JP2004352571A - Glass composition and glass substrate - Google Patents

Glass composition and glass substrate Download PDF

Info

Publication number
JP2004352571A
JP2004352571A JP2003153238A JP2003153238A JP2004352571A JP 2004352571 A JP2004352571 A JP 2004352571A JP 2003153238 A JP2003153238 A JP 2003153238A JP 2003153238 A JP2003153238 A JP 2003153238A JP 2004352571 A JP2004352571 A JP 2004352571A
Authority
JP
Japan
Prior art keywords
glass
glass substrate
substrate
sio
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003153238A
Other languages
Japanese (ja)
Other versions
JP4726400B2 (en
Inventor
Toshiharu Mori
登史晴 森
Hideki Kawai
秀樹 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP2003153238A priority Critical patent/JP4726400B2/en
Publication of JP2004352571A publication Critical patent/JP2004352571A/en
Application granted granted Critical
Publication of JP4726400B2 publication Critical patent/JP4726400B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum

Abstract

<P>PROBLEM TO BE SOLVED: To provide a glass substrate having high resistance to thermal shock without being tempered; and to obtain a glass composition. <P>SOLUTION: The glass composition contains glass components of 45-75 wt.% (hereinafter expressed as %) SiO<SB>2</SB>, 1-20% Al<SB>2</SB>O<SB>3</SB>, 0-8% B<SB>2</SB>O<SB>3</SB>, 60-90% of SiO<SB>2</SB>+ Al<SB>2</SB>O<SB>3</SB>+ B<SB>2</SB>O<SB>3</SB>, 0-20%, in total, of R<SB>2</SB>O (R = Li, Na and K), 0-20%, in total, of R'O (R' = Mg, Ca, Sr, Ba and Zn), and 0-12% of TiO<SB>2</SB>+ ZrO<SB>2</SB>+ Ln<SB>x</SB>O<SB>y</SB>(wherein, Ln<SB>x</SB>O<SB>y</SB>means at least one compound selected from the group of lanthanoid metal oxides, Y<SB>2</SB>O<SB>3</SB>, Nb<SB>2</SB>O<SB>5</SB>, and Ta<SB>2</SB>O<SB>5</SB>). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はガラス基板及びこれに用いるガラス組成物に関し、より詳細には磁気ディスク、光磁気ディスク、DVD、MDなどの情報記録用媒体や光通信用素子などの基板として用いるガラス基板及びこれに用いるガラス組成物に関するものである。
【0002】
【従来の技術】
従来、磁気ディスク用基板としては、デスクトップ用コンピュータやサーバなどの据え置き型にはアルミニウム合金が、他方ノート型コンピュータやモバイル型コンピュータなどの携帯型にはガラス基板が一般に使用されていたが、アルミニウム合金は変形しやすく、また硬さが不十分であるため研磨後の基板表面の平滑性が十分とは言えなかった。さらに、ヘッドが機械的に磁気ディスクに接触する際、磁性膜が基板から剥離しやすいという問題もあった。そこで、変形が少なく、平滑性が良好で、かつ機械的強度の大きいガラス基板が携帯型のみならず据え置き型の機器やその他の家庭用情報機器にも今後広く使用されていくものと予測されている。
【0003】
ガラス基板としては、基板表面のアルカリ元素を他のアルカリ元素と置換することにより圧縮歪みを発生させ、機械的強度を向上させた化学強化ガラスが知られている。しかし化学強化ガラスでは煩雑なイオン交換工程が必要であり、またイオン交換後の再加工が不可能であるため製造歩留を上げることが難しかった。また、ガラス基板にイオン交換性を持たせるために、アルカリイオンの基板中での移動が容易となるようにしていたので、基板表面のアルカリイオンが、磁性膜を成膜する際の加熱工程時に表面に移動して溶出したり、あるいは磁性膜を侵食したり、磁性膜の付着強度を劣化させたりする問題があった。
【0004】
一方、化学強化処理を行わない一般的なガラス基板としてはソーダライム基板があるが、このソーダライム基板を情報記録用基板として用いるには機械的強度、化学的耐久性が不十分であった。また、液晶基板などに使用されているガラス材料では、高温での熱安定性を維持するため無アルカリあるいは低アルカリ化によって線熱膨張係数を低く抑えているので、SUS鋼などでできたクランプやスピンドルモータ部材の線熱膨張係数との差が大きく、記録媒体の記録装置への取付け時や情報記録時に不具合が生じることがあった。また機械的強度が不十分であるため情報記録用基板へ適用は困難であった。
【0005】
また光フィルタや光スイッチなどの光通信用素子でも基板としてガラス基板が用いられているが、ガラス基板から溶出したアルカリ成分によって前記素子が劣化することがあった。また、ガラス基板上に形成される膜の密度が大きくなるほど、温度・湿度の変化による波長シフトが抑制されるところ、従来広く用いられている真空蒸着法では形成できる膜の密度に限界があった。
【0006】
さらには、ガラス基板を情報記録用として用いる場合に、情報記録用膜をガラス基板上に形成する際、表面に加わえられる圧力や加熱、衝撃によりガラス基板にクラックが入り、製品の歩留まりが低下することがあった。
【0007】
【特許文献1】
特開2001−19466号公報(特許請求の範囲の欄、表1〜表5)
【0008】
【発明が解決しようとする課題】
本発明はこのような従来の問題に鑑みてなされたものであり、その目的とするところは、強化処理を行うことなく熱衝撃に強いガラス基板及びガラス組成物を提供することにあり、さらには高い機械的強度を有し、また線熱膨張係数がモータ部材のそれに近く、さらには高い破壊靭性を有するガラス基板及びガラス組成物を提供することにある。
【0009】
【課題を解決するための手段】
本発明によれば、重量%で、SiO:45〜75%、Al:1〜20%、B:0〜8%(ただし、ゼロを含む)、SiO+Al+B:60〜90%、RO(R=Li,Na,K)の総量:0〜20%(ただし、ゼロを含む)、R’O(R’=Mg,Ca,Sr,Ba,Zn)の総量:0〜20%(ただし、ゼロを含む)、TiO+ZrO+Ln:0〜12%(ただしゼロを含む、またLnはランタノイド金属酸化物及びY,Nb,Taからなる群より選ばれた少なくとも1つの化合物を意味する)の各ガラス成分を有することを特徴とするガラス組成物が提供される。なお、以下「%」は特に断りのない限り「重量%」を意味するものとする。
【0010】
また本発明によれば、前記ガラス組成物から作製したことを特徴とするガラス基板が提供される。
【0011】
ここで耐熱衝撃性の観点から、強化処理を行うことなく、前記式(1)から算出される熱衝撃度数を40より大きくすることが望ましい。
【0012】
強化処理を行うことなく、比弾性率E/ρを30以上、破壊靭性値Kcを1.00以上、線熱膨張係数αを40×10−7〜90×10−7/℃、ガラス転移温度Tgを500℃以上とするのが好ましい。
【0013】
また、表面積/体積(以下、「比表面積」と記すことがある)を1〜50/mmの範囲とし、最も薄い部分の厚みを2mm以下とするのが好ましい。
【0014】
なお、比弾性率(E/ρ)はヤング率Eを比重ρで割った値であって、ヤング率はJIS R 1602ファインセラミックスの弾性試験方法の動的弾性率試験方法に準じて測定し、比重ρはアルキメデス法により25℃の蒸留水中で測定したものである。また破壊靭性値Kcは、ビッカース硬度試験機を用いて、荷重500g、負荷時間15secの条件下にてビッカース圧子にて圧痕をつけ下記式から算出した(図2を参照)。

