JP2004353531A - Knock control device of internal combustion engine - Google Patents

Knock control device of internal combustion engine Download PDF

Info

Publication number
JP2004353531A
JP2004353531A JP2003151162A JP2003151162A JP2004353531A JP 2004353531 A JP2004353531 A JP 2004353531A JP 2003151162 A JP2003151162 A JP 2003151162A JP 2003151162 A JP2003151162 A JP 2003151162A JP 2004353531 A JP2004353531 A JP 2004353531A
Authority
JP
Japan
Prior art keywords
knock
waveform
internal combustion
combustion engine
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003151162A
Other languages
Japanese (ja)
Other versions
JP4297734B2 (en
Inventor
Yuichi Takemura
優一 竹村
Masaomi Inoue
正臣 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003151162A priority Critical patent/JP4297734B2/en
Publication of JP2004353531A publication Critical patent/JP2004353531A/en
Application granted granted Critical
Publication of JP4297734B2 publication Critical patent/JP4297734B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a knock control device of an internal combustion engine which is capable of correctly determining presence/absence of knock occurrence, and adequately controlling the running state of the internal combustion engine. <P>SOLUTION: The vibration waveform signal from a knock sensor 10 which is generated in an internal combustion engine is separated into a plurality of frequency components by BPFs 22a-22e of a knock detection circuit 20. The knock waveform shape as the total of each vibration mode can be expressed by the knock waveform shape set by the frequency component consisting of a value that the plurality of frequency components are intensity-integrated for each predetermined section of a predetermined crank angle and a value that the intensity-integrated values are added for the same section. Presence/absence of knock occurrence in the internal combustion engine can be correctly determined and the running state of the internal combustion engine can be adequately controlled by using the knock waveform shape with the corrected knock intensity according to the degree of deviation of the knock waveform shape from the ideal knock waveform stored in an ideal knock waveform storage unit 26. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の運転状態をノック判定に基づき制御する内燃機関のノック制御装置に関するものである。
【0002】
【従来の技術】
従来、内燃機関のノック制御装置に関連する先行技術文献としては、特公平6−60621号公報、特開2001−227400号公報にて開示されたものが知られている。
【0003】
前者のものでは、内燃機関のノック発生時に生じる周波数成分のうち最も顕著に振動している成分のみを検出し、そのピーク値または所定区間の積算値を統計処理し所定レベルと比較することでノック発生の有無を判定する技術が示されている。
【0004】
また、後者のものでは、内燃機関で発生する振動波形信号におけるノック周波数成分の発生期間とピーク値との関係からノック判定する技術が示されている。
【特許文献1】特公平6−60621号公報(第1頁〜第4頁)
【特許文献2】特開2001−227400号公報(第2頁)
【0005】
【発明が解決しようとする課題】
ところで、内燃機関のノック発生により顕著に振動している周波数成分は常に同じではなく、ノック発生毎に振動強度が大きくなる周波数成分は異なっている。したがって、特公平6−60621号公報のように、1つの周波数成分のみを抽出した場合、他の振動モード(1次振動波形に対する2次振動波形等)が大きく、抽出した周波数成分が小さいと、ノックを検出することができないこととなる。更に、ピーク値または所定区間の積算値のみからノック発生の有無を判定する場合、電気的・機械的なノイズがノック周波数成分付近の周波数帯域で発生したときには、ノイズによる周波数強度の増大をノック発生による周波数強度の増大と区別することができずノック発生がないにもかかわらずノックが起こったと誤判定するという不具合があった。
【0006】
また、特開2001−227400号公報のように、ノック周波数成分の発生期間とピーク値との関係のみに基づきノック発生の有無を判定すると、複数のノイズが重畳した場合にノックとの区別がつかなくなるという不具合があった。
【0007】
そこで、この発明はかかる不具合を解決するためになされたもので、ノック発生の有無を正確に判定し内燃機関の運転状態を適切に制御可能な内燃機関のノック制御装置の提供を課題としている。
【0008】
【課題を解決するための手段】
請求項1の内燃機関のノック制御装置によれば、信号検出手段で検出された内燃機関で発生する振動波形信号が、周波数分離手段にて複数の周波数成分に分離され、これら分離された周波数成分を所定クランク角からなる所定区間毎に強度積算した値により波形形状設定手段でノック波形形状が設定され、このノック波形形状に基づきノック判定手段で内燃機関におけるノック発生の有無が判定され、この判定結果に応じてノック制御手段により内燃機関の運転状態が制御される。このように、内燃機関で発生する振動波形信号が複数の周波数成分に分離され、この分離された複数の周波数成分を所定クランク角からなる所定区間毎に強度積算した値により設定されたノック波形形状によれば、各振動モードの総和としてのノック波形形状を表わすことができ、このノック波形形状によれば内燃機関におけるノック発生の有無が正確に判定されることで、内燃機関の運転状態が適切に制御される。
【0009】
請求項2の内燃機関のノック制御装置における波形形状設定手段では、周波数分離手段にて分離された複数の周波数成分を所定クランク角からなる所定区間毎に強度積算した値と、この値を同一区間毎に加算した値とからなる少なくとも2つ以上の周波数成分によりノック波形形状が設定されされる。このように、内燃機関で発生する振動波形信号が複数の周波数成分に分離され、この分離された複数の周波数成分を所定クランク角からなる所定区間毎に強度積算した値と、この値を同一区間毎に加算した値とからなる少なくとも2つ以上の周波数成分により設定されたノック波形形状によれば、各振動モードの総和としてのノック波形形状を表わすことができ、このノック波形形状によれば内燃機関におけるノック発生の有無が正確に判定されることで、内燃機関の運転状態が適切に制御される。
【0010】
請求項3の内燃機関のノック制御装置によれば、理想波形設定手段で内燃機関で発生する振動波形信号の理想ノック波形が予め設定されており、波形形状設定手段によってノック波形形状に対し、理想ノック波形からのはずれ度合いに応じてノック強度が小さくなる方向に補正される。これにより、強度は大きいがノックとは波形形状が異なるノイズ波形をノックと誤判定することが防止される。
【0011】
請求項4の内燃機関のノック制御装置における波形形状設定手段では、ノック波形形状のピークまでの強度上昇部分が理想ノック波形の強度上昇率よりも緩やかであると、ノック波形と疑わしいため強度が小さくなる方向に補正される。つまり、ノック波形形状のピークまでの強度上昇部分の強度上昇率はばらつきが大きいため、強度上昇率が理想ノック波形の強度上昇率と比較して急峻であるときには強度がそのままとされ、緩やかであるときには強度が小さくなる方向に補正される。これにより、ノック波形形状のピークまでの強度上昇率のばらつきによるノック検出精度の悪化が防止される。
【0012】
請求項5の内燃機関のノック制御装置における波形形状設定手段では、ノック波形形状が理想ノック波形との比較によりその理想ノック波形に近いほどノック強度が大きくなるよう補正される。このように補正されたノック強度によれば、ノック周波数成分であるときのみノック特有の波形形状を呈するため、区別が困難なノイズ波形形状とノック波形形状との分離性が向上される。
【0013】
請求項6の内燃機関のノック制御装置におけるノック判定手段では、ノック周波数成分を含まない信号域の周波数成分の強度に基づき作成されたバックグランドレベルがノック判定の基準とされることで、内燃機関の運転状態によらず、1燃焼サイクル毎のノック判定が可能となる。
【0014】
請求項7の内燃機関のノック制御装置におけるノック判定手段では、ノック周波数成分を含まない信号域の周波数成分の強度の平均値または総和に基づき作成されたバックグランドレベルがノック判定の基準とされることで、内燃機関の運転状態によらず、ノック以外の周波数成分とノック周波数成分との強度を比較することでノック判定が可能となる。
【0015】
請求項8の内燃機関のノック制御装置におけるノック判定手段では、理想ノック波形との比較によって補正されたノック波形形状の各周波数成分におけるノック強度がノック判定値に用いられることで、ノック発生毎の振動モードが異なることに起因するノック検出精度の悪化が防止される。
【0016】
請求項9の内燃機関のノック制御装置における理想波形設定手段では、理想ノック波形の減衰形状が内燃機関の膨張行程における筒内圧の減衰形状を基準として設定される。つまり、ノックの圧力振動の減衰形状は、内燃機関の膨張行程における圧力減少の影響が大きいため、このときの筒内圧の減衰形状を基準とすることで、理想ノック波形が容易に設定される。
【0017】
請求項10の内燃機関のノック制御装置における理想波形設定手段では、筒内圧の減衰形状が、内燃機関で検出された実際の筒内圧、または内燃機関の運転状態から推定された筒内圧、または予め設定された1つまたは複数の運転領域毎の筒内圧に基づき設定される。つまり、理想ノック形状を設定する際に基準とされる筒内圧の減衰形状は、実際の検出値や内燃機関の運転状態からの推定値や予め設定された1つまたは複数の運転領域毎の所定値に基づき容易に設定される。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態を実施例に基づいて説明する。
【0019】
図1は本発明の実施の形態の一実施例にかかる内燃機関のノック制御装置における全体構成を示すブロック図である。
【0020】
図1において、1はノックセンサであり、ノックセンサ10は図示しない内燃機関のエンジンブロック壁面に設置され、振動を検出する振動センサ、またはシリンダ内に設置され筒内圧を検出する筒内圧センサ等がある。このノックセンサ10からのセンサ信号は入力回路11に入力され、後段のノック検出回路20に取込むため、入力回路11によってセンサ信号が所定の電圧範囲の大きさに収まるよう調整される。更に、センサ信号はノック検出回路20に取込まれる前にフィルタ12を通過される。このフィルタ12としては、エイリアシング対策のため高周波成分をカットするLPF(Low Pass Filter:ローパスフィルタ)、または特定の周波数成分のみを抽出するBPF(Band Pass Filter:バンドパスフィルタ)が設定される。
【0021】
次に、フィルタ12を通過したセンサ信号が、A/D(アナログ−ディジタル)変換器21を介してノック検出回路20に取込まれる。なお、ノック検出回路20のA/D変換器21を介したセンサ信号に対するサンプリング周期は、ノック特有のノック周波数成分の波形を十分抽出できる程度に高速である。A/D変換器21でA/D変換された周波数成分が、本実施例では、通過帯域の異なる5つのBPF22a,22b,22c,22d,22eに入力され、これらBPF22a,22b,22cによって3つのノック周波数成分とBPF22d,22eによって2つのノック周波数成分を含まない信号域の周波数成分(以下、単に『ノイズ周波数成分』と記す)にそれぞれ分離される。
【0022】
BPF22a〜22eによる分離後の各周波数成分は、それぞれ区間積算部23a〜23eに入力され、各周波数成分の強度が所定区間毎に積算される。この積算区間はクランク角〔°CA(Crank Angle)〕期間で定義される。つまり、実時間でなくクランク角で定義されることにより、機関回転速度によらずノック発生の際の特徴的波形を抽出することができる。また、区間演算部23a,23b,23cで積算された各ノック周波数成分の総和が加算部24にて求められることで、複数の振動モードが同時に現われるようなノックが発生してもノック波形が抽出できることとなる。
【0023】
比較演算部25a〜25dでは、区間演算部23a〜23c及び加算部24による各ノック周波数成分が、理想ノック波形記憶部26に予め記憶されている理想的なノック波形形状である理想ノック波形と比較され、この理想ノック波形に近いほどノック強度が大きくなるようにノック強度の補正が行われる。この補正方法としては、例えば、理想ノック波形からのはずれ度合いに応じた係数(エラー係数)Eを算出し、ノック強度に対して(1−E)を補正係数として乗じるようにされる。ここで、理想ノック波形は、燃焼モデル式等の理論計算によって定めたり、または内燃機関毎の各運転条件毎に予めノック形状を適合により設定してもよい。また、筒内圧センサを用いる場合には、ノック特有の共鳴振動の減衰形状と、燃焼とピストン運動に伴う筒内の平均圧力の減衰形状とに高い相関があるため、筒内平均圧を基に理想ノック波形の減衰形状を定義してもよい。
【0024】
次に、ノック強度選択部27では、比較演算部25a〜25dで各周波数成分毎に理想ノック波形との比較によって補正された各ノック強度のうち、ノック判定に用いる周波数成分が選択される。ここで、選択される周波数成分は、ノック毎に顕著に現われる振動モードがばらつくことから、補正ノック強度が最大のものまたは各周波数成分の総和が用いられる。
【0025】
一方、BGL(Back Ground Level:バックグランドレベル)作成部28では、内燃機関の運転状態によらずノック判定を行うため、区間積算部23d,23eからのノイズ周波数成分に基づきBGLが作成される。このBGL作成方法としては、各ノイズ周波数成分についてノック周波数成分と同様に、理想ノック波形と比較・補正した補正ノイズ強度を求めたり、各ノイズ周波数成分の総和または平均値を算出するようにされる。
【0026】
そして、比較演算・ノック判定部29では、ノック強度選択部27で選択されたノック強度とBGL作成部28で作成されたBGLとを用いて比較演算され、所定値以上ならノックと判定される。この比較方法としては、ノック強度とBGLとの比から判定してもよく、また、ノック強度とBGLとの差から判定するようにしてもよい。
【0027】
更に、内燃機関制御用ECU(Electronic Control Unit:電子制御ユニット)30から内燃機関のクランクシャフト(図示略)の基準位置信号、気筒判別信号がノック検出回路20のA/D変換器21に入力され、後述のノック検出回路20の比較演算・ノック判定部29からのノック判定結果に応じたノック判定信号が内燃機関制御用ECU30に入力される。この他、内燃機関制御用ECU30には内燃機関の例えば、クランク角センサ、吸入空気量センサ、水温センサ等からの各種センサ信号が入力されている。これらの入力信号に基づき内燃機関制御用ECU30にて点火時期、燃料噴射量等が演算され、ノック判定結果に応じた補正が実行され、イグナイタ40やインジェクタ(燃料噴射弁)50等が適切に制御されることとなる。
【0028】
ここで、内燃機関制御用ECU30は、周知の各種演算処理を実行する中央処理装置としてのCPU、制御プログラムや制御マップ等を格納したROM、各種データ等を格納するRAM、B/U(バックアップ)RAM、入出力回路及びそれらを接続するバスライン等からなる論理演算回路として構成されている。
【0029】
次に、ノックセンサ10からの振動波形信号に対するノック検出回路20によるノック検出・判定の概略動作について、図1及び図2のタイムチャートを参照して説明する。
【0030】
内燃機関制御用ECU30からの基準位置信号の立下がり(図2に示す時刻t0 )に基づき波形サンプル区間信号が発生され、この波形サンプル区間信号が「ON(オン)」で所定区間毎となる積算区間(図2に示す時刻t0 〜時刻t1 )において、区間演算部23a〜23eによりBPF22a〜22eを介した周波数成分Fa(S1,1 ,S1,2 ,S1,3 ,…,S1,n )〜Fe(S5,1 ,S5,2 ,S5,3 ,…,S5,n )がそれぞれ積算される。そして、今回の波形サンプル区間信号が「OFF(オフ)」となる積算区間終了から次回の波形サンプル区間信号が「ON」となる積算区間開始までの期間(図2に示す時刻t1 〜時刻t2 )に、ノック周波数成分Fa,Fb,Fcに基づく検出波形としてノック1,2,3が得られ、これらノック1,2,3の強度と理想ノック波形記憶部26に記憶されている理想ノック波形の強度とが比較演算部25a〜25dにて比較演算されそれぞれ補正ノック強度が算出される。
【0031】
これら補正ノック強度のうち、ノック強度選択部27にて最大補正ノック強度が選択される。そして、比較演算・ノック判定部29にて、ノック強度選択部27からの最大補正ノック強度と、ノイズ周波数成分Fd,Feに基づくBGL作成部28からのBGLとを用いて、後述のように、ノック判定パラメータが算出される。このノック判定パラメータが予め設定されている判定閾値と比較されノック発生の有無が判定される。そして、次回の基準位置信号の立下がり、即ち、波形サンプル区間信号が「ON」となる次回の積算区間開始時点(図2に示す時刻t2 )にて今回の積算値がリセットされる。このとき、ノック判定結果に応じたノック判定信号が内燃機関制御用ECU30に出力され、以下、同様の動作が繰返し実行される。
【0032】
次に、本発明の実施の形態の一実施例にかかる内燃機関のノック制御装置で使用されているノック検出回路20におけるノック判定の処理手順を示す図3のフローチャートに基づいて説明する。なお、このノック判定ルーチンは内燃機関制御用ECU30からの基準位置信号及び気筒判別信号に基づく内燃機関の1燃焼サイクル毎にノック検出回路20にて繰返し実行される。
【0033】
図3において、まず、ステップS101で、積算区間が開始されるまで待って、ステップS102に移行し、振動波形信号が複数の周波数成分に分離され、各周波数成分に対するディジタルフィルタ処理が実行される。ステップS103に移行して、ディジタルフィルタ処理された周波数成分に対する強度積算が実行される。ステップS104に移行して、所定クランク角が経過したかが判定される。ステップS104の判定条件が成立せず、即ち、所定クランク角が経過していないときにはステップS102に戻って、同様の処理が繰返し実行される。
【0034】
一方、ステップS104の判定条件が成立、即ち、所定クランク角が経過したときにはステップS105に移行し、ステップS103による強度積算値がノック検出回路20のRAM(図示略)内へ格納される。ステップS106に移行して、ステップS103による強度積算値がリセットされる。ステップS107に移行して、積算区間が終了しているかが判定される。ステップS107の判定条件が成立せず、即ち、積算区間が終了していないときにはステップS102に戻って、同様の処理が繰返し実行される。
【0035】
一方、ステップS107の判定条件が成立、即ち、積算区間が終了しているときにはステップS108に移行し、ノック周波数成分に対する後述の理想ノック波形との比較演算処理による補正ノック強度算出が実行される。ステップS109に移行して、ステップS108で算出された補正ノック強度のうちの最大補正ノック強度が選択される。ステップS110に移行して、ノイズ周波数成分に対する後述のBGL(バックグランドレベル)作成処理が実行される。
【0036】
ステップS111に移行して、ステップS109で選択された最大補正ノック強度がステップS110で作成されたBGL(バックグランドレベル)にて除算されノック判定パラメータが算出される。ステップS112に移行して、ステップS111で算出されたノック判定パラメータが予め設定された判定閾値を越えているかが判定される。ステップS112の判定条件が成立、即ち、ノック判定パラメータが判定閾値を越え大きいときにはステップS113に移行し、ノックと判定され、本ルーチンを終了する。一方、ステップS112の判定条件が成立せず、即ち、ノック判定パラメータが判定閾値以下と小さいときにはステップS114に移行し、ノックなしと判定され、本ルーチンを終了する。
【0037】
次に、図3のノック判定におけるステップS108の理想ノック波形との比較演算の処理手順を示す図4のフローチャートに基づいて説明する。
【0038】
図4において、ステップS201では、各ノック周波数成分のピーク値pが検索される。ステップS202に移行して、後述の理想ノック波形a(θ)演算処理が実行される。ステップS203に移行して、ステップS202で算出された理想ノック波形a(θ)にステップS201で検索されたピーク値pが乗算されスケール調整が実行される。ステップS204に移行して、後述のピーク値前波形の相関演算処理が実行される。ステップS205に移行して、後述のピーク値後波形の相関演算処理が実行される。ステップS206に移行して、ピーク値前補正強度とピーク値後補正強度とが加算され補正ノック強度が算出され、本ルーチンを終了する。
【0039】
次に、図4の理想ノック波形との比較演算におけるステップS202の理想ノック波形演算の処理手順を示す図5のフローチャートに基づいて説明する。
【0040】
図5において、ステップS301では、筒内圧が検出される。ステップS302に移行して、ローパスフィルタ処理が実行される。ステップS303に移行して、所定クランク角当たりの対数減衰率が算出される。ステップS304に移行して、減衰率算出処理が実行され、本ルーチンを終了する。このようにして、図6に示すように、筒内圧の減衰形状に基づく理想ノック波形a(θ)が作成される。
【0041】
次に、図4の理想ノック波形との比較演算におけるステップS204のピーク値前波形の相関演算の処理手順を示す図7のフローチャートに基づいて説明する。
【0042】
図7において、ステップS401では、理想ノック波形a(θ)が検出波形s(θ)より小さいかが判定される。ステップS401の判定条件が成立、即ち、理想ノック波形a(θ)が検出波形s(θ)より小さいときにはステップS402に移行し、ピーク値前補正ノック強度が次式(1)にて算出され、本ルーチンを終了する。
【0043】
【数1】
