic rolling element is 50 μm or less.
It is known that when the porosity of silicon nitride is increased, the rigidity is reduced and the Young's modulus is reduced. Here, the cause of the above-mentioned problem is that the contact surface pressure between the rolling element and the raceway surface is increased, so it is thought that measures can be taken by reducing the Young's modulus of the rolling element material. Increase of the rolling element causes a decrease in rolling element strength and an increase in surface vacancy defects, which may adversely affect the bearing function.
[0012]
Therefore, in the present invention, the range of the porosity, which is an effective countermeasure against an impact load and a static load without adversely affecting the bearing function, was investigated.
By increasing the porosity of the ceramic material of the rolling elements to 5% or more, the effect of improving the impact resistance of the bearing can be confirmed. However, if the porosity exceeds 20%, no further improvement effect is confirmed. Conversely, there is a possibility that the strength of the rolling elements is reduced or the number of surface holes is increased, thereby adversely affecting the bearing function.
In addition, voids generated on the surface of the rolling element by increasing the porosity serve as a starting point of the surface peeling of the rolling element. Therefore, the maximum size of the pores existing on the surface is 50 μm or less, preferably 25 μm or less.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view for explaining a deep groove ball bearing which is an example of an embodiment of a rolling device according to the present invention, FIG. 2 is a schematic diagram of a static load tester, and FIG. FIG. 4 is a schematic diagram of a rolling bearing tester, and FIG. 5 is a graph diagram showing the results of a rolling bearing test.
[0014]
As shown in FIG. 1, a deep groove ball bearing (# 695 bearing: outer diameter φ13 mm, inner diameter φ5 mm, rolling element diameter φ2 mm) 1 which is an example of the embodiment of the rolling device according to the present invention includes an outer ring 2 and an inner ring 3. A plurality of rolling elements 4 are arranged at regular intervals in the circumferential direction via a retainer 5, the outer ring 2 and the inner ring 3 are made of a metal material such as bearing steel or stainless steel, and the rolling elements 4 are made of silicon nitride. Elementary ceramic material. Further, although the cage 5 uses a crown-shaped cage made of nylon, the invention is not limited thereto, and a well-known cage material and structure may be appropriately used.
A plurality of types of test rolling elements (Examples 1 to 3 and Comparative Examples 1 to 3) in which the porosity of ceramic as the material of the rolling elements and the maximum pore size observed on the surface of the ceramic rolling elements are different from each other are prepared. did.
Table 1 shows the porosity and the maximum pore size of each test rolling element.
[0015]
[Table 1]
[0016]
In each of the test rolling elements, an appropriate amount of fine organic powder having an average particle diameter of about 80 μm was added to a silicon nitride raw material containing alumina and yttria as a sintering aid to change the porosity of the sintered body. After the processing, the density of the finished sphere was measured by the Archimedes method to determine the porosity, and rolling elements close to the target porosity were selected and used as evaluation samples. In Example 2 having a porosity of 10%, an organic powder having a size larger than that of the fine particles was added, and Comparative Example 3 in which the surface pore size was increased was also prepared. The measurement of the maximum pore size was performed using a metallographic microscope.
[0017]
In addition, as a method of obtaining porous silicon nitride used as a material of the rolling element, a method in which a foaming agent is added to silicon nitride powder in a slurry state, or a large amount of a thermally decomposable resin or the like is added to silicon nitride powder. There are things. For example, Japanese Patent Application Laid-Open No. Hei 8-217567 discloses a method in which an alkaline aqueous solution is added to a mixture of silicon nitride powder and silicon and silicon (Si) is self-foamed and molded.
[0018]
Also, JP-A-11-116339 discloses a raw material in which the surface of an α-type silicon nitride powder having an average particle size of 5 to 12 μm is coated with an oxide sintering aid sol, and is disclosed in JP-A-7-265626. Discloses a method of firing porous silicon nitride raw material powder to which organic fibers are added to obtain porous silicon nitride. In addition, as a porous silicon nitride having fine and uniform pores on the surface, a rod-shaped β-silicon nitride single crystal having a minor axis larger than that of the silicon nitride raw material powder is added and fired. A method for generating voids is disclosed in Japanese Patent No. 2744438. In the present invention, any method may be used as long as the desired porosity and surface pore size can be satisfied.
[0019]
Next, after applying a static load to the rolling elements of Examples 1 to 3 and Comparative Examples 1 to 3 using the static load tester shown in FIG. 2, the degree of damage to the raceway surface was evaluated by measuring the rotating sound. . In the static load tester, a spacer 6 is attached to the outer ring 2 and the inner ring 3 of the bearing, and the spacer 6 on the inner ring 3 side is pressed with a specified load by a push-pull gauge (not shown) to apply a stress between the outer ring 2 and the inner ring 3. Was applied. The load was 500 N, and the application time was 1 minute. Thereafter, the bearing sound was measured at a rotational speed of 1800 min −1 , and the ratio to the sound value measured before the load was applied was determined.
[0020]
FIG. 3 shows the relationship between the measured sound increase rate and the porosity. The value of the sound increase rate represents the value of Comparative Example 1 as 1. From FIG. 3, it can be seen that the acoustic increase rate is significantly reduced by setting the porosity to 5% or more. That is, it shows that the load has little effect on the bearing function.
A durability test was performed on Example 2 and Comparative Example 3 using a rolling bearing tester shown in FIG. As the test bearing, a deep groove ball bearing 1 having the same structure as that of FIG. 1 is used. The bearing 1 is mounted in a pair between a shaft 13 driven by a motor 12 and a housing 14. An axial preload is applied to the test bearing by the spacer 15, the spring 16, and the nut 17. The shaft 13 is connected to the motor 12 by a coupling 18. The durability test was carried out with respect to the life of the rolling element 4, and when the outer ring 2 and the inner ring 3 were damaged, only the outer and inner rings were replaced until the rolling element 4 was damaged.
[0021]
The test results are shown in FIG. In addition, the rotation time was shown as 1 in Comparative Example 3. As is clear from FIG. 5, Example 2 rotated three times or more of Comparative Example 3, and long-term durability was confirmed. In Comparative Example 2, the rotation time was about 1.4 times that of Comparative Example 3.
As described above, in this embodiment, in the rolling device in which the outer member and the inner member are made of a metal material and the rolling members are made of a silicon nitride ceramic material, the porosity of the ceramic which is the material of the rolling members is 5% or more and 20% or less, and preferably, the maximum pore size observed on the surface of the ceramic rolling element is 50 μm or less, so that the impact resistance and the static load capacity are high and the long-term durability is obtained. And a rolling device with excellent performance can be obtained.
[0022]
Note that the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist of the present invention.
For example, in the above embodiment, the case where the present invention is applied to a deep groove ball bearing is taken as an example.However, the present invention is not limited to this, and the present invention may be applied to a rolling device other than a deep groove ball bearing. Of course.
[0023]
【The invention's effect】
As is apparent from the above description, according to the present invention, it is possible to provide a rolling device that is highly resistant to excessive impact loads and static loads while maintaining the seizure resistance of ceramic materials. it can.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view for explaining a deep groove ball bearing which is an example of an embodiment of a rolling device according to the present invention.
FIG. 2 is a schematic diagram of a static load tester. FIG. 3 is a graph showing a relationship between a sound increase rate and a porosity.
FIG. 4 is a schematic view of a rolling bearing tester. FIG. 5 is a graph showing the results of a rolling bearing test.
1: Deep groove ball bearing (rolling device)
2 ... Outer ring (outer member)
3 ... Inner ring (inner member)
4 ... rolling element