Figure 2004352571
(式中、Kc:破壊靭性値(Pa・m1/2)、E:弾性率(Pa)、Hv:ビッカース硬度(Pa)、P:押し込み荷重(N)、C:クラック長さの平均の半分(m)、a:圧痕の対角線長さの平均の半分(m))
【0015】
線熱膨張係数Aは、示差膨張測定装置を用いて、荷重:5g、温度範囲:25〜100℃、昇温速度:5℃/minの条件で測定した値である。ガラス転移点Tgは、粉末状に調整したガラス試料を示差熱測定装置を用いて、荷重5gで、25〜700℃の温度範囲を5℃/minの昇温率で加熱し測定した値である。また、比表面積S/Vは、ガラス基板が円盤状の場合には例えば図3に示すようにして算出する。
【0016】
【発明の実施の形態】
本発明者等は、強化処理を行うことなく耐熱衝撃性を高めるべく鋭意検討を重ねた。その結果、ガラスのマトリックス成分としてSiOを用い、そこに所定量のAl及びBを含有させてガラスの骨格を形成することにより所定の剛性が得られ、またRO(R:Li,Na,K)及びR’O(R’:Mg,Ca,Sr,Ba,Zn)の総量、さらには(TiO+ZrO+Ln)の総量を所定範囲とすることにより高い耐熱衝撃性を得られることを見出し本発明をなすに至った。
【0017】
以下、本発明に係るガラス組成物の成分についてその限定した理由について説明する。まずSiOはガラスのマトリックスを形成する成分である。その含有量が45%未満では、ガラスの構造が不安定となり化学的耐久性が劣化すると共に、溶融時粘性特性が悪くなり成形性に支障を来す。一方含有量が75%を超えると、溶融性が悪くなり生産性が低下すると共に、十分な剛性が得られなくなる。そこで含有量を45〜75%の範囲と定めた。より好ましい範囲は48〜74%の範囲である。
【0018】
Alはガラスのマトリックス中に入り、ガラス構造を安定化させ、化学的耐久性を向上させる効果を奏する。含有量が1%未満では十分な安定化効果が得られない。他方20%を超えると溶融性が悪くなり、生産性に支障を来す。そこで含有量を1〜20%の範囲と定めた。より好ましい範囲は3〜18%の範囲である。
【0019】
は溶融性を改善し生産性を向上させると共に、ガラスのマトリックス中に入りガラス構造を安定化させ、化学的耐久性を向上させる効果を奏する。含有量が8%を超えると、溶融時粘性特性が悪くなり、成形性に支障を来すと共に、ガラスが不安定になる。そこで含有量を8%以下(ただしゼロを含む)の範囲と定めた。より好ましい上限値は6%であり、好ましい下限値は1%である。
【0020】
ガラスの骨格成分であるこれら3つのガラス成分の総量が60%より少ないと、ガラスの構造が脆弱となる一方、前記総量が90%を超えると、溶融性が低下し生産性が落ちる。そこで前記総量を60〜90%の範囲と定めた。より好ましい範囲は65〜88%の範囲である。
【0021】
アルカリ金属酸化物RO(R=Li,Na,K)は、溶融性を改善し、線熱膨張係数を増大させる効果を奏する。その総量が20%超えるとガラス骨格間に分散されるアルカリ量が過剰となりアルカリ溶出量が増大する。そこでアルカリ金属酸化物の総量を20%以下(ただしゼロを含む)の範囲と定めた。一方、アルカリ金属酸化物の総量が2%未満であると溶融性の改善および線熱膨張係数の増大という効果が充分には得られないことがある。したがって、好ましい下限値は2%である。アルカリ金属酸化物の総量のより好ましい上限値は18%である。また、アルカリ溶出量を低減する、いわゆるアルカリ混合効果を得るためには、前記アルカリ金属酸化物の各成分の下限含有量をそれぞれ0.1%とするのが望ましい。一方、化学的耐久性および溶融安定性の観点から、上限含有量をLiOとNaOとは15%、KOは10%とするのが望ましい。
【0022】
また2価の金属酸化物R’O(R’:Mg,Ca,Sr,Ba,Zn)は、剛性を上げると共に溶融性を改善し、ガラス構造を安定化させる効果を奏する。R’Oの総量が20%を超えると、ガラス構造が不安定となり溶融生産性が低下すると共に化学的耐久性が低下する。そこでR’Oの含有量を20%以下と定めた。R’Oの総量のより好ましい上限値は18%である。R’Oの各成分の好適含有量は次の通りである。
【0023】
MgOは剛性を上げると共に溶融性を改善する効果を奏する。含有量が20%を超えるとガラス構造が不安定となり、溶融生産性が低下すると共に化学的耐久性が低下するおそれがある。したがって含有量は0〜19%の範囲が好ましい。より好ましい上限値は18%である。
【0024】
またCaOは線熱膨張係数及び剛性を上げると共に溶融性を改善する効果を奏する。含有量が10%を超えると、ガラス構造が不安定となり溶融生産性が低下すると共に化学的耐久性が低下するおそれがある。したがって含有量は0〜10%の範囲が好ましい。より好ましい上限値は9%である。
【0025】
SrOは線熱膨張係数を上げ、ガラス構造を安定化すると共に、溶融性を改善する効果を奏する。含有量が8%を超えるとガラス構造が不安定となるおそれがある。したがって含有量は0〜8%の範囲が好ましい。より好ましい上限値は6%である。
【0026】
BaOはSrOを同じ効果を奏し、その含有量が8%を超えるとガラス構造が不安定となるおそれがある。したがって含有量は0〜8%の範囲が好ましい。より好ましい上限値は6%である。
【0027】
ZnOは化学的耐久性及び剛性を上げると共に溶融性を改善する効果を奏する。含有量が6%を超えると、ガラス構造が不安定となり溶融生産性が低下すると共に化学的耐久性が低下するおそれがある。したがって含有量は0〜6%の範囲が好ましい。より好ましい上限値は5%である。
【0028】
TiOはガラスの構造を強固にし、剛性を向上させると共に溶融性を改善する効果を奏する。またZrOもガラスの構造を強固にし剛性を向上させると共に化学的耐久性を向上させる効果を奏する。そしてLnはガラスの構造を堅固にし剛性および靭性を向上させる効果を奏する。なお、このLnはランタノイド金属酸化物及びY,Nb,Taからなる群より選ばれた少なくとも1つの化合物を意味し、ランタノイド金属酸化物としては、LnやLnOなどが種類があり、LnとしてはLa、Ce、Er、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Tm、Yb、Luなどが挙げられる。ここで(TiO+ZrO+Ln)が12%を超えるとガラスが不安定となり、靭性が大幅に低下すると共に失透傾向が高まり生産性が著しく低下する。そこでこれらの総量を12%以下と定めた。より好ましい総量は0〜11.5%の範囲である。
【0029】
本発明のガラス組成物には、Sbなどの清澄剤を2%以下の範囲でさらに添加してもよい。その他必要により従来公知のガラス成分及び添加剤を本発明の効果を害しない範囲で添加しても構わない。
【0030】
次に本発明のガラス基板について説明する。本発明のガラス基板の大きな特徴は前記ガラス組成物を用いて製造したことにある。ガラス基板の製造方法に特に限定はなく、これまで公知の製造方法を用いることができる。例えば、各成分の原料として各々相当する酸化物、炭酸塩、硝酸塩、水酸化物等を使用し、所望の割合に秤量し、粉末で十分に混合して調合原料とする。これを例えば1,300〜1,550℃に加熱された電気炉中の白金坩堝などに投入し、溶融清澄後、撹拌均質化して予め加熱された鋳型に鋳込み、徐冷してガラスブロックにする。次に、ガラス転移点付近まで再加熱し、徐冷して歪み取りを行う。そして得られたガラスブロックを円盤形状にスライスして、内周および外周を同心円としてコアドリルを用いて切り出す。あるいは溶融ガラスをプレス成形して円盤状に成形する。そして、このようにして得られた円盤状のガラス基板は、さらにその両面を粗研磨および研磨された後、水、酸、アルカリの少なくとも1つの液で洗浄されて最終的なガラス基板とされる。
【0031】
ここで、本発明のガラス基板を例えば情報記録用媒体の基板として用いる場合に、ヘッドの浮上量や記録媒体の膜厚を小さくする観点などから、研磨工程後のガラス基板の表面粗度Raを1nm以下とし、且つ洗浄工程後の表面粗度Ra’を表面粗度Raの1.5倍以下とするのが好ましい。アルカリ成分を多く含む、強化処理を行ったガラス基板の場合には、研磨により表面粗度Raを1nm以下にすることは可能であるが、次の洗浄工程において、水や酸、アルカリで基板表面を表面洗浄したときに、化学的耐久性が低いため表面が激しく浸食される結果、洗浄工程後の表面粗度Ra’が大きくなってしまう。一方、強化処理しないガラス基板では一般に、基板の表面および内部の組成が均質であるので、洗浄工程においても基板の表面粗度Ra’は大きくは変化しない。このため、ガラス成分を最適化することにより洗浄工程後の表面粗度Ra’を研磨工程後の表面粗度Raの1.5倍以下とすることも可能となる。
【0032】
本発明に係るガラス基板ではつぎの諸物性を満足しているのが好ましい。まず、前記式(1)から算出される熱衝撃度数が40より大きいことが好ましい。この熱衝撃度数が40以下であると、急激な熱衝撃が加わった際基板が割れることがあるからである。より好ましい熱衝撃度数は45以上である。
【0033】
比弾性率(E/ρ)が30以上であるのが好ましい。強化処理を行っていないガラス基板では機械的強度は基板の剛性に依存するため、比弾性率が30よりも小さいと、基板の機械的強度が不十分となり、HDD搭載時に外部から衝撃を受けた際、HDD部材との締結部分から破損しやすくなるからである。より好ましい比弾性率(E/ρ)は32以上である。
【0034】
破壊靭性値Kcは1.00以上が好ましい。ガラス基板を情報記録用媒体として用いる場合、破壊靭性値Kcが1.00未満であると、ガラス基板表面に磁性膜などの記録膜を形成する工程において加わえられる圧力などによりガラス基板にひび割れが生じることがあるからである。また、破壊靭性値Kcが1.00未満であると、基板の機械加工において基板が損傷を受けやすくなり、加工歩留まりが大きく低下する。破壊靭性値Kcのより好ましい下限値は1.02である。
【0035】
線熱膨張係数αは40×10−7〜90×10−7/℃の範囲が好ましい。線熱膨張係数αがこの範囲から外れると、ガラス基板を用いた情報記録用媒体を取り付ける駆動部の材料の線熱膨張係数との差が大きくなって、情報記録用媒体の固定部に応力が発生し、基板の破損や基板の変形による記録位置のズレが発生し、記録の読み書きができなくなるからである。線熱膨張係数のより好ましい下限値は42×10−7/℃であり、より好ましい上限値は85×10−7/℃である。
【0036】
ガラス転移温度Tgは500℃以上が好ましい。ガラス転移温度をこのような範囲とするには、例えば骨格成分であるSiO,B,Alの総量及びそれら比率、そしてガラス転移温度を大幅に低下させる成分であるアルカリ金属酸化物の添加量を、目的とする主物性を劣化させない範囲で調整すればよい。
【0037】
比表面積S/Vは1〜50の範囲が好ましい。比表面積S/Vが1より小さいと、板厚が厚くなり実用化が困難となることがあり、一方比表面積S/Vが50より大きいと、板厚が薄くなり加工の際割れやすくなることがあるからである。比表面積S/Vのより好ましい範囲は1.02〜45である。
【0038】
またガラス基板の最も薄い部分の厚みは2mm以下であるのが好ましい。ハードディスクドライブ装置などは小型薄型化が近年急速に進んでいるため、前記厚みが2mmより厚いと、現在及び将来におけるハードディスクドライブ装置などへの搭載に適さなくなり汎用性が低下するからである。より好ましい厚みは1.5mm以下である。
【0039】
本発明のガラス基板は、その大きさに限定はなく3.5,2.5,1.8インチ、あるいはそれ以下の小径ディスクとすることもでき、またその厚さは2mmや1mm、0.63mm、あるいはそれ以下といった薄型とすることもできる。
【0040】
次に、本発明のガラス基板を用いた情報記録用媒体について説明する。情報記録用媒体の基板として本発明のガラス基板を用いると、耐久性および高記録密度が実現される。以下、図面に基づき情報記録用媒体について説明する。
【0041】
図1は磁気ディスクの斜視図である。この磁気ディスクDは、円形のガラス基板1の表面に磁性膜2を直接形成したものである。磁性膜2の形成方法としては従来公知の方法を用いることができ、例えば磁性粒子を分散させた熱硬化性樹脂を基板上にスピンコートして形成する方法や、スパッタリング、無電解めっきにより形成する方法が挙げられる。スピンコート法での膜厚は約0.3〜1.2μm程度、スパッタリング法での膜厚は0.04〜0.08μm程度、無電解めっき法での膜厚は0.05〜0.1μm程度であり、薄膜化および高密度化の観点からはスパッタリング法および無電解めっき法による膜形成が好ましい。
【0042】
磁性膜に用いる磁性材料としては、特に限定はなく従来公知のものが使用できるが、高い保持力を得るために結晶異方性の高いCoを基本とし、残留磁束密度を調整する目的でNiやCrを加えたCo系合金などが好適である。具体的には、Coを主成分とするCoPt、CoCr、CoNi、CoNiCr、CoCrTa、CoPtCr、CoNiPtや、CoNiCrPt、CoNiCrTa、CoCrPtTa、CoCrPtB、CoCrPtSiOなどが挙げられる。磁性膜は、非磁性膜(例えば、Cr、CrMo、CrVなど)で分割しノイズの低減を図った多層構成(例えば、CoPtCr/CrMo/CoPtCr、CoCrPtTa/CrMo/CoCrPtTaなど)としてもよい。上記の磁性材料の他、フェライト系、鉄−希土類系や、SiO、BNなどからなる非磁性膜中にFe、Co、FeCo、CoNiPt等の磁性粒子を分散された構造のグラニュラーなどであってもよい。また、磁性膜は、内面型および垂直型のいずれの記録形式であってもよい。
【0043】
また、磁気ヘッドの滑りをよくするために磁性膜の表面に潤滑剤を薄くコーティングしてもよい。潤滑剤としては、例えば液体潤滑剤であるパーフロロポリエーテル(PFPE)をフレオン系などの溶媒で希釈したものが挙げられる。
【0044】
さらに必要により下地層や保護層を設けてもよい。磁気ディスクにおける下地層は磁性膜に応じて選択される。下地層の材料としては、例えば、Cr、Mo、Ta、Ti、W、V、B、Al、Niなどの非磁性金属から選ばれる少なくとも一種以上の材料が挙げられる。Coを主成分とする磁性膜の場合には、磁気特性向上等の観点からCr単体やCr合金であることが好ましい。また、下地層は単層とは限らず、同一又は異種の層を積層した複数層構造としても構わない。例えば、Cr/Cr、Cr/CrMo、Cr/CrV、NiAl/Cr、NiAl/CrMo、NiAl/CrV等の多層下地層としてもよい。
【0045】
磁性膜の摩耗や腐食を防止する保護層としては、例えば、Cr層、Cr合金層、カーボン層、水素化カーボン層、ジルコニア層、シリカ層などが挙げられる。これらの保護層は、下地層、磁性膜など共にインライン型スパッタ装置で連続して形成できる。また、これらの保護層は、単層としてもよく、あるいは、同一又は異種の層からなる多層構成としてもよい。なお、上記保護層上に、あるいは上記保護層に替えて、他の保護層を形成してもよい。例えば、上記保護層に替えて、Cr層の上にテトラアルコキシランをアルコール系の溶媒で希釈した中に、コロイダルシリカ微粒子を分散して塗布し、さらに焼成して酸化ケイ素(SiO)層を形成してもよい。
【0046】
以上、情報記録用媒体の一実施態様として磁気ディスクについて説明したが、情報記録用媒体はこれに限定されるものではなく、光磁気ディスクや光ディスクなどにも本発明のガラス基板を用いることができる。
【0047】
また、本発明のガラス基板は光通信用素子にも好適に使用できる。従来のガラス基板に比べて線熱膨張係数が40×10−7〜90×10−7/℃の範囲と大きいので、蒸着工程で加熱されたガラス基板が冷却されて縮む量が大きくなり、このガラス基板の収縮により基板表面に形成された膜が圧縮されてその密度が大きくなる。この結果、温度・湿度の変化による波長シフトが抑制される。
【0048】
以下、波長多重分割(「DWDM」;Dense Wavelength Division Multiplexing)用の光フィルタを例に本発明のガラス基板を用いた光通信用素子について説明する。誘電体多層膜を用いた光フィルタは高屈折率層と低屈折率層とを有し、これらの層を積層した構造を有している。これらの層を形成する方法としては、特に限定はなく従来公知の方法、例えば真空蒸着法、スパッタリング法、イオンプレーティング法、イオンビームアシスト法などを用いることができる。この中でも生産性が高いことから真空蒸着法が推奨される。真空蒸着は、真空中で蒸着材料を加熱し、発生した蒸気を基体上に凝縮・付着させて薄膜を形成する方法である。蒸着材料の加熱方法には、抵抗加熱、外熱ルツボ、電子ビーム、高周波、レーザーなどの各種方法がある。具体的な蒸着条件として、真空度は1×10−3〜5×10−3Pa程度である。蒸着中は真空度が一定となるように電磁弁を制御して導入酸素量を調整する。そして層厚モニターにより所定層厚となったところでシャターを閉じて蒸着を終了する。
【0049】
各膜厚としては特に限定はないが、光学的膜厚が波長の1/4とするのが基本であって、一般的に1μm程度までである。また、総層数は一般的に100層を超える。用いる膜材料としては例えば、誘電体や半導体、金属であって、この中でも誘電体が特に好ましい。
【0050】
以上、本発明のガラス基板を用いた光通信用素子の一実施態様としてDWDM用の光フィルタについて説明したが、光通信用素子はこれに限定されるものではなく、本発明のガラス基板は光スイッチ、合分波素子などの光通信用素子にも使用できる。
【0051】
【実施例】
実施例1〜48,比較例1〜5
定められた量の原料粉末を白金るつぼに秤量して入れ、混合したのち、電気炉中で1,550℃で溶解した。原料が充分に溶解したのち、撹拌羽をガラス融液に挿入し、約1時間撹拌した。その後、撹拌羽を取り出し、30分間静置したのち、治具に融液を流しこむことによってガラスブロックを得た。その後各ガラスのガラス転移点付近までガラスブロックを再加熱し、徐冷して歪取りを行った。得られたガラスブロックを約1.5mmの厚さ、2.5インチの円盤形状にスライスし、内周,外周を同心円としてカッターを用いて切り出した。そして、両面を粗研磨及び研磨、洗浄を行って実施例及び比較例のガラス基板を作製した。作製したガラス基板について各種物性評価を行った。なお、物性評価方法は前記の通りである。また、熱衝撃性試験A及び熱衝撃性試験Bについては下記試験方法および判定基準で行った。結果を合わせて表1〜表4に示す。
【0052】
(熱衝撃性試験A)
外径65mm、内径20mm、厚さ0.635mmの円盤形状のガラス基板を、300℃の電気炉内に30分間放置した後、20℃の冷水中に投入し、ガラス基板が割れなかった場合を「○」、割れた場合を「×」とした。
【0053】
(熱衝撃性試験B)
外径48mm、内径12mm、厚さ0.508mmの円盤形状のガラス基板を、300℃の電気炉内に30分間放置した後、20℃の冷水中に投入し、ガラス基板が割れなかった場合を「○」、割れた場合を「×」とした。
【0054】
【表1】
Figure 2004352571
【0055】
【表2】
Figure 2004352571
【0056】
【表3】
Figure 2004352571
【0057】
【表4】
Figure 2004352571
【0058】
表1〜表3から明らかなように、実施例1〜48のガラス基板では、線熱膨張係数αは43.2×10−7〜74.6×10−7/℃の範囲とHDDの部材と近い値であった。また破壊靭性値Kcは1.02以上であり、比弾性率E/ρは32.4以上と従来のガラス基板に比べ大きい値であった。そしてまたガラス転移温度Tgは504℃以上であった。このようなガラス基板の物性値から算出した実施例1〜48のガラス基板の熱衝撃度数Hは40よりいずれも大きく、熱衝撃性試験A及びBにおいてガラス基板が割れることはなかった。
【0059】