ピーク値前補正ノック強度←a(θ)×〔1−{s(θ)−a(θ)}/a(θ)〕 ・・・(1)
【0044】
一方、ステップS401の判定条件が成立せず、即ち、理想ノック波形a(θ)が検出波形s(θ)以上と大きいときにはステップS403に移行し、ピーク値前補正ノック強度が理想ノック波形a(θ)とされ、本ルーチンを終了する。
【0045】
次に、図4の理想ノック波形との比較演算におけるステップS205のピーク値後波形の相関演算の処理手順を示す図8のフローチャートに基づいて説明する。
【0046】
図8において、ステップS501では、理想ノック波形a(θ)と検出波形s(θ)との差d(θ)が次式(2)にて算出される。
【0047】
【数2】
d(θ)←|s(θ)−a(θ)| ・・・(2)
【0048】
次に、ステップS502に移行して、ピーク値後補正ノック強度が次式(3)にて算出され、本ルーチンを終了する。
【0049】
【数3】
ピーク値後補正ノック強度←a(θ)×{1−d(θ)/a(θ)}・・・(3)
【0050】
次に、図3のノック判定におけるステップS110のBGL(バックグランドレベル)作成の処理手順を示す図9のフローチャートに基づいて説明する。
【0051】
図9において、ステップS601で、ノイズ周波数成分の平均強度が算出され、本ルーチンを終了する。
【0052】
このように、本実施例の内燃機関のノック制御装置は、内燃機関(図示略)で発生する振動波形信号を検出するノックセンサ10、入力回路11、フィルタ12からなる信号検出手段と、前記信号検出手段で検出された振動波形信号を複数の周波数成分に分離するノック検出回路20のA/D変換器21、BPF22a〜22eからなる周波数分離手段と、前記周波数分離手段で分離された複数の周波数成分Fa〜Fcを所定クランク角からなる所定区間毎に強度積算した値によりノック波形形状を設定するノック検出回路20の区間積算部23a〜23c、加算部24、比較演算部25a〜25d、ノック強度選択部27にて達成される波形形状設定手段と、前記波形形状設定手段によるノック波形形状に基づき内燃機関におけるノック発生の有無を判定するノック検出回路20の比較演算・ノック判定部29にて達成されるノック判定手段と、前記ノック判定手段による判定結果に応じて内燃機関の運転状態を制御する内燃機関制御用ECU30にて達成されるノック制御手段とを具備するものである。
【0053】
ここで、1つの振動モードが支配的なノック波形の場合、その振動成分波形を抽出することでノック判定ができる。しかし、1つのノック波形に複数の振動モードが含まれる場合、ノック期間中により支配的な振動モードが変わる等の原因で、センサの生波形は理想的なノック波形をしているにもかかわらず、個々のノック周波数成分の波形形状だけを見ると理想的なノック波形から大きくはずれ、ノックと判定できないことがある。
【0054】
これに対して、内燃機関で発生する振動波形信号が複数の周波数成分に分離され、この分離された複数の周波数成分を所定クランク角からなる所定区間毎に強度積算した値により設定されたノック波形形状によれば、各振動モードの総和としてのノック波形形状を表わすことができ、このノック波形形状を用いることで内燃機関におけるノック発生の有無を正確に判定でき、内燃機関の運転状態を適切に制御することができる。
【0055】
また、本実施例の内燃機関のノック制御装置のノック検出回路20の区間積算部23a〜23c、加算部24、比較演算部25a〜25d、ノック強度選択部27にて達成される波形形状設定手段は、ノック検出回路20のA/D変換器21、BPF22a〜22eからなる周波数分離手段で分離された複数の周波数成分Fa〜Fcを所定クランク角からなる所定区間毎に強度積算した値と、この値を同一区間毎に加算した値とからなる周波数成分によりノック波形形状を設定するものである。
【0056】
このように、内燃機関で発生する振動波形信号が複数の周波数成分に分離され、この分離された複数の周波数成分を所定クランク角からなる所定区間毎に強度積算した値、この値を同一区間毎に加算した値とからなる少なくとも2つ以上の周波数成分により設定されたノック波形形状によれば、各振動モードの総和としてのノック波形形状を表わすことができ、このノック波形形状を用いることで内燃機関におけるノック発生の有無を正確に判定でき、内燃機関の運転状態を適切に制御することができる。
【0057】
そして、本実施例の内燃機関のノック制御装置は、内燃機関で発生する振動波形信号の理想的なノック波形形状を理想ノック波形として予め設定するノック検出回路20の理想ノック波形記憶部26にて達成される理想波形設定手段を具備し、前記波形形状設定手段は、ノック波形形状に対し、理想ノック波形からのはずれ度合いに応じてノック強度を補正するものである。つまり、ノック波形形状に対し、理想ノック波形からはずれるほどノック強度が小さくなる方向に補正することで、大きな強度を有するがノックとは波形形状が異なるノイズ波形をノックと誤判定することを防止することができる。
【0058】
更に、本実施例の内燃機関のノック制御装置のノック検出回路20の区間積算部23a〜23c、加算部24、比較演算部25a〜25d、ノック強度選択部27にて達成される波形形状設定手段は、ノック波形形状のピークまでの強度上昇部分が、理想ノック波形の強度上昇率よりも緩やかな場合には、ノック強度が小さくなるよう補正するものである。つまり、ノック波形形状のピークまでの強度上昇部分の強度上昇率はばらつきが大きいため、強度上昇率が理想ノック波形の強度上昇率と比較して急峻であるときには強度がそのままとされ、緩やかであるときには強度が小さくなる方向に補正される。これにより、ノック波形形状のピークまでの強度上昇率のばらつきによるノック検出精度の悪化を防止することができる。
【0059】
更にまた、本実施例の内燃機関のノック制御装置のノック検出回路20の区間積算部23a〜23c、加算部24、比較演算部25a〜25d、ノック強度選択部27にて達成される波形形状設定手段は、ノック波形形状が理想ノック波形に近いほどノック強度が大きくなるよう補正するものである。このように補正されたノック強度によれば、ノック周波数成分であるときのみノック特有の波形形状を呈するため、区別が困難なノイズ波形形状とノック波形形状との分離性を向上することができる。
【0060】
加えて、本実施例の内燃機関のノック制御装置のノック検出回路20の比較演算・ノック判定部29にて達成されるノック判定手段は、ノイズ周波数成分(ノック周波数成分を含まない信号域の周波数成分)の強度に基づき作成されたBGL(バックグランドレベル)をノック判定の基準とするものである。これにより、内燃機関の運転状態によらず、1燃焼サイクル毎にノック判定することができる。
【0061】
また、本実施例の内燃機関のノック制御装置のノック検出回路20の比較演算・ノック判定部29にて達成されるノック判定手段は、ノイズ周波数成分(ノック周波数成分を含まない信号域の周波数成分)の強度の平均値または総和に基づき作成されたBGLをノック判定の基準とするものである。これにより、内燃機関の運転状態によらず、ノック以外の周波数成分とノック周波数成分との強度を比較することでノック判定することができる。
【0062】
そして、本実施例の内燃機関のノック制御装置のノック検出回路20の比較演算・ノック判定部29にて達成されるノック判定手段は、理想ノック波形との比較により補正されたノック波形形状の各周波数成分におけるノック強度に基づきノック判定値を設定するものである。これにより、ノック発生毎の振動モードが異なることに起因するノック検出精度の悪化を防止することができる。
【0063】
更に、本実施例の内燃機関のノック制御装置のノック検出回路20の理想ノック波形記憶部26にて達成される理想波形設定手段は、理想ノック波形の減衰形状を内燃機関の膨張行程における筒内圧の減衰形状を基準として設定するものである。つまり、ノックの圧力振動の減衰形状は、内燃機関の膨張行程における圧力減少の影響が大きいため、このときの筒内圧の減衰形状を基準とすることで、理想ノック波形を容易に設定することができる。
【0064】
また、本実施例の内燃機関のノック制御装置のノック検出回路20の理想ノック波形記憶部26にて達成される理想波形設定手段は、筒内圧の減衰形状を内燃機関で検出された実際の筒内圧に基づき設定するものである。つまり、理想ノック形状を設定する際に基準とされる筒内圧の減衰形状を、実際の検出値に基づき容易に設定することができる。
【0065】
ところで、上記実施例に示すように、筒内圧を直接、検出可能な筒内圧センサ等のセンサ機器を用いて理想ノック波形を設定することが理想ではあるが、筒内圧の推定値や予め設定された運転領域毎の所定値によれば、センサ機器を省略することができる。
【図面の簡単な説明】
【図1】図1は本発明の実施の形態の一実施例にかかる内燃機関のノック制御装置における全体構成を示すブロック図である。
【図2】図2は図1のノック検出回路によるノック検出・判定の概略動作を示すタイムチャートである。
【図3】図3は本発明の実施の形態の一実施例にかかる内燃機関のノック制御装置で使用されているノック検出回路におけるノック判定の処理手順を示すフローチャートである。
【図4】図4は図3のノック判定における理想ノック波形との比較演算の処理手順を示すフローチャートである。
【図5】図5は図4の理想ノック波形との比較演算における理想ノック波形演算の処理手順を示すフローチャートである。
【図6】図6は図5の筒内圧の減衰形状に基づく理想ノック波形の作成を示す説明図である。
【図7】図7は図4の理想ノック波形との比較演算におけるピーク値前波形の相関演算の処理手順を示すフローチャートである。
【図8】図8は図4の理想ノック波形との比較演算におけるピーク値後波形の相関演算の処理手順を示すフローチャートである。
【図9】図9は図3のノック判定におけるBGL作成の処理手順を示すフローチャートである。
【符号の説明】
10 ノックセンサ
20 ノック検出回路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a knock control device for an internal combustion engine that controls an operation state of the internal combustion engine based on knock determination.
[0002]
[Prior art]
Conventionally, as prior art documents related to a knock control device for an internal combustion engine, those disclosed in Japanese Patent Publication No. 6-60621 and Japanese Patent Application Laid-Open No. 2001-227400 are known.
[0003]
In the former, knocking is detected by detecting only the most remarkably oscillating component of frequency components generated when knocking of the internal combustion engine occurs, statistically processing the peak value or the integrated value of a predetermined section, and comparing the result with a predetermined level. A technique for determining whether or not occurrence has occurred is shown.
[0004]
In the latter, a technique is described in which knock is determined based on a relationship between a generation period of a knock frequency component and a peak value in a vibration waveform signal generated in an internal combustion engine.
[Patent Document 1] Japanese Patent Publication No. 6-60621 (pages 1 to 4)
[Patent Document 2] JP-A-2001-227400 (page 2)
[0005]
[Problems to be solved by the invention]
By the way, the frequency components which remarkably vibrate due to knocking of the internal combustion engine are not always the same, and the frequency components at which the vibration intensity increases each time knocking occurs are different. Therefore, when only one frequency component is extracted as in Japanese Patent Publication No. 6-60621, other vibration modes (such as a secondary vibration waveform with respect to the primary vibration waveform) are large, and when the extracted frequency component is small, Knock cannot be detected. Furthermore, when it is determined whether or not knock has occurred from only the peak value or the integrated value in a predetermined section, when electrical and mechanical noise occurs in a frequency band near the knock frequency component, the increase in frequency intensity due to the noise is generated. However, there is a problem that it is erroneously determined that knocking has occurred despite no occurrence of knocking because it cannot be distinguished from an increase in frequency intensity due to the above.
[0006]
Also, as in Japanese Patent Application Laid-Open No. 2001-227400, when the presence or absence of knock is determined based only on the relationship between the occurrence period of the knock frequency component and the peak value, it is possible to distinguish the knock from the knock when a plurality of noises are superimposed. There was a problem that it disappeared.
[0007]
Therefore, the present invention has been made to solve such a problem, and an object of the present invention is to provide a knock control device for an internal combustion engine that can accurately determine whether knock has occurred and appropriately control the operating state of the internal combustion engine.
[0008]
[Means for Solving the Problems]
According to the knock control apparatus for an internal combustion engine of claim 1, the vibration waveform signal generated in the internal combustion engine detected by the signal detection means is separated into a plurality of frequency components by the frequency separation means, and the separated frequency components are separated. A knock waveform shape is set by a waveform shape setting means based on a value obtained by integrating the strength of the engine for each predetermined section consisting of a predetermined crank angle, and the presence or absence of knock occurrence in the internal combustion engine is determined by the knock determination means based on the knock waveform shape. The operating state of the internal combustion engine is controlled by the knock control means according to the result. In this manner, the vibration waveform signal generated in the internal combustion engine is separated into a plurality of frequency components, and a knock waveform shape set by a value obtained by integrating the plurality of separated frequency components into strengths for each predetermined section having a predetermined crank angle. According to this, the knock waveform shape as the sum of the respective vibration modes can be represented, and according to the knock waveform shape, the presence or absence of knock in the internal combustion engine is accurately determined, so that the operation state of the internal combustion engine is appropriately determined. Is controlled.
[0009]
The waveform shape setting means in the knock control device for an internal combustion engine according to claim 2, wherein the value obtained by integrating the intensity of a plurality of frequency components separated by the frequency separating means for each predetermined section having a predetermined crank angle is the same as the value of the same section. The knock waveform shape is set by at least two or more frequency components consisting of the value added every time. In this manner, the vibration waveform signal generated in the internal combustion engine is separated into a plurality of frequency components, and the value obtained by integrating the values of the separated plurality of frequency components for each predetermined section having a predetermined crank angle is equal to the value of the same section. According to the knock waveform shape set by at least two or more frequency components including the value added for each case, the knock waveform shape as a sum of the respective vibration modes can be represented. By accurately determining whether knock has occurred in the engine, the operating state of the internal combustion engine is appropriately controlled.
[0010]
According to the knock control apparatus for an internal combustion engine of the third aspect, the ideal knock waveform of the vibration waveform signal generated in the internal combustion engine is preset by the ideal waveform setting means, and the ideal knock waveform is set by the waveform shape setting means. The correction is performed in a direction in which the knock intensity decreases in accordance with the degree of deviation from the knock waveform. This prevents a noise waveform having a large intensity but a waveform shape different from that of knock from being erroneously determined as knock.
[0011]
