JP2004352968A - Photofunctional material - Google Patents

Photofunctional material Download PDF

Info

Publication number
JP2004352968A
JP2004352968A JP2003190698A JP2003190698A JP2004352968A JP 2004352968 A JP2004352968 A JP 2004352968A JP 2003190698 A JP2003190698 A JP 2003190698A JP 2003190698 A JP2003190698 A JP 2003190698A JP 2004352968 A JP2004352968 A JP 2004352968A
Authority
JP
Japan
Prior art keywords
polymer compound
refractive index
structural unit
optical waveguide
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003190698A
Other languages
Japanese (ja)
Inventor
Takashi Aoki
隆司 青木
Makoto Takahashi
真 高橋
Tatatomi Nishikubo
忠臣 西久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANBO CHEMICAL IND CO Ltd
Original Assignee
SANBO CHEMICAL IND CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANBO CHEMICAL IND CO Ltd filed Critical SANBO CHEMICAL IND CO Ltd
Priority to JP2003190698A priority Critical patent/JP2004352968A/en
Publication of JP2004352968A publication Critical patent/JP2004352968A/en
Pending legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical waveguide material having high sensitivities to visible and ultraviolet lights and excellent in mass productivity. <P>SOLUTION: The photofunctional material comprises a polymer compound consisting of a structural unit of formula (I) and a structural unit of formula (II). In the photofunctional material, the polymer compound, which is photosensitive, may be cross-linked under exposure to light to produce a change in a refractive index, forming the optical waveguide material. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は光により架橋して、屈折率が変化することにより光導波路材料として有用な光機能性材料に関する。
【0002】
【従来の技術】
光学部品や光ファイバの基材としては、光伝送損失が少なく、伝送範囲が広いことから、一般に石英ガラス等の無機系材料が広く使用されてきた。一方、高分子系光学材料も開発されており、無機系材料と比較して加工性が良く、安価であり、さらに屈折率の調整が容易である等の特徴を有し、注目されている。光ファイバにおいては、ポリメチルメタクリレート(PMMA)またはポリスチレンのような透明性に優れた高分子をコア(芯)とし、そのコア成分よりも屈折率の低い高分子をクラッド(鞘)成分としたコアクラッド構造からなるものが知られている。
【0003】
一般に光導波路を製造においては、半導体分野で用いられるフォトリソグラフィーとドライエッチングの組み合わせが主となっているが、この方法は工程数も多く、量産を目指すには効率的な方法とは言えない。これに対し光硬化樹脂を用いた直接露光法も考案されている。しかしこの方法も高分子材料としてコア用、クラッド用の2種類を用意する必要がある。また、フッ素化ポリイミド等を用いて電子線照射により選択的に屈折率変化を起こさせることも検討されてきたが、しかしこの方法も電子線を用いることが必要であり、材料としてフッ素化合物のみに対象が限定されたものであった。
【0004】
【発明が解決しようとする課題】
本発明は、上記のような従来技術の問題点を解消し、可視光および紫外光に対して高感度で量産性に優れた光導波路に利用できる光機能性材料を提供しようとするものである。
【0005】
【問題を解決するための手段】
【0006】
本発明は、上記課題を解決するため、感光性基を有する高分子化合物を含有する光機能性材料に光照射し、この高分子化合物に構造変化を与えて屈折率変化を起す光導波路材料を提供する。
【0007】
【発明の実施の形態】
本発明に係る請求項1の光機能性材料おいて、下記の式(I)で表される構成単位と式(II)で表される構成単位からなるランダム共重合物を挙げることができる。
【0008】
【化2】