一方、表4によれば、比較例1のガラス基板では、(TiO+ZrO+Ln)の含有量が12.5%と多かったため、破壊靭性値が低くなると共に熱衝撃度数Hが小さくなり、熱衝撃性試験A及びBにおいてガラス基板が割れてしまった。また比較例2のガラス基板では、SiOの含有量が43.6%と少なく、そしてR’Oの含有量が22.2%と多く、さらに(TiO+ZrO+Ln)の含有量が19.7%と多かったため、ガラスの構造が軟弱となり線熱膨張係数α、破壊靭性値Kc、熱衝撃度数Hにおいて所望値が得られなかった。一方、SiOの含有量が77.1%と多かった比較例3のガラス基板では、破壊靭性値Kc及び比弾性率が低下すると共に、熱衝撃度数Hが小さくなった。比較例4のガラス基板では、Al及びRO(R:Li,Na,K)の含有量が多く、また比較例5のガラス基板では、Bおよび骨格成分(SiO+Al+B)の含有量が多かったため、破壊靭性値Kc及び熱衝撃度数Hにおいて所望値が得られなかった。
【0060】
【発明の効果】
本発明に係るガラス組成物及びガラス基板は、強化処理を行うことなく高い耐熱衝撃性を有するので、ガラス基板表面に記録膜などを形成する工程において生じる急激な熱変化によっても破損することがない。また高い剛性を有し、さらには適度な表面硬度を有し基板表面の傷を防止すると共に研磨などの表面加工が容易である。そしてまた従来に比べ線熱膨張係数が高くHDDの部材のそれに近くなったので、記録装置への取付け時や情報記録時に不具合が生じることがない。また破壊靭性値が高いので情報記録用基板の製造時などに基板が破損することがない。高い比弾性率を有するので、ガラス基板の高速回転時における回転安定性が向上する。
【0061】
本発明に係るガラス基板を情報記録用媒体に使用すると、表面処理が容易で、製造工程中において破損することがなく、耐久性に優れ、高い記録密度が得られる。
【0062】
また本発明に係るガラス基板を光通信用素子に使用すると、経時変化が少なく、温度・湿度の変化による波長シフトを抑制できる。
【図面の簡単な説明】
【図1】本発明のガラス基板を用いた情報記録用媒体の一例を示す斜視図である。
【図2】ビッカース圧子で押圧したときにできるガラス基板表面の圧痕とクラックの模式図である。
【図3】比表面積(=表面積/体積)の算出例を示す図である。
【符号の説明】
1 ガラス基板
2 磁性膜
D 磁気ディスク[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a glass substrate and a glass composition used for the same, and more particularly, to a glass substrate used as a substrate for an information recording medium such as a magnetic disk, a magneto-optical disk, a DVD, an MD, or an optical communication element, and a glass substrate used for the same. It relates to a glass composition.
[0002]
[Prior art]
Conventionally, as a substrate for a magnetic disk, an aluminum alloy is generally used for a stationary type such as a desktop computer or a server, and a glass substrate is generally used for a portable type such as a notebook computer or a mobile computer. Was easily deformed and had insufficient hardness, so that the smoothness of the substrate surface after polishing could not be said to be sufficient. Further, when the head mechanically contacts the magnetic disk, there is a problem that the magnetic film is easily peeled off from the substrate. Therefore, glass substrates with little deformation, good smoothness, and high mechanical strength are expected to be widely used not only for portable devices but also for stationary devices and other household information devices in the future. I have.
[0003]
As a glass substrate, a chemically strengthened glass in which a compressive strain is generated by replacing an alkali element on the substrate surface with another alkali element to improve mechanical strength is known. However, chemically strengthened glass requires a complicated ion exchange process, and it is difficult to rework after ion exchange, so that it has been difficult to increase the production yield. Also, in order to make the glass substrate ion-exchangeable, the alkali ions on the substrate surface are easily moved in the substrate. There is a problem that it migrates to the surface and elutes, erodes the magnetic film, or deteriorates the adhesion strength of the magnetic film.
[0004]
On the other hand, a soda-lime substrate is a general glass substrate not subjected to the chemical strengthening treatment, but the mechanical strength and the chemical durability were insufficient for using the soda-lime substrate as an information recording substrate. In addition, glass materials used for liquid crystal substrates, etc., have low linear thermal expansion coefficients due to no alkali or low alkalinity in order to maintain thermal stability at high temperatures, so clamps made of SUS steel etc. The difference between the linear thermal expansion coefficient of the spindle motor member and the linear thermal expansion coefficient is large, and a problem may occur when a recording medium is attached to a recording device or when information is recorded. In addition, application to an information recording substrate was difficult due to insufficient mechanical strength.
[0005]
Glass substrates are also used as substrates for optical communication elements such as optical filters and optical switches, but the elements may be deteriorated by alkali components eluted from the glass substrates. In addition, as the density of a film formed on a glass substrate increases, the wavelength shift due to changes in temperature and humidity is suppressed. However, there is a limit to the density of a film that can be formed by a conventionally widely used vacuum deposition method. .
[0006]
Furthermore, when a glass substrate is used for information recording, when the information recording film is formed on the glass substrate, cracks occur in the glass substrate due to pressure, heating, and impact applied to the surface, and the product yield is reduced. There was something to do.
[0007]
[Patent Document 1]
JP 2001-19466 A (Claims, Tables 1 to 5)
[0008]
[Problems to be solved by the invention]
The present invention has been made in view of such a conventional problem, and has as its object to provide a glass substrate and a glass composition that are resistant to thermal shock without performing a strengthening treatment. It is an object of the present invention to provide a glass substrate and a glass composition having a high mechanical strength, a linear thermal expansion coefficient close to that of a motor member, and a high fracture toughness.
[0009]
[Means for Solving the Problems]
According to the present invention, SiO 2 : 45 to 75%, Al 2 O 3 : 1 to 20%, B 2 O 3 : 0 to 8% (including zero), SiO 2 + Al 2 O by weight%. 3 + B 2 O 3: 60~90 %, the total amount of R 2 O (R = Li, Na, K): 0~20% ( however, including zero), R'O (R '= Mg , Ca, Sr , Ba, the total amount of Zn): 0~20% (however, including zero), TiO 2 + ZrO 2 + Ln x O y: 0~12% ( but including zero, also Ln x O y of the lanthanoid metal oxide and Y 2 O 3 , Nb 2 O 5 , and Ta 2 O 5 (which means at least one compound selected from the group consisting of glass components). Hereinafter, “%” means “% by weight” unless otherwise specified.
[0010]
Further, according to the present invention, there is provided a glass substrate produced from the glass composition.
[0011]
Here, from the viewpoint of thermal shock resistance, it is desirable to make the thermal shock frequency calculated from the above equation (1) larger than 40 without performing the strengthening treatment.
[0012]
Without the strengthening treatment, the specific elastic modulus E / ρ is 30 or more, the fracture toughness value Kc is 1.00 or more, the linear thermal expansion coefficient α is 40 × 10 −7 to 90 × 10 −7 / ° C., and the glass transition temperature. The Tg is preferably set to 500 ° C. or higher.
[0013]
Further, it is preferable that the surface area / volume (hereinafter, sometimes referred to as “specific surface area”) is in the range of 1 to 50 / mm, and the thickness of the thinnest portion is 2 mm or less.
[0014]
The specific elastic modulus (E / ρ) is a value obtained by dividing the Young's modulus E by the specific gravity ρ, and the Young's modulus is measured according to the dynamic elastic modulus test method of JIS R 1602 Fine Ceramics Elasticity Test Method, The specific gravity ρ is measured in distilled water at 25 ° C. by the Archimedes method. In addition, the fracture toughness value Kc was calculated from the following equation using a Vickers hardness tester by applying an indentation with a Vickers indenter under the conditions of a load of 500 g and a load time of 15 sec (see FIG. 2).
Figure 2004352571
(Where Kc: fracture toughness value (Pa · m 1/2 ), E: elastic modulus (Pa), Hv: Vickers hardness (Pa), P: indentation load (N), C: average of crack length Half (m), a: Half (m) of the average diagonal length of the indentation)
[0015]
The linear thermal expansion coefficient A is a value measured using a differential expansion measuring device under the conditions of a load of 5 g, a temperature range of 25 to 100 ° C., and a temperature rising rate of 5 ° C./min. The glass transition point Tg is a value obtained by heating a powdery glass sample at a load of 5 g in a temperature range of 25 to 700 ° C. at a rate of 5 ° C./min using a differential calorimeter. . The specific surface area S / V is calculated, for example, as shown in FIG. 3 when the glass substrate has a disk shape.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
The present inventors have intensively studied to increase the thermal shock resistance without performing the strengthening treatment. As a result, the SiO 2 used as the matrix component of the glass, there predetermined rigidity is obtained by forming a skeleton of glass by incorporating Al 2 O 3 and B 2 O 3 in a predetermined amount, also R 2 O (R: Li, Na, K ) and R'O (R ': Mg, Ca , Sr, Ba, Zn) total, more to a total volume of a predetermined range of (TiO 2 + ZrO 2 + Ln x O y) The present inventors have found that a higher thermal shock resistance can be obtained, and have accomplished the present invention.