According to the waveform shape setting means in the knock control device for an internal combustion engine of claim 4, when the intensity increase portion up to the peak of the knock waveform shape is slower than the intensity increase rate of the ideal knock waveform, the intensity is small because it is suspicious of the knock waveform. Is corrected in the following direction. In other words, since the intensity increase rate of the intensity increase portion up to the peak of the knock waveform shape varies widely, when the intensity increase rate is steep as compared with the intensity increase rate of the ideal knock waveform, the intensity is kept as it is and is gentle. Sometimes the intensity is corrected in the direction of decreasing intensity. This prevents the knock detection accuracy from deteriorating due to variations in the rate of increase in intensity up to the peak of the knock waveform shape.
[0012]
In the knock control device for a knock control device for an internal combustion engine according to claim 5, the knock intensity is corrected so that the knock intensity increases as the knock waveform shape approaches the ideal knock waveform by comparison with the ideal knock waveform. According to the knock intensity corrected in this manner, a knock-specific waveform shape is exhibited only when the knock frequency component is present, so that the separability between the noise waveform shape and the knock waveform shape, which are difficult to distinguish, is improved.
[0013]
The knock determination means in the knock control device for an internal combustion engine according to claim 6, wherein the background level created based on the intensity of the frequency component of the signal range not including the knock frequency component is used as a reference for the knock determination. It is possible to make a knock determination for each combustion cycle regardless of the operation state of
[0014]
In the knock determination means in the knock control device for an internal combustion engine according to claim 7, the background level created based on the average value or the sum of the intensities of the frequency components in the signal range not including the knock frequency component is used as a reference for knock determination. Thus, the knock determination can be performed by comparing the strength of the knock frequency component with the frequency component other than the knock, regardless of the operating state of the internal combustion engine.
[0015]
In the knock determination means in the knock control device for an internal combustion engine according to claim 8, the knock intensity at each frequency component of the knock waveform shape corrected by comparison with the ideal knock waveform is used as a knock determination value, so that the knock determination value for each knock occurrence Deterioration of knock detection accuracy due to different vibration modes is prevented.
[0016]
In the knock control device for an internal combustion engine according to the ninth aspect, the attenuation shape of the ideal knock waveform is set based on the attenuation shape of the in-cylinder pressure during the expansion stroke of the internal combustion engine. That is, the damping shape of the pressure vibration of the knock has a great effect of the pressure decrease in the expansion stroke of the internal combustion engine. Therefore, the ideal knock waveform can be easily set based on the damping shape of the in-cylinder pressure at this time.
[0017]
In the ideal waveform setting means in the knock control device for an internal combustion engine according to claim 10, the attenuation shape of the in-cylinder pressure may be the actual in-cylinder pressure detected in the internal combustion engine, the in-cylinder pressure estimated from the operating state of the internal combustion engine, or a predetermined value. It is set based on the set in-cylinder pressure for each of one or more operation regions. That is, the attenuation shape of the in-cylinder pressure, which is used as a reference when setting the ideal knock shape, is determined based on an actual detected value, an estimated value based on the operating state of the internal combustion engine, or a predetermined value for each of one or more operating regions. It is easily set based on the value.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described based on examples.
[0019]
FIG. 1 is a block diagram showing an overall configuration of a knock control device for an internal combustion engine according to one example of an embodiment of the present invention.
[0020]
In FIG. 1, reference numeral 1 denotes a knock sensor, and a knock sensor 10 includes a vibration sensor that is installed on an engine block wall of an internal combustion engine (not shown) and detects vibration or an in-cylinder pressure sensor that is installed in a cylinder and detects an in-cylinder pressure. is there. The sensor signal from the knock sensor 10 is input to the input circuit 11 and is taken into the knock detection circuit 20 at the subsequent stage. Therefore, the input circuit 11 adjusts the sensor signal so as to be within a predetermined voltage range. Further, the sensor signal is passed through the filter 12 before being taken into the knock detection circuit 20. As this filter 12, an LPF (Low Pass Filter: low-pass filter) for cutting high-frequency components or a BPF (Band Pass Filter: band-pass filter) for extracting only a specific frequency component is set to prevent aliasing.
[0021]
Next, the sensor signal that has passed through the filter 12 is taken into the knock detection circuit 20 via an A / D (analog-digital) converter 21. The sampling cycle of the knock detection circuit 20 with respect to the sensor signal via the A / D converter 21 is fast enough to sufficiently extract a knock frequency component specific to knock. In this embodiment, the frequency components subjected to A / D conversion by the A / D converter 21 are input to five BPFs 22a, 22b, 22c, 22d, and 22e having different pass bands, and the three BPFs 22a, 22b, and 22c use the three frequency components. The knock frequency component and the BPFs 22d and 22e separate the signal into frequency components in a signal range that does not include two knock frequency components (hereinafter simply referred to as “noise frequency components”).
[0022]
The frequency components separated by the BPFs 22a to 22e are input to the interval integrating units 23a to 23e, respectively, and the intensity of each frequency component is integrated for each predetermined interval. This integration section is defined by a crank angle [° CA (Crank Angle)] period. That is, by defining the crank angle rather than the real time, it is possible to extract a characteristic waveform at the time of knock occurrence regardless of the engine speed. In addition, the sum of the respective knock frequency components integrated by the section calculators 23a, 23b, and 23c is obtained by the adder 24, so that a knock waveform is extracted even if a knock occurs in which a plurality of vibration modes appear simultaneously. You can do it.
[0023]
In the comparison calculation units 25a to 25d, each knock frequency component by the section calculation units 23a to 23c and the addition unit 24 is compared with an ideal knock waveform having an ideal knock waveform shape stored in advance in the ideal knock waveform storage unit 26. The knock intensity is corrected so that the knock intensity increases as the waveform approaches the ideal knock waveform. As this correction method, for example, a coefficient (error coefficient) E corresponding to the degree of deviation from the ideal knock waveform is calculated, and the knock intensity is multiplied by (1−E) as a correction coefficient. Here, the ideal knock waveform may be determined by theoretical calculation such as a combustion model formula, or the knock shape may be set in advance for each operating condition of each internal combustion engine by adaptation. In addition, when using an in-cylinder pressure sensor, there is a high correlation between the damping shape of the resonance vibration peculiar to knock and the attenuating shape of the average pressure in the cylinder due to combustion and piston movement. The attenuation shape of the ideal knock waveform may be defined.
[0024]
Next, in the knock intensity selection unit 27, a frequency component used for knock determination is selected from the knock intensity corrected by comparison with the ideal knock waveform for each frequency component by the comparison calculation units 25a to 25d. Here, as the selected frequency component, the vibration mode that appears remarkably for each knock varies, so that the one having the maximum corrected knock strength or the sum of the respective frequency components is used.
[0025]
On the other hand, in the BGL (Back Ground Level: background level) creating unit 28, a BGL is created based on the noise frequency components from the section integrating units 23d and 23e in order to make a knock determination regardless of the operating state of the internal combustion engine. As the BGL creation method, similarly to the knock frequency component, a corrected noise intensity obtained by comparing / correcting the noise frequency component with the ideal knock waveform is calculated, or the sum or average value of the noise frequency components is calculated. .
[0026]
The comparison / knock determination unit 29 performs a comparison calculation using the knock intensity selected by the knock intensity selection unit 27 and the BGL created by the BGL creation unit 28. If the knock intensity is equal to or greater than a predetermined value, the knock is determined. As the comparison method, the determination may be made from the ratio between the knock strength and the BGL, or the determination may be made from the difference between the knock strength and the BGL.
[0027]
Further, a reference position signal and a cylinder discrimination signal of a crankshaft (not shown) of the internal combustion engine are input from an electronic control unit (ECU) 30 for controlling the internal combustion engine to the A / D converter 21 of the knock detection circuit 20. A knock determination signal corresponding to a knock determination result from a comparison calculation / knock determination unit 29 of a knock detection circuit 20, which will be described later, is input to the internal combustion engine control ECU 30. In addition, various sensor signals from the internal combustion engine, such as a crank angle sensor, an intake air amount sensor, and a water temperature sensor, are input to the internal combustion engine control ECU 30. The ignition timing, the fuel injection amount, and the like are calculated by the internal combustion engine control ECU 30 based on these input signals, and a correction according to the knock determination result is executed, so that the igniter 40 and the injector (fuel injection valve) 50 are appropriately controlled. Will be done.
[0028]