Figure 2004352968
【0009】
本発明の感光性基を有する高分子化合物は、式(I)で表されるベンザルアセトフェノン基を有する構成単位と式(II)で表されるグリシジル基を有する構成単位とがランダムに配列されたものからなる。
【0010】高分子化合物の製造
例えばR=Hである4−メタクロイルオキシベンザルアセトフェノンとグリシジルメタクリレートを所定量採り、通常溶液中で、重合開始剤の存在化にラジカル重合することにより製造される。溶媒として、例えばシクロヘキサノン、キシレン、メチルイソブチルケトン、酢酸エチル、ジオキサン、テトラヒドロフラン等を用いれば良く、これらを1種または2種以上を用いる。重合開始剤としては、通常のものを用いることができ、例えば、ジ−tert−ブチルペルオキシド、2,2‘−アゾビスイソブチロニトリル、過酸化アセチル等を用いれば良い。
【0011】
上記高分子化合物に光照射することにより架橋し、下記式(III)で表されるシクロブタン環を形成した高分子化合物を製造する。この架橋により屈折率変化が起きるため、光導波路が形成できる光機能性材料を製造することができる。
【化2】
Figure 2004352968
【0012】
本発明の光導波路製作法は、上記の光機能性材料のみを用い、光照射のみで屈折率変化を起こさせることを特徴とする。また、本発明光機能性材料は、透明性、耐水・耐溶剤性、耐エッチング性に優れるのみならず、構成単位にグリシジル基を有することにより耐熱性および基板との接着性にも優れている。
【0013】
【実施例】以下、実施例により本発明をさらに具体的に説明するが、本発明は実施例により何ら限定されるものではない。
【0014】高分子化合物の製造例
4−メタクロイルオキシベンザルアセトフェノン12.5g、グリシジルメタクリレート30gをジオキサン150gに溶解し、アゾビスイソブチロニトリルをモノマーに対して約0.5重量%加え、60℃で4〜5時間共重合させて製造した。得られた溶液をメタノール中に注ぎ、共重合物を析出させろ過乾燥した。この共重合物は粉末状で、GPC分析の結果、数平均分子量は約15000であった。また、この共重合物を10%ジオキサン溶液としたときの粘度は約35センチポイズ(25℃)であった。
紫外線スペクトルにより共重合物のベンザルアセトフェノン基の含有量を測定した結果、約30モル%であった。
【0015】薄膜の作成と屈折率の測定
前記、共重合物をシクロヘキサノンに溶解し石英基板上に膜圧が2〜6μmになるようにスピンコート後、減圧乾燥して調製した。薄膜の膜厚および屈折率は、導波路法に基づいた装置を用いて測定し、アルゴンレーザー光(波長514.5nm)に対する値を求めた(表1)。光架橋反応は250W超高圧水銀灯を装填したウシオ電機株式会社製UIS−251H光照射装置で露光して架橋させた。
【0016】
【表1】
Figure 2004352968
【0017】
この結果、アルゴンレーザー光を照射した部分の屈折率が低くなり、この部分をクラッド層とし、その周囲の未露光部分をコア層とする光導波路を形成することができた。
【発明の効果】
本発明に係る光機能性材料は、光照射することにより感光性高分子化合物が架橋して屈折率変化を起こし、光導波路を形成することが可能となる。本発明の技術は従来技術と比較して簡便かつ量産性に優れている利点が得られる。また、屈折率制御が容易であることから、屈折率を整合させた光機能性材料が容易に提供できる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an optical functional material that is useful as an optical waveguide material by being crosslinked by light and changing the refractive index.
[0002]
[Prior art]
In general, inorganic materials such as quartz glass have been widely used as base materials for optical components and optical fibers because of their low optical transmission loss and wide transmission range. On the other hand, polymer-based optical materials have also been developed, and have attracted attention because of their characteristics such as better workability, lower cost, and easier adjustment of the refractive index than inorganic materials. In an optical fiber, a core made of a polymer having excellent transparency such as polymethyl methacrylate (PMMA) or polystyrene is used as a core, and a polymer having a lower refractive index than the core component is used as a clad (sheath) component. A clad structure is known.
[0003]
Generally, in manufacturing an optical waveguide, a combination of photolithography and dry etching used in the field of semiconductors is mainly used. However, this method has many steps and cannot be said to be an efficient method for mass production. On the other hand, a direct exposure method using a photocurable resin has been devised. However, this method also requires preparing two types of polymer materials, one for the core and one for the clad. Also, it has been studied to selectively cause a change in the refractive index by electron beam irradiation using a fluorinated polyimide or the like, but this method also requires the use of an electron beam, and only a fluorine compound is used as a material. Subject was limited.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-mentioned problems of the prior art and to provide an optical functional material that can be used for an optical waveguide having high sensitivity to visible light and ultraviolet light and excellent in mass productivity. .
[0005]
[Means to solve the problem]
[0006]
The present invention solves the above-mentioned problems by irradiating an optical functional material containing a polymer compound having a photosensitive group with light, and giving an optical waveguide material that causes a change in refractive index by giving a structural change to the polymer compound. provide.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
In the optical functional material according to claim 1 of the present invention, a random copolymer comprising a structural unit represented by the following formula (I) and a structural unit represented by the following formula (II) can be mentioned.
[0008]