[0017]
Hereinafter, the reasons for limiting the components of the glass composition according to the present invention will be described. First, SiO 2 is a component that forms a glass matrix. If the content is less than 45%, the structure of the glass becomes unstable and the chemical durability is deteriorated, and at the same time, the viscous property at the time of melting is deteriorated and the formability is hindered. On the other hand, if the content exceeds 75%, the meltability deteriorates, the productivity decreases, and sufficient rigidity cannot be obtained. Therefore, the content is set in the range of 45 to 75%. A more preferred range is from 48 to 74%.
[0018]
Al 2 O 3 enters the glass matrix, has the effect of stabilizing the glass structure and improving the chemical durability. If the content is less than 1%, a sufficient stabilizing effect cannot be obtained. On the other hand, if it exceeds 20%, the meltability deteriorates and the productivity is hindered. Therefore, the content is set in the range of 1 to 20%. A more preferred range is from 3 to 18%.
[0019]
B 2 O 3 has the effect of improving the meltability and improving the productivity, as well as stabilizing the glass structure by entering the glass matrix and improving the chemical durability. If the content exceeds 8%, the viscosity property at the time of melting is deteriorated, which impairs the moldability and makes the glass unstable. Therefore, the content was determined to be within a range of 8% or less (including zero). A more preferred upper limit is 6%, and a preferred lower limit is 1%.
[0020]
When the total amount of these three glass components, which are the skeleton components of the glass, is less than 60%, the structure of the glass becomes brittle. On the other hand, when the total amount exceeds 90%, the meltability decreases and the productivity decreases. Therefore, the total amount is set in the range of 60 to 90%. A more preferred range is from 65 to 88%.
[0021]
The alkali metal oxide R 2 O (R = Li, Na, K) has an effect of improving the melting property and increasing the linear thermal expansion coefficient. If the total amount exceeds 20%, the amount of alkali dispersed between the glass skeletons becomes excessive, and the amount of alkali elution increases. Therefore, the total amount of the alkali metal oxides is set to a range of 20% or less (including zero). On the other hand, if the total amount of the alkali metal oxides is less than 2%, the effects of improving the melting property and increasing the linear thermal expansion coefficient may not be sufficiently obtained. Therefore, a preferred lower limit is 2%. A more preferred upper limit of the total amount of the alkali metal oxides is 18%. In order to reduce the alkali elution amount, that is, to obtain a so-called alkali mixing effect, it is preferable that the lower limit contents of the respective components of the alkali metal oxide are each 0.1%. On the other hand, from the viewpoints of chemical durability and melt stability, it is desirable that the upper limit contents are 15% for Li 2 O and Na 2 O and 10% for K 2 O.
[0022]
The divalent metal oxide R'O (R ': Mg, Ca, Sr, Ba, Zn) has the effect of increasing rigidity, improving meltability, and stabilizing the glass structure. When the total amount of R'O exceeds 20%, the glass structure becomes unstable, the melt productivity decreases, and the chemical durability decreases. Therefore, the content of R'O is determined to be 20% or less. A more preferred upper limit of the total amount of R'O is 18%. The preferred content of each component of R'O is as follows.
[0023]
MgO has the effect of increasing rigidity and improving meltability. If the content exceeds 20%, the glass structure becomes unstable, and the melt productivity may decrease, and the chemical durability may decrease. Therefore, the content is preferably in the range of 0 to 19%. A more preferred upper limit is 18%.
[0024]
In addition, CaO has the effect of increasing the coefficient of linear thermal expansion and rigidity and improving the meltability. If the content exceeds 10%, the glass structure becomes unstable, the melt productivity may decrease, and the chemical durability may decrease. Therefore, the content is preferably in the range of 0 to 10%. A more preferred upper limit is 9%.
[0025]
SrO has the effect of increasing the linear thermal expansion coefficient, stabilizing the glass structure, and improving the meltability. If the content exceeds 8%, the glass structure may be unstable. Therefore, the content is preferably in the range of 0 to 8%. A more preferred upper limit is 6%.
[0026]
BaO has the same effect as SrO, and if its content exceeds 8%, the glass structure may become unstable. Therefore, the content is preferably in the range of 0 to 8%. A more preferred upper limit is 6%.
[0027]
ZnO has the effect of increasing the chemical durability and rigidity and improving the meltability. If the content exceeds 6%, the glass structure becomes unstable, the melt productivity may decrease, and the chemical durability may decrease. Therefore, the content is preferably in the range of 0 to 6%. A more preferred upper limit is 5%.
[0028]
TiO 2 has the effect of strengthening the structure of the glass, improving the rigidity, and improving the melting property. ZrO 2 also has the effect of strengthening the glass structure, improving rigidity, and improving chemical durability. The Ln x O y is an effect of improving a firm to rigidly and toughness structural glass. Incidentally, the Ln x O y means lanthanoid metal oxides and Y 2 O 3, Nb 2 O 5, Ta least one compound selected from the group consisting of 2 O 5, as the lanthanoid metal oxide, Ln There are types such as 2 O 3 and LnO, and examples of Ln include La, Ce, Er, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Tm, Yb, and Lu. Here (TiO 2 + ZrO 2 + Ln x O y) becomes unstable glass exceeds 12%, productivity increases devitrification tendency with toughness is greatly reduced significantly decreases. Therefore, the total amount of these is determined to be 12% or less. A more preferred total is in the range of 0-11.5%.
[0029]
A fining agent such as Sb 2 O 3 may be further added to the glass composition of the present invention in a range of 2% or less. In addition, if necessary, conventionally known glass components and additives may be added as long as the effects of the present invention are not impaired.
[0030]
Next, the glass substrate of the present invention will be described. A major feature of the glass substrate of the present invention is that the glass substrate is manufactured using the glass composition. The method for manufacturing the glass substrate is not particularly limited, and a known manufacturing method can be used. For example, oxides, carbonates, nitrates, hydroxides and the like corresponding to the respective components are used as raw materials, weighed to a desired ratio, and sufficiently mixed with powder to prepare a prepared raw material. This is put into, for example, a platinum crucible in an electric furnace heated to 1,300 to 1,550 ° C., melted and clarified, stirred and homogenized, poured into a pre-heated mold, and gradually cooled to form a glass block. . Next, it is reheated to the vicinity of the glass transition point, gradually cooled, and the strain is removed. Then, the obtained glass block is sliced into a disk shape, and the inner and outer peripheries are cut into concentric circles using a core drill. Alternatively, the molten glass is press-formed and formed into a disk shape. The disc-shaped glass substrate thus obtained is further roughly polished and polished on both sides, and then washed with at least one of water, acid, and alkali to form a final glass substrate. .
[0031]
Here, when the glass substrate of the present invention is used, for example, as a substrate of an information recording medium, the surface roughness Ra of the glass substrate after the polishing step is determined from the viewpoint of reducing the flying height of the head and the film thickness of the recording medium. It is preferable to set the surface roughness Ra ′ to 1 nm or less and the surface roughness Ra ′ after the cleaning step to 1.5 times or less the surface roughness Ra. In the case of a strengthened glass substrate containing a large amount of alkali components, the surface roughness Ra can be reduced to 1 nm or less by polishing. However, in the next cleaning step, the surface of the substrate is washed with water, acid, or alkali. When the surface is cleaned, the surface is severely eroded due to low chemical durability, and as a result, the surface roughness Ra ′ after the cleaning step is increased. On the other hand, in a glass substrate that has not been strengthened, the composition of the surface and the inside of the substrate is generally uniform, so that the surface roughness Ra ′ of the substrate does not change significantly even in the cleaning step. Therefore, by optimizing the glass component, the surface roughness Ra ′ after the cleaning step can be made 1.5 times or less the surface roughness Ra after the polishing step.