Here, the internal combustion engine control ECU 30 includes a CPU serving as a central processing unit for executing various known arithmetic processing, a ROM storing a control program and a control map, a RAM storing various data, and a B / U (backup). It is configured as a logical operation circuit including a RAM, an input / output circuit, and a bus line connecting them.
[0029]
Next, a schematic operation of knock detection / judgment by the knock detection circuit 20 with respect to the vibration waveform signal from the knock sensor 10 will be described with reference to time charts of FIGS.
[0030]
A waveform sample section signal is generated based on the falling edge of the reference position signal from the internal combustion engine control ECU 30 (time t0 shown in FIG. 2), and the waveform sample section signal is "ON" for each predetermined section. In the section (time t0 to time t1 shown in FIG. 2), the frequency components Fa (S1,1, S1,2, S1,3,..., S1, n) via the BPFs 22a to 22e by the section calculation units 23a to 23e. Fe (S5,1, S5,2, S5,3, ..., S5, n) are respectively integrated. Then, a period from the end of the integration section in which the current waveform sample section signal is “OFF” to the start of the integration section in which the next waveform sample section signal is “ON” (time t1 to time t2 shown in FIG. 2). Next, knocks 1, 2, and 3 are obtained as detection waveforms based on knock frequency components Fa, Fb, and Fc, and the intensities of knocks 1, 2, and 3 and the ideal knock waveform stored in ideal knock waveform storage unit 26 are obtained. The calculated values are compared with each other by the comparison calculation sections 25a to 25d to calculate the corrected knock strength.
[0031]
Among these corrected knock intensities, the maximum corrected knock intensity is selected by the knock intensity selector 27. Then, the comparison operation / knock determination unit 29 uses the maximum corrected knock intensity from the knock intensity selection unit 27 and the BGL from the BGL creation unit 28 based on the noise frequency components Fd and Fe as described below. A knock determination parameter is calculated. The knock determination parameter is compared with a preset determination threshold to determine whether knock has occurred. Then, at the next fall of the reference position signal, that is, at the start of the next integration section when the waveform sample section signal becomes “ON” (time t2 shown in FIG. 2), the current integration value is reset. At this time, a knock determination signal corresponding to the knock determination result is output to ECU 30 for controlling the internal combustion engine, and the same operation is repeated thereafter.
[0032]
Next, a description will be given based on a flowchart of FIG. 3 showing a processing procedure of knock determination in knock detection circuit 20 used in a knock control device for an internal combustion engine according to one example of an embodiment of the present invention. This knock determination routine is repeatedly executed by knock detection circuit 20 for each combustion cycle of the internal combustion engine based on the reference position signal and cylinder determination signal from internal combustion engine control ECU 30.
[0033]
In FIG. 3, first, in step S101, the process waits until the integration section starts, and then proceeds to step S102, where the vibration waveform signal is separated into a plurality of frequency components, and digital filtering is performed on each frequency component. In step S103, the intensity integration is performed on the frequency components subjected to the digital filter processing. The process proceeds to step S104 to determine whether the predetermined crank angle has elapsed. If the determination condition in step S104 is not satisfied, that is, if the predetermined crank angle has not elapsed, the process returns to step S102, and the same processing is repeatedly executed.
[0034]
On the other hand, when the determination condition of step S104 is satisfied, that is, when the predetermined crank angle has elapsed, the process proceeds to step S105, and the integrated intensity value of step S103 is stored in the RAM (not shown) of knock detection circuit 20. The process proceeds to step S106, where the integrated intensity value in step S103 is reset. The process moves to step S107, and it is determined whether or not the accumulation section has ended. If the determination condition of step S107 is not satisfied, that is, if the integration section is not completed, the process returns to step S102, and the same processing is repeatedly executed.
[0035]
On the other hand, when the determination condition of step S107 is satisfied, that is, when the integration section is completed, the process proceeds to step S108, and the corrected knock intensity is calculated by comparing the knock frequency component with an ideal knock waveform described later. Proceeding to step S109, the maximum corrected knock strength is selected from the corrected knock strengths calculated in step S108. In step S110, a BGL (background level) creation process for a noise frequency component, which will be described later, is executed.
[0036]
In step S111, the maximum correction knock intensity selected in step S109 is divided by the BGL (background level) created in step S110 to calculate a knock determination parameter. In step S112, it is determined whether the knock determination parameter calculated in step S111 exceeds a predetermined determination threshold. When the determination condition of step S112 is satisfied, that is, when the knock determination parameter exceeds the determination threshold and is large, the process proceeds to step S113, knock is determined, and this routine ends. On the other hand, if the determination condition of step S112 is not satisfied, that is, if the knock determination parameter is smaller than or equal to the determination threshold, the process proceeds to step S114, it is determined that there is no knock, and this routine ends.
[0037]
Next, a description will be given based on a flowchart of FIG. 4 showing a processing procedure of comparison calculation with an ideal knock waveform in step S108 in the knock determination of FIG.
[0038]
In FIG. 4, in step S201, a peak value p of each knock frequency component is searched. In step S202, an ideal knock waveform a (θ) calculation process described later is executed. In step S203, the scale adjustment is performed by multiplying the ideal knock waveform a (θ) calculated in step S202 by the peak value p searched in step S201. The process proceeds to step S204, where a correlation calculation process of the waveform before the peak value described later is executed. The process proceeds to step S205, where a correlation calculation process for the post-peak value waveform described below is performed. In step S206, the correction intensity before the peak value and the correction intensity after the peak value are added to calculate the correction knock intensity, and this routine ends.
[0039]
Next, a description will be given based on a flowchart of FIG. 5 showing a processing procedure of the ideal knock waveform calculation of step S202 in the comparison calculation with the ideal knock waveform of FIG.
[0040]
In FIG. 5, in step S301, the in-cylinder pressure is detected. The process moves to step S302, where low-pass filtering is performed. In step S303, a logarithmic decrement per predetermined crank angle is calculated. The process proceeds to step S304, where an attenuation factor calculation process is executed, and the routine ends. In this way, as shown in FIG. 6, an ideal knock waveform a (θ) based on the attenuation shape of the in-cylinder pressure is created.
[0041]
Next, a description will be given based on a flowchart of FIG. 7 showing a processing procedure of the correlation calculation of the waveform before the peak value in step S204 in the comparison calculation with the ideal knock waveform of FIG.
[0042]
In FIG. 7, in step S401, it is determined whether the ideal knock waveform a (θ) is smaller than the detection waveform s (θ). When the determination condition of step S401 is satisfied, that is, when the ideal knock waveform a (θ) is smaller than the detection waveform s (θ), the process proceeds to step S402, and the peak-value-corrected knock magnitude is calculated by the following equation (1). This routine ends.
[0043]
(Equation 1)
Corrected knock intensity before peak value ← a (θ) × [1- {s (θ) −a (θ)} / a (θ)] (1)
[0044]
On the other hand, if the determination condition in step S401 is not satisfied, that is, if the ideal knock waveform a (θ) is greater than or equal to the detected waveform s (θ), the process proceeds to step S403, where the corrected knock intensity before the peak value is equal to the ideal knock waveform a (θ). θ), and this routine ends.
[0045]
Next, a description will be given based on a flowchart of FIG. 8 showing a processing procedure of the correlation calculation of the waveform after the peak value in step S205 in the comparison calculation with the ideal knock waveform of FIG.
[0046]
8, in step S501, the difference d (θ) between the ideal knock waveform a (θ) and the detected waveform s (θ) is calculated by the following equation (2).
[0047]
(Equation 2)
d (θ) ← | s (θ) −a (θ) | (2)
[0048]
Next, the routine proceeds to step S502, where the corrected knock intensity after the peak value is calculated by the following equation (3), and this routine ends.
[0049]
[Equation 3]
Corrected knock intensity after peak value ← a (θ) × {1−d (θ) / a (θ)} (3)
[0050]
Next, a description will be given based on a flowchart of FIG. 9 showing a processing procedure of creating a BGL (background level) in step S110 in the knock determination of FIG.
[0051]
In FIG. 9, in step S601, the average intensity of the noise frequency component is calculated, and this routine ends.
[0052]
As described above, the knock control device for an internal combustion engine according to the present embodiment includes a signal detection unit including the knock sensor 10 for detecting a vibration waveform signal generated in the internal combustion engine (not shown), the input circuit 11, and the filter 12; Frequency separating means including an A / D converter 21 and BPFs 22a to 22e of a knock detecting circuit 20 for separating a vibration waveform signal detected by the detecting means into a plurality of frequency components; and a plurality of frequencies separated by the frequency separating means. The section integrating units 23a to 23c of the knock detection circuit 20 that sets the knock waveform shape based on the value obtained by integrating the components Fa to Fc for each of the predetermined sections each including a predetermined crank angle, the adding unit 24, the comparison calculating units 25a to 25d, Knock generation in the internal combustion engine based on the waveform shape setting means achieved by the selection unit 27 and the knock waveform shape by the waveform shape setting means Knock determination means achieved by comparison operation / knock determination section 29 of knock detection circuit 20 for determining presence / absence of knock, and internal combustion engine control ECU 30 for controlling the operating state of the internal combustion engine according to the determination result by the knock determination means And knock control means achieved by the above.