Embedded image
Figure 2004352968
[0009]
In the polymer compound having a photosensitive group according to the present invention, a structural unit having a benzalacetophenone group represented by the formula (I) and a structural unit having a glycidyl group represented by the formula (II) are randomly arranged. It consists of things.
Production of high molecular compound For example, it is produced by taking a predetermined amount of 4-methacryloyloxybenzalacetophenone and glycidyl methacrylate in which R = H and subjecting it to radical polymerization in the presence of a polymerization initiator in a normal solution. . As the solvent, for example, cyclohexanone, xylene, methyl isobutyl ketone, ethyl acetate, dioxane, tetrahydrofuran or the like may be used, and one or more of these may be used. As the polymerization initiator, a usual one can be used, and for example, di-tert-butyl peroxide, 2,2′-azobisisobutyronitrile, acetyl peroxide and the like may be used.
[0011]
The polymer compound is cross-linked by irradiating the polymer compound with light to produce a polymer compound having a cyclobutane ring represented by the following formula (III). Since the refractive index changes due to this cross-linking, an optical functional material that can form an optical waveguide can be manufactured.
Embedded image
Figure 2004352968
[0012]
An optical waveguide manufacturing method according to the present invention is characterized in that a refractive index change is caused only by light irradiation using only the above-mentioned optical functional material. Further, the optical functional material of the present invention is not only excellent in transparency, water resistance and solvent resistance, and etching resistance, but also excellent in heat resistance and adhesiveness to a substrate by having a glycidyl group in a constituent unit. .
[0013]
EXAMPLES The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the present invention.
Preparation Example 4 of Polymer Compound 1 12.5 g of methacryloyloxybenzalacetophenone and 30 g of glycidyl methacrylate are dissolved in 150 g of dioxane, and about 0.5% by weight of azobisisobutyronitrile is added to the monomer. It was produced by copolymerizing at 60 ° C. for 4 to 5 hours. The resulting solution was poured into methanol to precipitate a copolymer, which was filtered and dried. This copolymer was in a powder form, and as a result of GPC analysis, the number average molecular weight was about 15,000. The viscosity of this copolymer as a 10% dioxane solution was about 35 centipoise (25 ° C.).
As a result of measuring the content of the benzal acetophenone group of the copolymer by an ultraviolet spectrum, it was about 30 mol%.
Preparation of Thin Film and Measurement of Refractive Index The above copolymer was dissolved in cyclohexanone, spin-coated on a quartz substrate to a film pressure of 2 to 6 μm, and dried under reduced pressure. The thickness and the refractive index of the thin film were measured using an apparatus based on the waveguide method, and the values with respect to argon laser light (wavelength: 514.5 nm) were obtained (Table 1). The photo-crosslinking reaction was carried out by exposing to light using a UIS-251H light irradiation device manufactured by Ushio Inc. equipped with a 250 W ultra-high pressure mercury lamp.
[0016]
[Table 1]
Figure 2004352968
[0017]
As a result, the refractive index of the portion irradiated with the argon laser light became low, and an optical waveguide having the portion as a cladding layer and the surrounding unexposed portion as a core layer could be formed.
【The invention's effect】
In the optical functional material according to the present invention, by irradiating light, the photosensitive polymer compound is cross-linked to cause a change in the refractive index, so that an optical waveguide can be formed. The technique of the present invention has advantages that it is simpler and more excellent in mass productivity than the conventional technique. In addition, since the refractive index control is easy, an optical functional material having a matched refractive index can be easily provided.