[0032]
The glass substrate according to the present invention preferably satisfies the following various physical properties. First, it is preferable that the thermal shock frequency calculated from the equation (1) is larger than 40. If the thermal shock frequency is 40 or less, the substrate may be broken when a sudden thermal shock is applied. A more preferable thermal shock frequency is 45 or more.
[0033]
The specific elastic modulus (E / ρ) is preferably 30 or more. Since the mechanical strength of a glass substrate not subjected to the tempering treatment depends on the rigidity of the substrate, if the specific elastic modulus is less than 30, the mechanical strength of the substrate becomes insufficient and an external impact is applied when the HDD is mounted. In this case, it is easy to be damaged from the fastening portion with the HDD member. A more preferable specific elastic modulus (E / ρ) is 32 or more.
[0034]
The fracture toughness value Kc is preferably 1.00 or more. When a glass substrate is used as an information recording medium, if the fracture toughness value Kc is less than 1.00, cracks may occur in the glass substrate due to pressure applied in a step of forming a recording film such as a magnetic film on the surface of the glass substrate. This is because it may occur. When the fracture toughness value Kc is less than 1.00, the substrate is easily damaged in the machining of the substrate, and the processing yield is greatly reduced. A more preferred lower limit of the fracture toughness value Kc is 1.02.
[0035]
The linear thermal expansion coefficient α is preferably in the range of 40 × 10 −7 to 90 × 10 −7 / ° C. If the coefficient of linear thermal expansion α is out of this range, the difference from the coefficient of linear thermal expansion of the material of the drive unit to which the information recording medium using the glass substrate is attached increases, and stress is applied to the fixed part of the information recording medium. This is because the recording position shifts due to breakage of the substrate or deformation of the substrate, and reading and writing of the recording cannot be performed. A more preferred lower limit of the linear thermal expansion coefficient is 42 × 10 −7 / ° C., and a more preferred upper limit is 85 × 10 −7 / ° C.
[0036]
The glass transition temperature Tg is preferably 500 ° C. or higher. In order to set the glass transition temperature in such a range, for example, the total amount and ratio of SiO 2 , B 2 O 3 , and Al 2 O 3 as skeletal components, and alkali metal, a component that significantly lowers the glass transition temperature, are used. What is necessary is just to adjust the addition amount of an oxide in the range which does not deteriorate the target main physical property.
[0037]
The specific surface area S / V is preferably in the range of 1 to 50. If the specific surface area S / V is less than 1, the sheet thickness may be large and practical use may be difficult. On the other hand, if the specific surface area S / V is more than 50, the sheet thickness may be small and the sheet may be easily cracked during processing. Because there is. A more preferable range of the specific surface area S / V is 1.02 to 45.
[0038]
The thickness of the thinnest portion of the glass substrate is preferably 2 mm or less. This is because hard disk drive devices and the like have been rapidly becoming smaller and thinner in recent years, and if the thickness is more than 2 mm, they will not be suitable for mounting on current and future hard disk drive devices and the like, and their versatility will be reduced. A more preferred thickness is 1.5 mm or less.
[0039]
The size of the glass substrate of the present invention is not limited, and may be a small disk of 3.5, 2.5, 1.8 inches or smaller, and the thickness may be 2 mm, 1 mm, 0.1 mm or less. It can be as thin as 63 mm or less.
[0040]
Next, an information recording medium using the glass substrate of the present invention will be described. When the glass substrate of the present invention is used as a substrate of an information recording medium, durability and high recording density are realized. Hereinafter, the information recording medium will be described with reference to the drawings.
[0041]
FIG. 1 is a perspective view of a magnetic disk. The magnetic disk D is obtained by directly forming a magnetic film 2 on the surface of a circular glass substrate 1. As a method for forming the magnetic film 2, a conventionally known method can be used, for example, a method of forming a thermosetting resin in which magnetic particles are dispersed by spin coating on a substrate, or a method of forming by sputtering or electroless plating. Method. The film thickness by the spin coating method is about 0.3 to 1.2 μm, the film thickness by the sputtering method is about 0.04 to 0.08 μm, and the film thickness by the electroless plating method is 0.05 to 0.1 μm. From the viewpoint of thinning and high density, film formation by a sputtering method and an electroless plating method is preferable.
[0042]
The magnetic material used for the magnetic film is not particularly limited, and a conventionally known magnetic material can be used. A Co-based alloy to which Cr is added is preferable. Specific examples include CoPt, CoCr, CoNi, CoNiCr, CoCrTa, CoPtCr, and CoNiPt containing Co as a main component, CoNiCrPt, CoNiCrTa, CoCrPtTa, CoCrPtB, and CoCrPtSiO. The magnetic film may have a multilayer structure (for example, CoPtCr / CrMo / CoPtCr, CoCrPtTa / CrMo / CoCrPtTa) in which noise is reduced by dividing the magnetic film with a nonmagnetic film (for example, Cr, CrMo, CrV, or the like). In addition to the above-described magnetic materials, ferrite, iron-rare earth, and granular having a structure in which magnetic particles such as Fe, Co, FeCo, and CoNiPt are dispersed in a nonmagnetic film made of SiO 2 , BN, or the like. Is also good. Further, the magnetic film may be of any of an internal surface type and a vertical type.
[0043]
Further, the surface of the magnetic film may be thinly coated with a lubricant in order to improve the slip of the magnetic head. Examples of the lubricant include those obtained by diluting perfluoropolyether (PFPE), which is a liquid lubricant, with a solvent such as Freon.
[0044]
If necessary, a base layer or a protective layer may be provided. The underlayer in the magnetic disk is selected according to the magnetic film. Examples of the material of the underlayer include at least one material selected from nonmagnetic metals such as Cr, Mo, Ta, Ti, W, V, B, Al, and Ni. In the case of a magnetic film containing Co as a main component, it is preferable to use Cr alone or a Cr alloy from the viewpoint of improving magnetic properties. The underlayer is not limited to a single layer, and may have a multilayer structure in which the same or different layers are stacked. For example, a multi-layer underlayer such as Cr / Cr, Cr / CrMo, Cr / CrV, NiAl / Cr, NiAl / CrMo, and NiAl / CrV may be used.
[0045]
Examples of the protective layer for preventing abrasion and corrosion of the magnetic film include a Cr layer, a Cr alloy layer, a carbon layer, a hydrogenated carbon layer, a zirconia layer, and a silica layer. These protective layers can be formed continuously with an underlayer, a magnetic film and the like by an in-line type sputtering apparatus. In addition, these protective layers may be a single layer, or may be a multi-layer structure including the same or different layers. Note that another protective layer may be formed on the protective layer or in place of the protective layer. For example, instead of the above-mentioned protective layer, colloidal silica fine particles are dispersed and applied in a state where tetraalkoxylan is diluted with an alcohol-based solvent on a Cr layer, and further baked to form a silicon oxide (SiO 2 ) layer. It may be formed.
[0046]
As described above, the magnetic disk has been described as one embodiment of the information recording medium. However, the information recording medium is not limited to this, and the glass substrate of the present invention can be used for a magneto-optical disk or an optical disk. .
[0047]