[0053]
Here, in the case of a knock waveform in which one vibration mode is dominant, a knock determination can be made by extracting the vibration component waveform. However, when one knock waveform includes a plurality of vibration modes, the raw waveform of the sensor has an ideal knock waveform because the dominant vibration mode changes during the knock period. Looking only at the waveform shape of each knock frequency component, the knock waveform may deviate greatly from the ideal knock waveform, and the knock may not be determined.
[0054]
On the other hand, a vibration waveform signal generated in the internal combustion engine is separated into a plurality of frequency components, and a knock waveform set by a value obtained by integrating the plurality of separated frequency components for each predetermined section having a predetermined crank angle. According to the shape, a knock waveform shape as a sum of each vibration mode can be represented, and by using the knock waveform shape, the presence or absence of knock in the internal combustion engine can be accurately determined, and the operating state of the internal combustion engine can be appropriately determined. Can be controlled.
[0055]
In addition, the waveform shape setting means achieved by the section integration units 23a to 23c, the addition unit 24, the comparison calculation units 25a to 25d, and the knock intensity selection unit 27 of the knock detection circuit 20 of the knock control device for an internal combustion engine of the present embodiment. Is a value obtained by integrating the intensity of a plurality of frequency components Fa to Fc separated by the frequency separation means including the A / D converter 21 and the BPFs 22a to 22e of the knock detection circuit 20 for each predetermined section having a predetermined crank angle. The knock waveform shape is set by a frequency component consisting of a value obtained by adding a value for each same section.
[0056]
As described above, the vibration waveform signal generated in the internal combustion engine is separated into a plurality of frequency components, and a value obtained by intensity-integrating the separated plurality of frequency components for each predetermined section having a predetermined crank angle is obtained. According to the knock waveform shape set by at least two or more frequency components consisting of a value added to the above, a knock waveform shape as a sum of the respective vibration modes can be represented. It is possible to accurately determine whether knock has occurred in the engine, and to appropriately control the operating state of the internal combustion engine.
[0057]
The knock control device for an internal combustion engine according to the present embodiment uses the ideal knock waveform storage unit 26 of the knock detection circuit 20 that presets an ideal knock waveform shape of a vibration waveform signal generated in the internal combustion engine as an ideal knock waveform. An ideal waveform setting means is provided, wherein the waveform shape setting means corrects the knock intensity in the knock waveform shape according to the degree of deviation from the ideal knock waveform. In other words, by correcting the knock waveform shape in such a manner that the knock intensity becomes smaller as it deviates from the ideal knock waveform, it is possible to prevent a noise waveform having a large intensity but having a waveform shape different from the knock from being erroneously determined as a knock. be able to.
[0058]
Further, the waveform shape setting means achieved by the section integration units 23a to 23c, the addition unit 24, the comparison calculation units 25a to 25d, and the knock intensity selection unit 27 of the knock detection circuit 20 of the knock control device for an internal combustion engine of the present embodiment. Is to correct the knock intensity to be small when the intensity increase portion up to the peak of the knock waveform shape is gentler than the intensity increase rate of the ideal knock waveform. In other words, since the intensity increase rate of the intensity increase portion up to the peak of the knock waveform shape varies widely, when the intensity increase rate is steep as compared with the intensity increase rate of the ideal knock waveform, the intensity is kept as it is and is gentle. Sometimes the intensity is corrected in the direction of decreasing intensity. Thereby, it is possible to prevent the knock detection accuracy from deteriorating due to the variation in the rate of increase in intensity up to the peak of the knock waveform shape.
[0059]
Furthermore, the waveform shape setting achieved by the section integration units 23a to 23c, the addition unit 24, the comparison calculation units 25a to 25d, and the knock intensity selection unit 27 of the knock detection circuit 20 of the knock control device for an internal combustion engine of the present embodiment. The means corrects the knock intensity so that the knock intensity increases as the knock waveform shape approaches the ideal knock waveform. According to the knock intensity corrected in this manner, a knock-specific waveform shape is exhibited only when the knock frequency component is present, so that the separability between the noise waveform shape and the knock waveform shape, which are difficult to distinguish, can be improved.
[0060]
In addition, the knock determination means achieved by the comparison operation / knock determination unit 29 of the knock detection circuit 20 of the knock control device for an internal combustion engine of the present embodiment includes a noise frequency component (a frequency in a signal range not including the knock frequency component). BGL (background level) created based on the intensity of the component) is used as a reference for knock determination. Thus, knock determination can be made for each combustion cycle regardless of the operating state of the internal combustion engine.
[0061]
The knock determination means achieved by the comparison operation / knock determination unit 29 of the knock detection circuit 20 of the knock control device for an internal combustion engine according to the present embodiment includes a noise frequency component (a frequency component of a signal region not including a knock frequency component). BGL) created based on the average value or the sum of the intensities described in (1) is used as a criterion for knock determination. Thus, knock determination can be performed by comparing the strength of the knock frequency component with the frequency component other than knock, regardless of the operating state of the internal combustion engine.
[0062]
The knock determination means achieved by the comparison calculation / knock determination section 29 of the knock detection circuit 20 of the knock control device for an internal combustion engine of the present embodiment includes a knock waveform shape corrected by comparison with an ideal knock waveform. The knock determination value is set based on the knock intensity of the frequency component. Thus, it is possible to prevent the knock detection accuracy from deteriorating due to different vibration modes for each knock occurrence.
[0063]
Further, the ideal waveform setting means achieved by the ideal knock waveform storage section 26 of the knock detection circuit 20 of the knock control device for the internal combustion engine of the present embodiment determines the attenuation shape of the ideal knock waveform by using the in-cylinder pressure during the expansion stroke of the internal combustion engine. Is set with reference to the attenuation shape of. In other words, the damping shape of the pressure vibration of the knock is greatly affected by the pressure decrease in the expansion stroke of the internal combustion engine. Therefore, the ideal knock waveform can be easily set by using the damping shape of the in-cylinder pressure at this time as a reference. it can.
[0064]
Further, the ideal waveform setting means achieved by the ideal knock waveform storage section 26 of the knock detection circuit 20 of the knock control device for the internal combustion engine of the present embodiment is provided by an actual cylinder in which the in-cylinder pressure attenuation shape is detected by the internal combustion engine. It is set based on the internal pressure. That is, the attenuation shape of the in-cylinder pressure, which is used as a reference when setting the ideal knock shape, can be easily set based on the actual detected value.
[0065]
By the way, as shown in the above embodiment, it is ideal to set the ideal knock waveform by using a sensor device such as an in-cylinder pressure sensor capable of directly detecting the in-cylinder pressure. According to the predetermined value for each operating region, the sensor device can be omitted.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an overall configuration of a knock control device for an internal combustion engine according to an example of an embodiment of the present invention.
FIG. 2 is a time chart showing a schematic operation of knock detection / determination by a knock detection circuit of FIG. 1;
FIG. 3 is a flowchart showing a procedure of a knock determination in a knock detection circuit used in a knock control device for an internal combustion engine according to one embodiment of the present invention.
FIG. 4 is a flowchart illustrating a processing procedure of a comparison operation with an ideal knock waveform in the knock determination of FIG. 3;
FIG. 5 is a flowchart illustrating a processing procedure of an ideal knock waveform calculation in a comparison operation with the ideal knock waveform of FIG. 4;
FIG. 6 is an explanatory view showing creation of an ideal knock waveform based on the attenuation shape of the in-cylinder pressure in FIG.
FIG. 7 is a flowchart showing a processing procedure of a correlation calculation of a waveform before a peak value in a comparison calculation with an ideal knock waveform of FIG. 4;
8 is a flowchart illustrating a processing procedure of a correlation calculation of a waveform after a peak value in a comparison calculation with the ideal knock waveform of FIG. 4;
FIG. 9 is a flowchart illustrating a processing procedure of BGL creation in knock determination in FIG. 3;
[Explanation of symbols]
10 Knock sensor
20 Knock detection circuit