Claims (3)

光照射することにより架橋が起こる感光性高分子化合物で構成されることを特徴とする光機能性材料。An optical functional material comprising a photosensitive polymer compound that undergoes crosslinking upon irradiation with light. 請求項1に記載された高分子化合物に光照射で屈折率が変化することにより光導波路を形成することを特徴とする光機能性材料。An optical functional material, wherein an optical waveguide is formed by changing the refractive index of the polymer compound according to claim 1 by light irradiation. 請求項1に記載された感光性高分子は式(I)で表される構成単位と(II)で表される構成単位とからなるランダム共重合体であることを特徴とする光機能性材料。
Figure 2004352968
Figure 2004352968
2. The photofunctional material according to claim 1, wherein the photopolymer is a random copolymer comprising a structural unit represented by the formula (I) and a structural unit represented by the formula (II). .
Figure 2004352968
Figure 2004352968
JP2003190698A 2003-05-28 2003-05-28 Photofunctional material Pending JP2004352968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003190698A JP2004352968A (en) 2003-05-28 2003-05-28 Photofunctional material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003190698A JP2004352968A (en) 2003-05-28 2003-05-28 Photofunctional material

Publications (1)

Publication Number Publication Date
JP2004352968A true JP2004352968A (en) 2004-12-16

Family

ID=34055474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003190698A Pending JP2004352968A (en) 2003-05-28 2003-05-28 Photofunctional material

Country Status (1)

Country Link
JP (1) JP2004352968A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5176546B2 (en) * 2005-11-10 2013-04-03 日本電気株式会社 Photosensitive resin composition for forming optical waveguide, optical waveguide, and method for producing optical waveguide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5176546B2 (en) * 2005-11-10 2013-04-03 日本電気株式会社 Photosensitive resin composition for forming optical waveguide, optical waveguide, and method for producing optical waveguide
US8414733B2 (en) 2005-11-10 2013-04-09 Nec Corporation Photosensitive resin composition for optical waveguide formation, optical waveguide and method for producing optical waveguide

Similar Documents

Publication Publication Date Title
JP3133039B2 (en) Photosensitive composition for optical waveguide, method for producing the same, and method for forming polymer optical waveguide pattern
KR100520183B1 (en) Photoresist copolymer containing crosslinker which has two double bonds
JP3985821B2 (en) Curable fluorine-containing resin composition and optical member obtained by curing the same
KR20020092921A (en) Composition Having Refractive Index Sensitively Changeable by Radiation and Method for Forming Refractive Index Pattern
JP2012229421A (en) Copolymer for organic antireflection coating, monomer, and composition including the copolymer
JP2001504239A (en) Optical waveguide
JPH1172917A (en) Negative photoresist composition and method for forming pattern by using the same
TWI303252B (en) Top anti-reflective coating polymer, its preparation method and top anti-reflective coating composition comprising the same
JP6679929B2 (en) Polymer and positive resist composition
US6327415B1 (en) Optical waveguide made of polymer material and a method of fabricating the same
JP2599497B2 (en) Flat plastic optical waveguide
JPH06505519A (en) Polymeric nitrone with acrylic backbone
KR100705759B1 (en) Manufacturing Method for Planar Multimode Optical Waveguide by Direct Photo­patterning
CN117130223A (en) High-refractive-index photoresist for two-photon 3D printing, preparation method and application
TWI343391B (en) Light refractive index modulating plymer, method for manufacturing the same, light refractive index modulating polymer composition, and method for controlling pefractive index
JP2004352968A (en) Photofunctional material
CN115494697A (en) Chemically amplified photoresist and preparation and use method thereof
GB2318579A (en) Glutarimide acrylic copolymers for photoresists
JP4863787B2 (en) Organic inorganic photosensitive resin composition
JP2002296402A (en) Radiation-sensitive variable refractive index composition and method for varying refractive index
JP2008088195A (en) Organic-inorganic photosensitive resin composition
Liu et al. Design, synthesis, and imaging study of a photoactive polymer containing aryl substituted diazoketo groups
US6063896A (en) Copolymer for photoresist
JP2002318319A (en) Method for manufacturing film with distribution of refractive index
KR100200313B1 (en) Novel copolymer for photo-resist