Further, the glass substrate of the present invention can be suitably used for an optical communication element. Since the coefficient of linear thermal expansion is as large as 40 × 10 −7 to 90 × 10 −7 / ° C. as compared with the conventional glass substrate, the amount of shrinkage due to cooling of the glass substrate heated in the vapor deposition process is increased. Due to the shrinkage of the glass substrate, the film formed on the substrate surface is compressed and its density increases. As a result, wavelength shift due to changes in temperature and humidity is suppressed.
[0048]
Hereinafter, an optical communication device using a glass substrate of the present invention will be described using an optical filter for wavelength multiplexing division (“DWDM”; Dense Wavelength Division Multiplexing) as an example. An optical filter using a dielectric multilayer film has a high refractive index layer and a low refractive index layer, and has a structure in which these layers are stacked. The method for forming these layers is not particularly limited, and a conventionally known method, for example, a vacuum deposition method, a sputtering method, an ion plating method, an ion beam assist method, or the like can be used. Among them, the vacuum evaporation method is recommended because of high productivity. Vacuum deposition is a method in which a deposition material is heated in a vacuum, and the generated vapor is condensed and adhered on a substrate to form a thin film. Various methods such as resistance heating, external heat crucible, electron beam, high frequency, and laser can be used as a method for heating the deposition material. As a specific deposition condition, the degree of vacuum is about 1 × 10 −3 to 5 × 10 −3 Pa. During vapor deposition, the amount of oxygen introduced is adjusted by controlling the solenoid valve so that the degree of vacuum is constant. Then, when the layer thickness becomes a predetermined layer thickness by the layer thickness monitor, the shutter is closed to terminate the vapor deposition.
[0049]
Although there is no particular limitation on each film thickness, it is fundamental that the optical film thickness is 1 / of the wavelength, and is generally up to about 1 μm. Also, the total number of layers generally exceeds 100 layers. The film material used is, for example, a dielectric, a semiconductor, or a metal. Among them, the dielectric is particularly preferable.
[0050]
As described above, the optical filter for DWDM has been described as one embodiment of the optical communication device using the glass substrate of the present invention. However, the optical communication device is not limited to this, and the glass substrate of the present invention may be an optical filter. It can also be used for optical communication devices such as switches and multiplexing / demultiplexing devices.
[0051]
【Example】
Examples 1 to 48, Comparative Examples 1 to 5
A specified amount of raw material powder was weighed and placed in a platinum crucible, mixed, and then melted at 1,550 ° C. in an electric furnace. After the raw materials were sufficiently dissolved, the stirring blade was inserted into the glass melt and stirred for about 1 hour. Thereafter, the stirring blade was taken out, and allowed to stand for 30 minutes, and then a melt was poured into a jig to obtain a glass block. Thereafter, the glass block was reheated to near the glass transition point of each glass, and gradually cooled to remove strain. The obtained glass block was sliced into a disk shape of about 1.5 mm thickness and 2.5 inches, and the inner and outer circumferences were cut into concentric circles using a cutter. Then, both surfaces were roughly polished, polished, and cleaned to produce glass substrates of Examples and Comparative Examples. Various physical properties evaluation was performed about the produced glass substrate. The physical property evaluation method is as described above. The thermal shock test A and the thermal shock test B were performed according to the following test methods and criteria. The results are shown in Tables 1 to 4.
[0052]
(Thermal shock test A)
A disk-shaped glass substrate having an outer diameter of 65 mm, an inner diameter of 20 mm, and a thickness of 0.635 mm was left in an electric furnace at 300 ° C. for 30 minutes, and then poured into cold water at 20 ° C., where the glass substrate was not broken. “○”, and the case of cracking was “×”.
[0053]
(Thermal shock test B)
A disc-shaped glass substrate having an outer diameter of 48 mm, an inner diameter of 12 mm, and a thickness of 0.508 mm was left in an electric furnace at 300 ° C. for 30 minutes, and then poured into cold water at 20 ° C., where the glass substrate was not broken. “○”, and the case of cracking was “×”.
[0054]
[Table 1]
Figure 2004352571
[0055]
[Table 2]
Figure 2004352571
[0056]
[Table 3]
Figure 2004352571
[0057]
[Table 4]
Figure 2004352571
[0058]
As is clear from Tables 1 to 3, in the glass substrates of Examples 1 to 48, the linear thermal expansion coefficient α is in the range of 43.2 × 10 −7 to 74.6 × 10 −7 / ° C. Was close to the value. Further, the fracture toughness value Kc was 1.02 or more, and the specific elastic modulus E / ρ was 32.4 or more, which was larger than that of the conventional glass substrate. The glass transition temperature Tg was 504 ° C. or higher. The thermal shock frequency H of each of the glass substrates of Examples 1 to 48 calculated from the physical property values of such a glass substrate was larger than 40, and the glass substrates did not crack in the thermal shock tests A and B.
[0059]
On the other hand, according to Table 4, the glass substrate of Comparative Example 1, since the content of (TiO 2 + ZrO 2 + Ln x O y) there were many and 12.5%, thermal shock frequency H along with fracture toughness is low The glass substrate was broken in the thermal shock tests A and B. The glass substrate of Comparative Example 2, the content of SiO 2 is less 43.6% and contained many R'O content is 22.2%, more (TiO 2 + ZrO 2 + Ln x O y) Since the amount was as large as 19.7%, the structure of the glass became soft, and desired values could not be obtained in the linear thermal expansion coefficient α, the fracture toughness value Kc, and the thermal shock frequency H. On the other hand, in the glass substrate of Comparative Example 3 in which the content of SiO 2 was as large as 77.1%, the fracture toughness value Kc and the specific elastic modulus decreased, and the thermal shock frequency H decreased. In the glass substrate of Comparative Example 4, the contents of Al 2 O 3 and R 2 O (R: Li, Na, K) are large, and in the glass substrate of Comparative Example 5, B 2 O 3 and the skeleton component (SiO 2 + Al 2 O 3 + B 2 O 3 ), the desired values could not be obtained in the fracture toughness value Kc and the thermal shock frequency H.
[0060]
【The invention's effect】
Since the glass composition and the glass substrate according to the present invention have high thermal shock resistance without performing a strengthening treatment, the glass composition and the glass substrate are not damaged even by a rapid thermal change generated in a process of forming a recording film on the surface of the glass substrate. . In addition, it has high rigidity, has a suitable surface hardness, prevents scratches on the substrate surface, and is easy to perform surface processing such as polishing. Further, since the coefficient of linear thermal expansion is higher than that of a member of the HDD as compared with the related art, no trouble occurs at the time of attaching to a recording device or at the time of recording information. Further, since the fracture toughness value is high, the substrate is not damaged at the time of manufacturing the information recording substrate. Since the glass substrate has a high specific elastic modulus, rotational stability during high-speed rotation of the glass substrate is improved.
[0061]
When the glass substrate according to the present invention is used for an information recording medium, the surface treatment is easy, there is no breakage during the manufacturing process, the durability is excellent, and a high recording density is obtained.
[0062]
Further, when the glass substrate according to the present invention is used for an element for optical communication, a change with time is small, and a wavelength shift due to a change in temperature and humidity can be suppressed.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an example of an information recording medium using a glass substrate of the present invention.
FIG. 2 is a schematic diagram of indentations and cracks formed on a glass substrate surface when pressed with a Vickers indenter.
FIG. 3 is a diagram showing a calculation example of a specific surface area (= surface area / volume).
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Glass substrate 2 Magnetic film D Magnetic disk