Claims (10)

内燃機関で発生する振動波形信号を検出する信号検出手段と、
前記信号検出手段で検出された振動波形信号を複数の周波数成分に分離する周波数分離手段と、
前記周波数分離手段で分離された複数の周波数成分を所定クランク角からなる所定区間毎に強度積算した値によりノック波形形状を設定する波形形状設定手段と、
前記波形形状設定手段によるノック波形形状に基づき前記内燃機関におけるノック発生の有無を判定するノック判定手段と、
前記ノック判定手段による判定結果に応じて前記内燃機関の運転状態を制御するノック制御手段と
を具備することを特徴とする内燃機関のノック制御装置。
Signal detection means for detecting a vibration waveform signal generated in the internal combustion engine,
Frequency separation means for separating the vibration waveform signal detected by the signal detection means into a plurality of frequency components,
Waveform shape setting means for setting a knock waveform shape by a value obtained by integrating the intensity of a plurality of frequency components separated by the frequency separation means for each predetermined section consisting of a predetermined crank angle,
Knock determination means for determining whether or not knock has occurred in the internal combustion engine based on a knock waveform shape by the waveform shape setting means,
A knock control device for controlling the operating state of the internal combustion engine according to a result of the determination by the knock determination device.
前記波形形状設定手段は、前記周波数分離手段で分離された複数の周波数成分を所定クランク角からなる所定区間毎に強度積算した値と、この値を同一区間毎に加算した値とからなる少なくとも2つ以上の周波数成分によりノック波形形状を設定することを特徴とする請求項1に記載の内燃機関のノック制御装置。The waveform shape setting means includes a value obtained by integrating the intensity of a plurality of frequency components separated by the frequency separation means for each predetermined section having a predetermined crank angle, and a value obtained by adding this value for each same section. The knock control device for an internal combustion engine according to claim 1, wherein the knock waveform shape is set by one or more frequency components. 前記内燃機関で発生する振動波形信号の理想的なノック波形形状を理想ノック波形として予め設定する理想波形設定手段を具備し、
前記波形形状設定手段は、前記ノック波形形状に対し、前記理想ノック波形からのはずれ度合いに応じてノック強度を補正することを特徴とする請求項1または請求項2に記載の内燃機関のノック制御装置。
An ideal knock setting unit that presets an ideal knock waveform shape of a vibration waveform signal generated in the internal combustion engine as an ideal knock waveform,
The knock control of an internal combustion engine according to claim 1 or 2, wherein the waveform shape setting means corrects the knock intensity with respect to the knock waveform shape according to a degree of deviation from the ideal knock waveform. apparatus.
前記波形形状設定手段は、前記ノック波形形状のピークまでの強度上昇部分が、前記理想ノック波形の強度上昇率よりも緩やかな場合には、ノック強度が小さくなるよう補正することを特徴とする請求項3に記載の内燃機関のノック制御装置。The waveform shape setting means corrects the knock intensity so that the knock intensity decreases when the intensity increase portion up to the peak of the knock waveform shape is gentler than the intensity increase rate of the ideal knock waveform. Item 4. A knock control device for an internal combustion engine according to Item 3. 前記波形形状設定手段は、前記ノック波形形状が前記理想ノック波形に近いほどノック強度が大きくなるよう補正することを特徴とする請求項3に記載の内燃機関のノック制御装置。4. The knock control apparatus for an internal combustion engine according to claim 3, wherein the waveform shape setting means corrects the knock intensity so that the knock intensity increases as the knock waveform shape approaches the ideal knock waveform. 前記ノック判定手段は、ノック周波数成分を含まない信号域の周波数成分の強度に基づき作成されたバックグランドレベルをノック判定の基準とすることを特徴とする請求項3に記載の内燃機関のノック制御装置。4. The knock control of an internal combustion engine according to claim 3, wherein the knock determination means uses a background level created based on the intensity of a frequency component in a signal range not including a knock frequency component as a reference for knock determination. apparatus. 前記ノック判定手段は、ノック周波数成分を含まない信号域の周波数成分の強度の平均値または総和に基づき作成されたバックグランドレベルをノック判定の基準とすることを特徴とする請求項3に記載の内燃機関のノック制御装置。4. The knock determination unit according to claim 3, wherein the knock determination unit uses a background level created based on an average value or a sum of the intensities of the frequency components in the signal range that does not include the knock frequency component as a reference for knock determination. 5. Knock control device for internal combustion engine. 前記ノック判定手段は、前記理想ノック波形との比較により補正された前記ノック波形形状の各周波数成分におけるノック強度に基づきノック判定値を設定することを特徴とする請求項3に記載の内燃機関のノック制御装置。4. The internal combustion engine according to claim 3, wherein the knock determination unit sets a knock determination value based on a knock intensity in each frequency component of the knock waveform shape corrected by comparison with the ideal knock waveform. Knock control device. 前記理想波形設定手段は、前記理想ノック波形の減衰形状を前記内燃機関の膨張行程における筒内圧の減衰形状を基準として設定することを特徴とする請求項3に記載の内燃機関のノック制御装置。4. The knock control device for an internal combustion engine according to claim 3, wherein the ideal waveform setting means sets the attenuation shape of the ideal knock waveform based on the attenuation shape of the in-cylinder pressure during an expansion stroke of the internal combustion engine. 前記理想波形設定手段は、前記筒内圧の減衰形状を前記内燃機関で検出された実際の筒内圧、または前記内燃機関の運転状態から推定された筒内圧、または予め設定された1つまたは複数の運転領域毎の筒内圧に基づき設定することを特徴とする請求項9に記載の内燃機関のノック制御装置。The ideal waveform setting means is configured to determine the attenuation shape of the in-cylinder pressure by an actual in-cylinder pressure detected in the internal combustion engine, or an in-cylinder pressure estimated from an operation state of the internal combustion engine, or one or more preset cylinder pressures. The knock control device for an internal combustion engine according to claim 9, wherein the setting is performed based on the in-cylinder pressure for each operation region.
JP2003151162A 2003-05-28 2003-05-28 Knock control device for internal combustion engine Expired - Lifetime JP4297734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003151162A JP4297734B2 (en) 2003-05-28 2003-05-28 Knock control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003151162A JP4297734B2 (en) 2003-05-28 2003-05-28 Knock control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2004353531A true JP2004353531A (en) 2004-12-16
JP4297734B2 JP4297734B2 (en) 2009-07-15

Family

ID=34046772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003151162A Expired - Lifetime JP4297734B2 (en) 2003-05-28 2003-05-28 Knock control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4297734B2 (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005330954A (en) * 2004-04-22 2005-12-02 Toyota Motor Corp Knocking determination device for internal combustion engine, and ignition control system including the same device
JP2006177319A (en) * 2004-12-24 2006-07-06 Toyota Motor Corp Knocking determining device for internal combustion engine
JP2006300034A (en) * 2005-04-25 2006-11-02 Toyota Motor Corp Knocking determining device of internal combustion engine
JP2006307664A (en) * 2005-04-26 2006-11-09 Toyota Motor Corp Knocking determining device of internal combustion engine
JP2006307665A (en) * 2005-04-26 2006-11-09 Toyota Motor Corp Knocking determining device of internal combustion engine
JP2006336604A (en) * 2005-06-06 2006-12-14 Denso Corp Knocking controller for internal combustion engine
JP2007009728A (en) * 2005-06-28 2007-01-18 Toyota Motor Corp Ignition timing control device for internal combustion engine
JP2007009735A (en) * 2005-06-28 2007-01-18 Toyota Motor Corp Ignition timing control device for internal combustion engine
US7181338B2 (en) 2004-12-14 2007-02-20 Denso Corporation Knock determining apparatus for internal combustion engine
US7219006B2 (en) * 2005-07-15 2007-05-15 Denso Corporation Knock determining apparatus
US7251556B2 (en) 2004-12-22 2007-07-31 Toyota Jidosha Kabushiki Kaisha Knock determination device for internal combustion engine
JP2007198313A (en) * 2006-01-27 2007-08-09 Toyota Motor Corp Ignition timing control device for internal combustion engine
JP2007315360A (en) * 2006-05-29 2007-12-06 Toyota Motor Corp Knocking determining device of internal combustion engine
WO2007139042A1 (en) * 2006-05-29 2007-12-06 Toyota Jidosha Kabushiki Kaisha Internal combustion engine knocking judgment device and knocking judgment method
JP2008031988A (en) * 2006-06-28 2008-02-14 Toyota Motor Corp Device for determining knocking of internal combustion engine
US7363142B2 (en) 2006-03-20 2008-04-22 Toyota Jidosha Kabushiki Kaisha Device and method for controlling ignition timing of internal combustion engine
JP2008111407A (en) * 2006-10-31 2008-05-15 Toyota Motor Corp Device and method for determining knocking in internal combustion engine, program materializing method thereof, and record medium recording program thereof
US7392788B2 (en) 2006-03-20 2008-07-01 Toyota Jidosha Kabushiki Kaisha Device and method for controlling ignition timing of internal combustion engine
US7441543B2 (en) 2006-06-16 2008-10-28 Toyota Jidosha Kabushiki Kaisha Device and method for controlling ignition timing of internal combustion engine
US7478622B2 (en) 2006-06-28 2009-01-20 Toyota Jidosha Kabushiki Kaisha Device and method for determining knocking of internal combustion engine
JP2009019547A (en) * 2007-07-11 2009-01-29 Toyota Motor Corp Knocking determination device of internal combustion engine
US7500468B2 (en) 2006-06-28 2009-03-10 Toyota Jidosha Kabushiki Kaisha Device and method for determining knocking of internal combustion engine
JP2009115042A (en) * 2007-11-08 2009-05-28 Toyota Motor Corp Device and method for judging knocking of internal combustion engine
JP2009275521A (en) * 2008-05-12 2009-11-26 Mitsubishi Electric Corp Control apparatus for internal combustion engine
US7637247B2 (en) 2006-03-20 2009-12-29 Toyota Jidosha Kabushiki Kaisha Device and method for determining knocking of internal combustion engine
US7653477B2 (en) 2006-01-27 2010-01-26 Toyota Jidosha Kabushiki Kaisha Method and device for control ignition timing through knock control in an internal combustion engine
US7677083B2 (en) 2005-04-26 2010-03-16 Toyota Jidosha Kabushiki Kaisha Internal combustion engine knock determination device
KR100950882B1 (en) * 2005-06-30 2010-04-06 도요타 지도샤(주) Knocking determination device for internal combustion engine
JP2010117367A (en) * 2010-02-16 2010-05-27 Toyota Motor Corp Knocking determination device of internal combustion engine
US7779673B2 (en) 2006-01-10 2010-08-24 Toyota Jidosha Kabushiki Kaisha Device and method for determining knocking of internal combustion engine
US7822533B2 (en) 2006-05-29 2010-10-26 Toyota Jidosha Kabushiki Kaisha Knocking determination device and knocking determination method of internal combustion engine
US8000884B2 (en) 2005-12-09 2011-08-16 Toyota Jidosha Kabushiki Kaisha Device and method for controlling ignition timing of internal combustion engine
JP2016156374A (en) * 2015-02-09 2016-09-01 ゼネラル・エレクトリック・カンパニイ Methods and systems to derive knock sensor conditions
EP3124775A1 (en) 2015-07-28 2017-02-01 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
JP2017207015A (en) * 2016-05-19 2017-11-24 株式会社豊田自動織機 Knocking detection device and knocking detection method for internal combustion engine
JP2019100282A (en) * 2017-12-05 2019-06-24 大阪瓦斯株式会社 Discrimination method for combustion state of auxiliary chamber type engine, auxiliary chamber type engine and engine system
EP3587778A1 (en) * 2018-06-27 2020-01-01 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
JP2020045827A (en) * 2018-09-19 2020-03-26 株式会社デンソー Knock determination device and knock control device
CN113915039A (en) * 2021-10-11 2022-01-11 宁波吉利罗佑发动机零部件有限公司 Knock adaptive method and system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11982246B2 (en) 2020-11-23 2024-05-14 Transportation Ip Holdings, Llc Methods and systems for engine