Claims (5)

重量%で、
SiO:45〜75%、
Al:1〜20%、
:0〜8%(ただし、ゼロを含む)、
SiO+Al+B:60〜90%、
O(R=Li,Na,K)の総量:0〜20%(ただし、ゼロを含む)、
R’O(R’=Mg,Ca,Sr,Ba,Zn)の総量:0〜20%(ただし、ゼロを含む)、
TiO+ZrO+Ln:0〜12%(ただしゼロを含む、またLnはランタノイド金属酸化物及びY,Nb,Taからなる群より選ばれた少なくとも1つの化合物を意味する)
の各ガラス成分を有することを特徴とするガラス組成物。
In weight percent,
SiO 2 : 45 to 75%,
Al 2 O 3 : 1 to 20%,
B 2 O 3: 0~8% (however, including zero),
SiO 2 + Al 2 O 3 + B 2 O 3 : 60 to 90%,
R 2 O (R = Li, Na, K) total amount: 0 to 20% (including zero),
R′O (R ′ = Mg, Ca, Sr, Ba, Zn) total amount: 0 to 20% (including zero),
TiO 2 + ZrO 2 + Ln x O y: 0~12% ( but including zero, also Ln x O y is selected from the group consisting of lanthanoid metal oxides and Y 2 O 3, Nb 2 O 5, Ta 2 O 5 Or at least one compound)
A glass composition comprising the following glass components:
請求項1記載のガラス組成物を用いて作製されたことを特徴とするガラス基板。A glass substrate produced using the glass composition according to claim 1. 強化処理を行うことなく、下記式(1)から算出される熱衝撃度数(H)が40より大きい請求項2記載のガラス基板。
Figure 2004352571
(式中、α:線熱膨張係数(25〜100℃、1/℃)、Kc:破壊靭性値(MPa/m1/2)、E/ρ:比弾性率(GPa/cm/g)、Tg:ガラス転移温度(℃))
The glass substrate according to claim 2, wherein the thermal shock frequency (H) calculated from the following equation (1) without performing the tempering treatment is larger than 40.
Figure 2004352571
(Where, α: coefficient of linear thermal expansion (25 to 100 ° C., 1 / ° C.), Kc: fracture toughness value (MPa / m 1/2 ), E / ρ: specific elastic modulus (GPa / cm 3 / g) , Tg: glass transition temperature (° C.)
強化処理を行うことなく、比弾性率(E/ρ)が30以上、破壊靭性値Kcが1.00以上、線熱膨張係数αが40×10−7〜90×10−7/℃、ガラス転移温度Tgが500℃以上である請求項2又は3に記載のガラス基板。Without strengthening treatment, specific elastic modulus (E / ρ) is 30 or more, fracture toughness value Kc is 1.00 or more, linear thermal expansion coefficient α is 40 × 10 −7 to 90 × 10 −7 / ° C., glass The glass substrate according to claim 2 or 3, wherein the transition temperature Tg is 500 ° C or higher. 表面積/体積が1〜50/mmの範囲であって、最も薄い部分の厚みが2mm以下である請求項2〜4のいずれかに記載のガラス基板。The glass substrate according to any one of claims 2 to 4, wherein the surface area / volume is in the range of 1 to 50 / mm, and the thickness of the thinnest portion is 2 mm or less.
JP2003153238A 2003-05-29 2003-05-29 Manufacturing method of glass substrate Expired - Fee Related JP4726400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003153238A JP4726400B2 (en) 2003-05-29 2003-05-29 Manufacturing method of glass substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003153238A JP4726400B2 (en) 2003-05-29 2003-05-29 Manufacturing method of glass substrate