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005330954A (en) * 2004-04-22 2005-12-02 Toyota Motor Corp Knocking determination device for internal combustion engine, and ignition control system including the same device
US7181338B2 (en) 2004-12-14 2007-02-20 Denso Corporation Knock determining apparatus for internal combustion engine
US7251556B2 (en) 2004-12-22 2007-07-31 Toyota Jidosha Kabushiki Kaisha Knock determination device for internal combustion engine
JP2006177319A (en) * 2004-12-24 2006-07-06 Toyota Motor Corp Knocking determining device for internal combustion engine
JP4557709B2 (en) * 2004-12-24 2010-10-06 トヨタ自動車株式会社 Internal combustion engine knock determination device
US7206691B2 (en) 2004-12-24 2007-04-17 Toyota Jidosha Kabushiki Kaisha Internal combustion engine knock determination device
JP2006300034A (en) * 2005-04-25 2006-11-02 Toyota Motor Corp Knocking determining device of internal combustion engine
JP4491373B2 (en) * 2005-04-25 2010-06-30 トヨタ自動車株式会社 Internal combustion engine knock determination device
JP2006307664A (en) * 2005-04-26 2006-11-09 Toyota Motor Corp Knocking determining device of internal combustion engine
US7677083B2 (en) 2005-04-26 2010-03-16 Toyota Jidosha Kabushiki Kaisha Internal combustion engine knock determination device
JP2006307665A (en) * 2005-04-26 2006-11-09 Toyota Motor Corp Knocking determining device of internal combustion engine
JP4532348B2 (en) * 2005-06-06 2010-08-25 株式会社日本自動車部品総合研究所 Knocking control device for internal combustion engine
JP2006336604A (en) * 2005-06-06 2006-12-14 Denso Corp Knocking controller for internal combustion engine
JP2007009735A (en) * 2005-06-28 2007-01-18 Toyota Motor Corp Ignition timing control device for internal combustion engine
JP2007009728A (en) * 2005-06-28 2007-01-18 Toyota Motor Corp Ignition timing control device for internal combustion engine
JP4600181B2 (en) * 2005-06-28 2010-12-15 トヨタ自動車株式会社 Ignition timing control device for internal combustion engine
US7478624B2 (en) * 2005-06-28 2009-01-20 Toyota Jidosha Kabushiki Kaisha Ignition timing control device of internal combustion engine
JP4538383B2 (en) * 2005-06-28 2010-09-08 トヨタ自動車株式会社 Ignition timing control device for internal combustion engine
KR100950882B1 (en) * 2005-06-30 2010-04-06 도요타 지도샤(주) Knocking determination device for internal combustion engine
US7219006B2 (en) * 2005-07-15 2007-05-15 Denso Corporation Knock determining apparatus
US8000884B2 (en) 2005-12-09 2011-08-16 Toyota Jidosha Kabushiki Kaisha Device and method for controlling ignition timing of internal combustion engine
US7779673B2 (en) 2006-01-10 2010-08-24 Toyota Jidosha Kabushiki Kaisha Device and method for determining knocking of internal combustion engine
JP2007198313A (en) * 2006-01-27 2007-08-09 Toyota Motor Corp Ignition timing control device for internal combustion engine
JP4559977B2 (en) * 2006-01-27 2010-10-13 トヨタ自動車株式会社 Ignition timing control device for internal combustion engine
US7653477B2 (en) 2006-01-27 2010-01-26 Toyota Jidosha Kabushiki Kaisha Method and device for control ignition timing through knock control in an internal combustion engine
US7392788B2 (en) 2006-03-20 2008-07-01 Toyota Jidosha Kabushiki Kaisha Device and method for controlling ignition timing of internal combustion engine
US7637247B2 (en) 2006-03-20 2009-12-29 Toyota Jidosha Kabushiki Kaisha Device and method for determining knocking of internal combustion engine
US7363142B2 (en) 2006-03-20 2008-04-22 Toyota Jidosha Kabushiki Kaisha Device and method for controlling ignition timing of internal combustion engine
WO2007139127A1 (en) * 2006-05-29 2007-12-06 Toyota Jidosha Kabushiki Kaisha Knocking judgement device and knocking judgement method for internal combustion engine
US8042381B2 (en) 2006-05-29 2011-10-25 Toyota Jidosha Kabushiki Kaisha Knocking determination apparatus and knocking determination method for internal combustion engine
JP2007315360A (en) * 2006-05-29 2007-12-06 Toyota Motor Corp Knocking determining device of internal combustion engine
DE112007001297T5 (en) 2006-05-29 2009-04-23 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Knock determination device and knock determination method for internal combustion engine
DE112007001073B4 (en) 2006-05-29 2013-05-29 Nippon Soken, Inc. Knock determination device and knock determination method of an internal combustion engine
US7942040B2 (en) 2006-05-29 2011-05-17 Toyota Jidosha Kabushiki Kaisha Knocking determination device and method for internal combustion engine
WO2007139042A1 (en) * 2006-05-29 2007-12-06 Toyota Jidosha Kabushiki Kaisha Internal combustion engine knocking judgment device and knocking judgment method
JP4575902B2 (en) * 2006-05-29 2010-11-04 トヨタ自動車株式会社 Internal combustion engine knock determination device
DE112007001297B4 (en) * 2006-05-29 2012-12-13 Toyota Jidosha K.K. Knock determination device and knock determination method for an internal combustion engine
US7822533B2 (en) 2006-05-29 2010-10-26 Toyota Jidosha Kabushiki Kaisha Knocking determination device and knocking determination method of internal combustion engine
US7441543B2 (en) 2006-06-16 2008-10-28 Toyota Jidosha Kabushiki Kaisha Device and method for controlling ignition timing of internal combustion engine
JP2008031988A (en) * 2006-06-28 2008-02-14 Toyota Motor Corp Device for determining knocking of internal combustion engine
US8020429B2 (en) 2006-06-28 2011-09-20 Toyota Jidosha Kabushiki Kaisha Device and method for determining knocking of internal combustion engine
US7478622B2 (en) 2006-06-28 2009-01-20 Toyota Jidosha Kabushiki Kaisha Device and method for determining knocking of internal combustion engine
JP4597167B2 (en) * 2006-06-28 2010-12-15 トヨタ自動車株式会社 Internal combustion engine knock determination device
US7500468B2 (en) 2006-06-28 2009-03-10 Toyota Jidosha Kabushiki Kaisha Device and method for determining knocking of internal combustion engine
JP2008111407A (en) * 2006-10-31 2008-05-15 Toyota Motor Corp Device and method for determining knocking in internal combustion engine, program materializing method thereof, and record medium recording program thereof
JP4745198B2 (en) * 2006-10-31 2011-08-10 トヨタ自動車株式会社 Internal combustion engine knock determination device, determination method, program for realizing the method, and recording medium recording the program
JP2009019547A (en) * 2007-07-11 2009-01-29 Toyota Motor Corp Knocking determination device of internal combustion engine
JP2009115042A (en) * 2007-11-08 2009-05-28 Toyota Motor Corp Device and method for judging knocking of internal combustion engine
JP4550917B2 (en) * 2008-05-12 2010-09-22 三菱電機株式会社 Control device for internal combustion engine
JP2009275521A (en) * 2008-05-12 2009-11-26 Mitsubishi Electric Corp Control apparatus for internal combustion engine
US7788022B2 (en) 2008-05-12 2010-08-31 Mitsubishi Electric Corporation Control apparatus for internal combustion engine
JP2010117367A (en) * 2010-02-16 2010-05-27 Toyota Motor Corp Knocking determination device of internal combustion engine
JP2016156374A (en) * 2015-02-09 2016-09-01 ゼネラル・エレクトリック・カンパニイ Methods and systems to derive knock sensor conditions
EP3124775A1 (en) 2015-07-28 2017-02-01 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
JP2017025893A (en) * 2015-07-28 2017-02-02 トヨタ自動車株式会社 Control device of internal combustion engine
US9797331B2 (en) 2015-07-28 2017-10-24 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
JP2017207015A (en) * 2016-05-19 2017-11-24 株式会社豊田自動織機 Knocking detection device and knocking detection method for internal combustion engine
JP2019100282A (en) * 2017-12-05 2019-06-24 大阪瓦斯株式会社 Discrimination method for combustion state of auxiliary chamber type engine, auxiliary chamber type engine and engine system
EP3587778A1 (en) * 2018-06-27 2020-01-01 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
US10731596B2 (en) 2018-06-27 2020-08-04 Toyota Jidosha Kabushiki Kaisha Internal combustion engine and control device for internal combustion engine
JP2020045827A (en) * 2018-09-19 2020-03-26 株式会社デンソー Knock determination device and knock control device
WO2020059408A1 (en) * 2018-09-19 2020-03-26 株式会社デンソー Knocking determination device and knocking control device
JP7081420B2 (en) 2018-09-19 2022-06-07 株式会社デンソー Knock determination device and knock control device
CN113915039A (en) * 2021-10-11 2022-01-11 宁波吉利罗佑发动机零部件有限公司 Knock adaptive method and system
CN113915039B (en) * 2021-10-11 2023-05-23 宁波吉利罗佑发动机零部件有限公司 Knock self-adaption method and system

Also Published As

Publication number Publication date
JP4297734B2 (en) 2009-07-15

Similar Documents

Publication Publication Date Title
JP2004353531A (en) Knock control device of internal combustion engine
US7387107B2 (en) Knocking state determination device
JP4390786B2 (en) Internal combustion engine knock determination device
KR100950882B1 (en) Knocking determination device for internal combustion engine
KR100540900B1 (en) Knocking control apparatus for internal combustion engine
JP4404811B2 (en) Knocking state determination device
JP2005299579A (en) Knock detection device of internal combustion engine
JP4532348B2 (en) Knocking control device for internal combustion engine
JP2007315360A (en) Knocking determining device of internal combustion engine
JP2006177259A (en) Knocking determining device for internal combustion engine
JP2006300036A (en) Knocking determining device of internal combustion engine
JP4468865B2 (en) Internal combustion engine knock determination device
JP2005090250A (en) Engine knock control device
WO2007139221A1 (en) Device for judging knocking of internal combustion engine and method for judging knocking of internal combustion engine
JP2006348764A (en) Knocking determination device for internal combustion engine
JP2002047994A (en) Knock control system of internal combustion engine
JP2003278592A (en) Knock control device of internal combustion engine
JP2007009734A (en) Control unit of internal combustion engine
JP2018091214A (en) Detection system for internal combustion engine knocking
JP4410719B2 (en) Internal combustion engine knock determination device
EP2868902A1 (en) Power unit of saddle-riding type vehicle, saddle-riding type vehicle and method for controlling power unit
JP2006307664A (en) Knocking determining device of internal combustion engine
JP5253432B2 (en) Internal combustion engine knock determination device
JP2008069752A (en) Method for specifying frequency
JP2007211690A (en) Ignition timing control device for internal combustion engine

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051213

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051213

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090414

R150 Certificate of patent or registration of utility model

Ref document number: 4297734

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term