Publications (2)

Publication Number Publication Date
JP2004352571A true JP2004352571A (en) 2004-12-16
JP4726400B2 JP4726400B2 (en) 2011-07-20

Family

ID=34048244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003153238A Expired - Fee Related JP4726400B2 (en) 2003-05-29 2003-05-29 Manufacturing method of glass substrate

Country Status (1)

Country Link
JP (1) JP4726400B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006290704A (en) * 2005-04-14 2006-10-26 Hitachi Ltd Glass
US7192898B2 (en) 2003-05-29 2007-03-20 Minolta Co., Ltd. Glass composition and glass substrate
JP2009528673A (en) * 2006-01-03 2009-08-06 コーニング インコーポレイテッド Germanium structure on glass and glass ceramic
JP2012106908A (en) * 2010-10-26 2012-06-07 Asahi Glass Co Ltd Glass for substrate, and glass substrate
JP2012141208A (en) * 2010-12-28 2012-07-26 Asahi Glass Co Ltd Method and device for testing quality of glass plate, and method of manufacturing glass plate
WO2013146256A1 (en) * 2012-03-29 2013-10-03 Hoya株式会社 Glass for magnetic recording medium substrate, and glass substrate for magnetic recording medium and use thereof
US8885447B2 (en) 2012-03-29 2014-11-11 Hoya Corporation Glass for magnetic recording medium substrate, glass substrate for magnetic recording medium, and their use
JPWO2013172247A1 (en) * 2012-05-16 2016-01-12 Hoya株式会社 Glass for magnetic recording medium substrate and use thereof
CN108101358A (en) * 2017-12-15 2018-06-01 成都光明光电股份有限公司 Glass composition
US10150691B2 (en) 2012-07-17 2018-12-11 Corning Incorporated Ion exchangeable Li-containing glass compositions for 3-D forming
CN110255895A (en) * 2019-07-16 2019-09-20 醴陵旗滨电子玻璃有限公司 Containing alkali borosilicate glass and preparation method thereof
JP2021527023A (en) * 2018-06-08 2021-10-11 コーニング インコーポレイテッド Fracture resistance stress profile in glass
US11292741B2 (en) 2018-12-12 2022-04-05 Corning Incorporated Ion-exchangeable lithium-containing aluminosilicate glasses
WO2024016788A1 (en) * 2022-07-20 2024-01-25 荣耀终端有限公司 Yttrium aluminosilicate glass, preparation method therefor, and electronic device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102353905B1 (en) 2014-10-08 2022-01-20 코닝 인코포레이티드 High strength glass-ceramics having petalite and lithium silicate structures

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7192898B2 (en) 2003-05-29 2007-03-20 Minolta Co., Ltd. Glass composition and glass substrate
JP2006290704A (en) * 2005-04-14 2006-10-26 Hitachi Ltd Glass
JP2009528673A (en) * 2006-01-03 2009-08-06 コーニング インコーポレイテッド Germanium structure on glass and glass ceramic
JP2012106908A (en) * 2010-10-26 2012-06-07 Asahi Glass Co Ltd Glass for substrate, and glass substrate
JP2012141208A (en) * 2010-12-28 2012-07-26 Asahi Glass Co Ltd Method and device for testing quality of glass plate, and method of manufacturing glass plate
WO2013146256A1 (en) * 2012-03-29 2013-10-03 Hoya株式会社 Glass for magnetic recording medium substrate, and glass substrate for magnetic recording medium and use thereof
US8885447B2 (en) 2012-03-29 2014-11-11 Hoya Corporation Glass for magnetic recording medium substrate, glass substrate for magnetic recording medium, and their use
JPWO2013146256A1 (en) * 2012-03-29 2015-12-10 Hoya株式会社 Glass for magnetic recording medium substrate, glass substrate for magnetic recording medium and use thereof
JPWO2013172247A1 (en) * 2012-05-16 2016-01-12 Hoya株式会社 Glass for magnetic recording medium substrate and use thereof
US10150691B2 (en) 2012-07-17 2018-12-11 Corning Incorporated Ion exchangeable Li-containing glass compositions for 3-D forming
US10183887B2 (en) 2012-07-17 2019-01-22 Corning Incorporated Ion exchangeable Li-containing glass compositions for 3-D forming
US11124444B2 (en) 2012-07-17 2021-09-21 Corning Incorporated Ion exchangeable Li-containing glass compositions for 3-D forming
US11814316B2 (en) 2012-07-17 2023-11-14 Corning Incorporated Ion exchangeable Li-containing glass compositions for 3-D forming
CN108101358A (en) * 2017-12-15 2018-06-01 成都光明光电股份有限公司 Glass composition
CN108101358B (en) * 2017-12-15 2021-05-18 成都光明光电股份有限公司 Glass composition
JP2021527023A (en) * 2018-06-08 2021-10-11 コーニング インコーポレイテッド Fracture resistance stress profile in glass
US11292741B2 (en) 2018-12-12 2022-04-05 Corning Incorporated Ion-exchangeable lithium-containing aluminosilicate glasses
CN110255895A (en) * 2019-07-16 2019-09-20 醴陵旗滨电子玻璃有限公司 Containing alkali borosilicate glass and preparation method thereof
CN110255895B (en) * 2019-07-16 2021-04-13 湖南旗滨医药材料科技有限公司 Alkali-containing borosilicate glass and preparation method thereof
WO2024016788A1 (en) * 2022-07-20 2024-01-25 荣耀终端有限公司 Yttrium aluminosilicate glass, preparation method therefor, and electronic device

Also Published As

Publication number Publication date
JP4726400B2 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
JP4530618B2 (en) Glass composition and glass substrate
JP4039381B2 (en) Glass substrate for information recording medium using glass composition and information recording medium using the same
KR100866175B1 (en) Glass substrate for information recording medium and information recording medium employing same
JP4726399B2 (en) Glass substrate
US9007878B2 (en) Glass for magnetic recording medium substrate and usage thereof
JP4252956B2 (en) Glass for chemical strengthening, substrate for information recording medium, information recording medium, and method for producing information recording medium
JP3996294B2 (en) Substrate for information recording medium made of crystallized glass and information recording medium
JP4282273B2 (en) Glass substrate
JP4726400B2 (en) Manufacturing method of glass substrate
JP2006327935A (en) Glass substrate
JP7165655B2 (en) Glass for information recording medium substrate, information recording medium substrate, information recording medium and glass spacer for recording/reproducing device
JP4161756B2 (en) Glass substrate
JP2006327936A (en) Glass substrate
JP4151440B2 (en) Glass substrate
JP4225086B2 (en) Glass substrate
JP3793401B2 (en) Substrate for information recording medium made of crystallized glass and information recording medium
JP5375698B2 (en) Manufacturing method of glass substrate
JP2002338297A (en) Glass substrate and medium for information recording and element for optical communication using the substrate
JP2001189008A (en) Crystallized glass substrate for information recording medium

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050622

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080125

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080226

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110314

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110412

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4726400

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees