JP2004351649A - Method for manufacturing light scattering light guide plate - Google Patents

Method for manufacturing light scattering light guide plate Download PDF

Info

Publication number
JP2004351649A
JP2004351649A JP2003149199A JP2003149199A JP2004351649A JP 2004351649 A JP2004351649 A JP 2004351649A JP 2003149199 A JP2003149199 A JP 2003149199A JP 2003149199 A JP2003149199 A JP 2003149199A JP 2004351649 A JP2004351649 A JP 2004351649A
Authority
JP
Japan
Prior art keywords
inorganic fine
methyl methacrylate
methacrylic resin
fine particles
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003149199A
Other languages
Japanese (ja)
Inventor
Tetsuya Suda
哲也 須田
Hiroki Hatakeyama
宏毅 畠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2003149199A priority Critical patent/JP2004351649A/en
Publication of JP2004351649A publication Critical patent/JP2004351649A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Moulding By Coating Moulds (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a light scattering light guide plate having high brightness and excellent in in-plane brightness uniformity. <P>SOLUTION: The light scattering light guide plate is manufactured by polymerizing a polymerizable raw material which is based on methyl methacrylate and contains inorganic particles with a mean particle size of 0.1-20 μm. This manufacturing method has a process wherein an inorganic particle-containing methacrylic resin composition is preliminarily produced by melting and kneading 10-85 pts. mass of inorganic particles and 15-90 pts. mass of a methacrylic resin (I) and dissolved in the polymerizable raw material based on methyl methacrylate in a concentration of 0.02-10 ppm in terms of the concentration of the inorganic particles and the resulting solution is polymerized by a cast plate making method (for example, the solution is supplied to the space constituted of endless belts 1 and 2 and a gasket 8 to be polymerized continuously). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、高輝度かつ面内輝度均一性に優れ、例えば、パネルモニターやテレビモニター等の液晶表示装置および面照明装置等の導光板として有用な光散乱導光板の製造方法に関する。
【0002】
【従来の技術】
アクリル樹脂は、優れた透明性、耐候性および機械特性等の特性から、多くの用途に用いられている。そして近年は、例えば、薄型の看板、表示装置、照明器具、液晶表示装置等の背面光源装置(以下「バックライト」と記す)の導光板の材料としても使用されて来ている。
【0003】
このバックライトは、例えば、冷陰極型ランプを導光板の側面に配置し、光源からの光を入射して、導光板背面に印刷あるいは賦型されたドットパターンやプリズム等により導光板前面から光を出射させる面光源である。この種のバックライトに使用される導光板は、高輝度、面内輝度均一性、薄肉軽量、加工性、耐熱性等の特性が求められる。
【0004】
従来より、導光板に入射した光を効率的に出射し、高輝度化を達成するために種々の検討が行われている。高輝度化を目的としたものの一例として、アクリル樹脂等の透明樹脂中にその透明樹脂の屈折率とは異なる屈折率を持つ微粒子を含有させた導光板がある。
【0005】
また、導光板材料の加工性および耐熱性等の要求を満たす方法としては、例えば、導光板をキャスト製板法により製造する方法が知られている。具体的には、押出し製板法や射出成型法により製造した導光板と比較して、キャスト製板法により製造した導光板は、通常、分子量が高いので耐熱性が高く、加工時の摩擦熱により導光板が溶融して白化する焼け欠陥や、冷陰極管発熱により導光板が溶融変形または白化して発生する輝度低下欠陥等の欠陥が発生し難いことが知られている。
【0006】
キャスト製板法により微粒子を含有した光散乱導光板を製造する為の方法としては、例えば、重合性原料に微粒子そのものを添加し、攪拌分散させて重合することにより、導光板を製造する方法がある(例えば、特許文献1参照)。一方、親油性表面処理(シラン処理)をして分散安定性を改良した酸化物微粒子を原料樹脂に溶融混練し、押出し成形することにより導光板を製造する方法もある(例えば、特許文献2参照)。
【0007】
【特許文献1】
特開2002−148443号公報
【特許文献2】
特開平5−341284号公報
【0008】
【発明が解決しようとする課題】
しかしながら、特許文献1に開示される方法は重合性原料に無機微粒子を直接分散させる方法であるが、その分散工程終了後、無機微粒子が再凝集する恐れがある。すなわち、特許文献1では、無機微粒子の分散性安定性については何ら考慮されていない。
【0009】
また、特許文献2に開示される方法は、押出し成形等の溶融混練方法に関しては有用であるが、ガラス板やSUS板を鋳型とするキャスト製板法においては、残存未反応シラン化合物により、鋳型と光散乱導光板の剥離が困難となる。
【0010】
本発明は、上述した各従来技術の課題を解決すべくなされたものである。すなわち、本発明の目的は、キャスト製板法により光散乱導光板を製造する方法において、重合性原料中に混合した無機微粒子が凝集せずに均一に分散し、これにより高輝度および面内輝度均一性に優れた光散乱導光板を製造できる方法を提供することにある。
【0011】
【課題を解決するための手段】
本発明は、平均粒子径0.1μm以上20μm以下の無機微粒子を含有するメタクリル酸メチルを主成分とする重合性原料を重合して光散乱導光板を製造する方法において、予め前記無機微粒子10質量部以上85質量部以下とメタクリル系樹脂(I)15質量部以上90質量部以下を溶融混練して無機微粒子含有メタクリル系樹脂組成物を製造し、該無機微粒子含有メタクリル系樹脂組成物を前記メタクリル酸メチルを主成分とする重合性原料中に無機微粒子濃度換算で0.02ppm以上10ppm以下の濃度で溶解させて、キャスト製板法により重合する工程を有することを特徴とする光散乱導光板の製造方法である。
【0012】
【発明の実施の形態】
本発明においては、予め平均粒子径0.1μm以上20μm以下の無機微粒子とメタクリル系樹脂(I)を溶融混練して無機微粒子含有メタクリル系樹脂組成物を製造し、これをメタクリル酸メチルを主成分とする重合性原料中に溶解させることにより、無機微粒子の凝集を抑制して、重合性原料中に均一かつ安定して分散させることができる。そして、この無機微粒子が均一に分散した重合性原料をキャスト製板法により重合すれば、高輝度および面内輝度均一性に優れた光散乱導光板が得られる。
【0013】
ここで、無機微粒子含有メタクリル系樹脂組成物は、平均粒子径0.1μm以上20μm以下の無機微粒子10質量部以上85質量部以下と、メタクリル系樹脂(I)15質量部以上90質量部以下とを溶融混練して得た組成物(合計100質量部)である。無機微粒子の量を10質量部以上とすることで、所望の高輝度性能を得る為の無機微粒子含有メタクリル系樹脂組成物の添加量を少なくすることができ、効率的である。さらに、この下限値については、30質量部以上であることが好ましく、50質量部以上であることがより好ましい。一方、無機微粒子の量を85質量部以下とすることで、メタクリル系樹脂(I)による無機微粒子表面への被覆効果が得られ易く、重合性原料中に溶解および分散させたときに、無機微粒子の凝集を抑制でき、導光板内部での無機微粒子の分散性が優れ、高輝度および面内輝度均一性の効果が得られる。さらに、この上限値については、80質量部以下であることが好ましい。
【0014】
メタクリル系樹脂(I)は、代表的には、メタクリル酸メチルを少なくとも含む単量体を重合して得られる樹脂であり、メタクリル酸メチルと他の単量体とを共重合して得られる樹脂であってもよい。他の単量体としては、メタクリル酸メチルと共重合可能なことが知られている種々のビニル系単量体を使用できる。例えば、アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸2−ヒドロキシエチル等のメタクリル酸メチル以外の(メタ)アクリル酸エステルや、スチレン、α−メチルスチレン等の芳香族ビニル化合物が挙げられる。ここで「(メタ)アクリル」とは、アクリルとメタクリルの総称である(以下同様)。
【0015】
メタクリル系樹脂(I)としては、メタクリル酸メチル単量体50質量部以上100質量部以下と、他の共重合可能な単量体0質量部以上50質量部以下を用いて重合して得た樹脂が好ましい。メタクリル酸メチル単位が50質量%以上であれば、得られた無機微粒子含有メタクリル系樹脂組成物の重合性原料に対する相溶性が高くなる。
【0016】
メタクリル系樹脂(I)の25℃固有粘度ηは、0.02以上0.06以下であることが好ましい。これが0.02以上であれば、無機微粒子を溶融混練する際に十分な練りをかけることが出来るので、優れた無機微粒子分散性が得られる。また、0.06以下であれば、無機微粒子含有メタクリル系樹脂組成物の重合性原料に対する溶解性が良好となり、重合性原料中の無機微粒子の均一分散性が優れ、導光板の高輝度および面内輝度均一性の効果が向上する。
【0017】
このようなメタクリル系樹脂(I)は、従来より知られる懸濁重合等の技術を用いて得ることができる。例えば、メタクリル酸メチルおよびメタクリル酸メチルと共重合可能な他の単量体の混合物に、重合開始剤および必要に応じて連鎖移動剤を攪拌溶解し、得られた均一混合液を分散安定剤を存在させた分散媒(例えば、水等)に懸濁し、所定の重合温度で一定時間保持して重合させ、得られた重合物を濾過、水洗、乾燥することにより、所望のメタクリル系樹脂(I)が得られる。
【0018】
無機微粒子としては、光拡散の点から、メタクリル系樹脂(I)の屈折率(1.49)とは異なる屈折率の無機微粒子を使用するとよい。メタクリル系樹脂(I)と無機微粒子との屈折率の差は0.001以上であることが好ましい。このような無機微粒子を構成する材料としては、例えば、酸化チタン(ルチル型屈折率2.75)、シリカ(屈折率1.46)、硫酸バリウム(屈折率1.65)、炭酸カルシウム(屈折率1.66)等が挙げられ、これらの中から1種以上を任意に選択して用いることが好ましい。特に、導光板基材と無機微粒子との屈折率の差が大きいほど光散乱効果が大きいことから、酸化チタンを用いることが好ましい。
【0019】
無機微粒子の平均粒子径は、0.1μm以上20μm以下であり、好ましくは0.1μm以上10μm以下である。平均粒子径が0.1μm以上であれば光散乱性の波長依存性が抑えられ、導光板出射光の色調が黄色味を帯びる等の不具合を防止できる。また、20μm以下であれば、微粒子の光散乱による輝点不良を防止でき、優れた高輝度効果が得られる。微粒子の形状は、真球状、球状、立方体形状、不定形状等、特に限定されない。
【0020】
メタクリル系樹脂(I)に無機微粒子を溶融混錬する方法としては、従来より知られる各種技術を用いることができる。例えば、メタクリル系樹脂(I)と無機微粒子を予めヘンシェルミキサー、ブレンダー等の混合装置を用いて混合し、その混合物を一軸あるいは二軸の押出機や各種ニーダー等の混錬装置を用いて溶融混練する方法がある。溶融混錬時の溶融温度は、使用するメタクリル系樹脂(I)の組成等に応じて適宜決定すればよい。
【0021】
また、無機微粒子とメタクリル系樹脂(I)の他に、無機微粒子の分散性を向上させる分散助剤や、溶融混錬時の流動性を改善する流動性改良材等の従来より知られる各種の添加剤を添加してもよい。
【0022】
本発明においては、以上説明した無機微粒子含有メタクリル系樹脂組成物を、メタクリル酸メチルを主成分とする重合性原料中に溶解させる。これにより、無機微粒子の少なくとも一部の表面に被覆したメタクリル系樹脂(I)がメタクリル酸メチルを主成分とする重合性原料との相溶性を発現し、無機微粒子が均一かつ安定して分散した重合性原料を得ることができる。すなわち、ここで無機微粒子含有メタクリル系樹脂組成物を溶解させるとは、その組成物におけるメタクリル系樹脂(I)成分を重合性原料中に溶解させることを意味する。
【0023】
メタクリル酸メチルを主成分とする重合性原料としては、例えば、メタクリル酸メチル単独重合体またはメタクリル酸メチルと他の単量体から得た共重合体、および、メタクリル酸メチルまたはメタクリル酸メチルと他の共重合可能な単量体の混合物からなるシロップ状の重合性原料が好ましい。また、重合性原料中のメタクリル酸メチルの含有量(メタクリル酸メチル系重合体を含む場合は重合体中のメタクリル酸メチル単位の含有量も含む)は、50質量%以上であることが好ましい。
【0024】
重合性原料において、他の単量体としては、メタクリル酸メチルと共重合可能なことが知られている種々のビニル系単量体を使用できる。例えば、アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸2−ヒドロキシエチル等のメタクリル酸メチル以外の(メタ)アクリル酸エステルや、スチレン、α−メチルスチレン等の芳香族ビニル化合物が挙げられる。また、重合性原料は、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコール(メタ)アクリレート、ネオペンチルグリコールジ(メタ)クリレート等の多官能(メタ)アクリレート等を含有していてもよい。
【0025】
シロップ状の重合性原料を用いる場合は、その重合体含有率は60質量%未満であることが好ましい。また、無機微粒子含有メタクリル系樹脂組成物を溶解した重合性原料は、20℃における粘度が200mPa・s以上10000mPa・s以下であることが好ましい。これが200mPa・s以上であれば、重合途中における無機微粒子の沈降をより有効に防止できる。また、10000mPa・s以下であれば、キャスト製板法におけるハンドリング性が劣ることがなく、無機微粒子を均一に分散できる。
【0026】
無機微粒子含有メタクリル系樹脂組成物は、重合性原料中に無機微粒子濃度換算で0.02ppm以上10ppm以下の濃度で溶解させる。したがって、本発明により得られる導光板中の無機微粒子の濃度は上記範囲内となる。この濃度が0.02ppm以上であれば、優れた高輝度および面内輝度均一性を得やすい。また、10ppm以下であれば、導光板をバックライトに組み込んだ時に光源近傍の輝度が高くなる等の面内輝度不均一の問題を防ぐことができる。さらに、この濃度の下限値については0.05ppm以上が好ましく、上限値については5ppm以下が好ましい。
【0027】
無機微粒子含有メタクリル系樹脂組成物を、重合性原料中に溶解させる方法としては、従来より知られる各種の技術を用いることができる。例えば、攪拌翼を備えた攪拌装置、ホモジナイザー等の攪拌装置、あるいは超音波装置を用いて、無機微粒子含有メタクリル系樹脂組成物を溶解し、重合性原料中に無機微粒子を分散させることができる。
【0028】
また、無機微粒子含有メタクリル系樹脂組成物は、重合性原料に直接添加して溶解させてもよいし、あるいはメタクリル酸メチルまたはメタクリル酸メチルとメタクリル酸メチルと共重合可能な単量体の混合物(重合性原料の一部)中に予め無機微粒子含有メタクリル系樹脂組成物を溶解させて、その後これをシロップ状の重合性原料に混合してもよい。
【0029】
本発明においては、上述したように無機微粒子含有メタクリル系樹脂組成物をメタクリル酸メチルを主成分とする重合性原料中に溶解させて、これをキャスト製板法により重合させて、光散乱導光板を得る。
【0030】
このキャスト製板法には、通常、重合開始剤を用いる。重合開始剤としては、重合性原料に添加した場合に溶解するものが好ましい。例えば、アゾ系重合開始剤や過酸化物系重合開始剤を用いることができる。また、それ以外にも、例えば、連鎖移動剤、紫外線吸収剤、酸化防止剤等の安定剤、難燃剤、帯電防止剤、樹脂板の鋳型との剥離を容易にする離型剤等の従来より知られる各種の添加剤を添加してもよい。
【0031】
キャスト製板法に用いる鋳型としては、例えば、ガラス板や鏡面研磨されたステンレス鋼板から構成される鋳型、さらには連続ステンレス鋼板等から成るエンドレスベルトを用いた鋳型等が挙げられる。
【0032】
ガラス板や鏡面研磨されたステンレス鋼板を用いたバッチ式のキャスト製板法としては、例えば、2枚のガラス板あるいは鏡面研磨されたステンレス鋼板と、ポリ塩化ビニル製の無端ガスケットとからなる鋳型の空間部に、無機微粒子含有メタクリル系樹脂組成物と重合開始剤を溶解させた重合性原料を注入し、この重合性原料を重合硬化させ、形成された板状重合体を鋳型から剥離して取り出す方法が挙げられる。
【0033】
連続ステンレス鋼板等から成るエンドレスベルトを用いた連続式のキャスト製板法としては、所定の間隔をもって対向して走行する一対のエンドレスベルトの対向面と、このエンドレスベルトの走行に追随して走行する二つのガスケットとから形成される空間部に、無機微粒子含有メタクリル系樹脂組成物と重合開始剤を溶解させた重合性原料を注入し、この重合性原料を重合硬化させ、形成された板状重合体をエンドレスベルトから剥離して取り出す方法が挙げられる。
【0034】
この連続式のキャスト製板法に使用する、所定の間隔をもって対向して走行する一対のエンドレスベルトを有する重合装置としては、例えば、特公昭46−41602号公報に記載の装置等が使用できる。
【0035】
図1は、そのようなベルト式連続キャスト製板装置を例示する模式的断面図である。この図1に示す装置において、上下に配置した一対のエンドレスベルト1、2はそれぞれ主プーリ3、4、5、6で張力が与えられ、同一速度で走行する。上下対になったキャリアロール7は、走行するエンドレスベルト1、2を水平に支持し、ベルトの走行方向と直角かつベルト面の垂直方向からベルト面に対して線荷重をかける。
【0036】
無機微粒子含有メタクリル系樹脂組成物と重合開始剤を溶解させた重合性原料は、注入装置14からエンドレスベルト1、2の間に供給される。エンドレスベルト1、2の両側端部付近は弾力性のある二個のガスケット12でシールされ、これにより鋳型の空間部が形成されている。
【0037】
エンドレスベルト1、2の間に供給された重合性原料は、エンドレスベルト1、2の走行に伴い、第一重合ゾーン8において温水スプレー9による加熱によって重合を開始し、次いで第二重合ゾーン10において遠赤外線ヒーターで加熱されて重合を完結し、冷却ゾーン11で冷却された後、矢印13方向にアクリル系樹脂シート状物が取り出される。
【0038】
初期の重合温度は30℃〜90℃が好ましく、重合時間は0.5〜20時間程度とすることが好ましい。ただし、この範囲の温度や時間に限定されるものではない。例えば、始めは低温で重合を行い、次いで温度を上昇させて重合を継続させる方法等も用いることができる。その後、100℃〜130℃程度の高温条件で0.1時間〜5時間加熱して重合を完結させることも好ましい。
【0039】
【実施例】
以下、本発明を実施例により更に具体的に説明する。以下の記載において「部」は質量基準である。また各評価は、以下の方法に従い実施した。
【0040】
・「平均粒子径」: レーザー回析/散乱式粒度分布測定装置(堀場製作所製、商品名LA−910)を用い、メタノール溶媒にて測定した。
【0041】
・「メタクリル系樹脂(I)の固有粘度η」: メタクリル系樹脂(I)1.0gをクロロホルム100mlに溶解して、25℃にてオストワルド粘度計で測定した。
【0042】
・「メタクリル酸メチルシロップの重合率」: メタクリル酸メチルシロップ10gをクロロホルム100mlに溶解し、その溶液をn−ヘキサン1L中に滴下しながら攪拌して、ポリマーを再析出させた。その後、ガラスフィルターNO.2G3(孔径40μm〜100μm)にて溶剤をろ過処理してポリマーを得た。さらに、このポリマーを80℃真空乾燥機中にて一昼夜静置することにより、溶剤を揮発させ、乾燥させた。この乾燥したポリマーの質量を計測し、初期に溶解したメタクリル酸メチルシロップから析出したポリマーの比率を算出し、シロップの重合率とした。
【0043】
・「重合性原料(Y−1)の粘度」: B型粘度計(東京計器製、型式BL)を用いて、重合性原料(Y−1)の温度20℃における粘度を測定した。
【0044】
・「導光板の平均輝度」: 視野角1度の輝度計(ミノルタ製、輝度計LS100)を用い、導光板の出射面全体を縦5×横5=25に分割したその各測定点において、出射面方線方向から輝度を測定し、その平均値を算出した。
【0045】
・「導光板の輝度の均一性」: 輝度の均一性は、上記平均輝度算出の際の各測定点における測定輝度のうちのMIN輝度(最低輝度)とMAX輝度(最高輝度)の値を用い、次式より算出した。輝度均一性=(MIN輝度/MAX輝度)×100(%)。
【0046】
<実施例1〜7、比較例1〜5>
(メタクリル系樹脂(I)の製造)
まず、分散剤として使用するアニオン系高分子化合物水溶液(X1)を、以下のようにして製造した。メタクリル酸2−スルホエチルナトリウム58部、メタクリル酸カリウム水溶液(メタクリル酸カリウム分30質量%)31部、および、メタクリル酸メチル11部からなる混合物に対して、脱イオン水900部を加えて攪拌溶解させた。次いで、この混合物を窒素雰囲気下で攪拌しながら60℃まで昇温し、6時間攪拌保持して、アニオン系高分子化合物(X1)を得た。この際、混合物の温度が50℃に到達した時に重合開始剤として硫酸アンモニウム0.1部を添加し、さらに別に計量したメタクリル酸メチル11部を75分間かけて連続的に滴下した。
【0047】
この分散剤としてのアニオン系高分子化合物水溶液(X1)0.4部を、脱イオン水150部を満たした容器に加え、さらに分散助剤として硫酸ナトリウム0.5部を加えて攪拌溶解して、脱イオン水混合物を得た。
【0048】
また、別の容器である耐圧反応容器内に、表1に示すメタクリル酸メチルおよび他の単量体、さらには重合開始剤、連鎖移動剤を加え、攪拌溶解した。次いで、先に調製した脱イオン水混合物を投入し、窒素置換しながら攪拌速度500rpmで15分間攪拌し、その後75℃に加温して重合させた。重合発熱による系内の温度が極大値を示す重合ピークが発現した後、95℃、60分間の熱処理を行い重合を完結させた。得られた重合物を、濾過、水洗、乾燥することにより、3種類のメタクリル系樹脂(I)A〜Cを得た。これらメタクリル系樹脂(I)A〜Cの25℃固有粘度ηを表1に示す。
【0049】
(無機微粒子含有メタクリル系樹脂組成物の製造)
表2に示す無機微粒子およびメタクリル系樹脂(I)A〜Cを、ヘンシェルミキサー(三井三池製作所製、商品名HENSHEL FM−20B)を用いて1700rpmで1分間混合し、さらに30mmφ二軸押出機(池貝鉄工所製、商品名PCM−30押出機)を用いて150℃で押出して、7種類の無機微粒子含有メタクリル系樹脂組成物A−1〜3、B−1、C−1〜3を得た。なお、酸化チタン原料そのものはD−1とした。
【0050】
(光散乱導光板の製造)
表3および表4に示す無機微粒子含有メタクリル系樹脂組成物と、単量体を混合し、攪拌溶解させて前処理分散液を得た(なお、比較例1および比較例4、5では、後述するメタクリル酸メチルシロップに直接混合した)。
【0051】
続いて、表3および表4に示す特定重合率のポリメタクリル酸メチルとメタクリル酸メチルとからなるメタクリル酸メチルシロップを、上述の前処理分散液と混合し、30分間攪拌して重合性原料(Y−1)を得た。
この重合性原料(Y−1)の20℃における粘度を表3および表4に示す。
【0052】
続いて、重合性原料(Y−1)に、重合開始剤として2,2’−アゾビス(2,4−ジメチルバレロニトリル)を表3および表4記載の割合で添加し、更に紫外線吸収剤として2−(5−メチル−2−ヒドロキシフェニル)−ベンゾトリアゾール0.005部を添加して、30分間攪拌した。なお、ここで、表3記載の実施例4においては、さらに連鎖移動剤としてn−ドデシルメルカプタン0.03部も添加して30分間攪拌した。その後、減圧下にて脱気を行い、無機微粒子含有メタクリル系樹脂組成物を溶解しかつ開始剤等を添加した重合性原料(Y−2)を得た。
【0053】
実施例2、実施例4〜7および比較例1〜5においては、縦400mm、横500mm、厚み1.5mmのSUS板2枚をその周囲のポリ塩化ビニル製の無端チューブを介して配設した構成の鋳型の中に、重合性原料(Y−2)を注入した。そして、この鋳型を70℃温水浴にて加熱することにより重合性原料(Y−2)を1時間重合させ、次いで130℃の空気浴にて1時間かけて重合を完結させて、サイズ350mm×450mm、厚さ6mmのアクリル樹脂板を得た。
【0054】
一方、実施例1および実施例3においては、図1に示した連続キャスト製板装置を使用した。すなわち、所定の間隔をもって対向して走行する一対のエンドレスベルトの対向面と、エンドレスベルトの走行に追随して走行する二つのガスケットとから形成される空間部に重合性原料(Y−2)を供給し、第一重合ゾーン8において70℃温水スプレー9による加熱により1時間重合を行い、続いて第二重合ゾーン10において遠赤外線ヒーターで130℃に0.5時間加熱して重合を完結させ、厚さ6mmのアクリル樹脂板を得た。
【0055】
以上のようにして得た各アクリル樹脂板を、平面形状が長方形の幅241mm、長さ319mm(対角長さ399.8mm)になるように、パネルソー(SHINX製、商品名SZIVG−4000)で切断し、周辺の4つの側面を研削研磨機(メガロテクニカ製、商品名プラビューティー)にて鏡面研磨加工をして、導光板を得た。
【0056】
この導光板の背面に、白色インキ(セイコーアドバンス製、商品名CAVメイバン120ホワイト)を、導光体中央部が濃く、光源方向へ向かうに従い薄くなるような15インチ用のドットパターン(網点グラデーション)を施した250メッシュのスクリーンを用いて、光拡散層のスクリーン印刷を行った。さらに、導光板の長辺側両側面に外径4.8mmφの冷陰極管(ハリソン東芝ライティング製)をコの字型の金属製ランプレフと共に配置し、ドットパターン印刷面側に反射フィルム(ツジデン製、商品名RF188)1枚を重ね合わせた。また、ドットパターン非印刷面側には、光拡散シート(ツジデン製、商品名D121)を1枚、更にその上にプリズムシート(住友スリーエム製、商品名BEFII)をプリズム列が交互になるように2枚重ね合わせた。
【0057】
さらに、冷陰極管に専用インバーターをセットし、12Vの電圧をかけて15分間点灯後の輝度を測定し、平均輝度と輝度均一性を算出した。結果を表3および表4に示す。
【0058】
【表1】

Figure 2004351649
【0059】
【表2】
Figure 2004351649
【0060】
【表3】
Figure 2004351649
【0061】
【表4】
Figure 2004351649
表1〜表4中の略号は、以下の通りである。
「MMA」:メタクリル酸メチル
「EA」:アクリル酸エチル
「St」:スチレン
「AIBN」:2,2’−アゾビスイソブチロニトリル
「n−OM」:n−オクチルメルカプタン
「n−DM」:n−ドデシルメルカプタン
「MMAシロップ」:メタクリル酸メチルの一部を重合させた重合体とメタクリル酸メチルとからなるシロップ
「MA」:アクリル酸メチル
「BA」:アクリル酸ブチル
「EDMA」:エチレングリコールジメタクリレート
「ADVN」:2,2’−アゾビス(2,4−ジメチルバレロニトリル)
輝度均一性における注釈
※1:ランプ近傍の輝度が高く、面内輝度均一性劣る。
※2:輝点不良発生
※3:無機微粒子の分散不良発生。また、分散不良粒子による輝点不良発生。
【0062】
【発明の効果】
以上説明したように、本発明によれば、キャスト製板法により光散乱導光板を製造する方法において、重合性原料中に混合した無機微粒子が凝集せずに均一に分散し、これにより高輝度および面内輝度均一性に優れた光散乱導光板を製造できる。
【図面の簡単な説明】
【図1】本発明の方法に使用可能なベルト式連続キャスト製板装置を例示する模式的断面図である。
【符号の説明】
1、2 エンドレスベルト
3、4、5、6 主プーリ
7 キャリアロール
8 第一重合ゾーン
9 温水スプレー
10第二重合ゾーン
11冷却ゾーン
12ガスケット
13アクリル樹脂板の取り出し方向
14重合性原料注入装置[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a light-scattering light-guiding plate having high luminance and excellent in-plane luminance uniformity and useful as, for example, a liquid-crystal display device such as a panel monitor or a television monitor, and a light-guiding plate for a plane lighting device.
[0002]
[Prior art]
Acrylic resins are used in many applications due to their excellent properties such as transparency, weather resistance, and mechanical properties. In recent years, it has been used as a material for a light guide plate of a back light source device (hereinafter, referred to as “backlight”) such as a thin signboard, a display device, a lighting device, a liquid crystal display device, and the like.
[0003]
In this backlight, for example, a cold cathode lamp is arranged on the side of the light guide plate, light from a light source is incident, and light is emitted from the front of the light guide plate by a dot pattern or a prism printed or shaped on the back of the light guide plate. Is a surface light source that emits light. A light guide plate used for this type of backlight is required to have characteristics such as high luminance, in-plane luminance uniformity, thin and light weight, workability, and heat resistance.
[0004]
Conventionally, various studies have been made to efficiently emit light incident on a light guide plate and achieve high luminance. As an example of an object for achieving high luminance, there is a light guide plate in which fine particles having a refractive index different from that of the transparent resin are contained in a transparent resin such as an acrylic resin.
[0005]
Further, as a method for satisfying the requirements such as workability and heat resistance of a light guide plate material, for example, a method of manufacturing a light guide plate by a cast plate manufacturing method is known. Specifically, in comparison with a light guide plate manufactured by an extrusion plate manufacturing method or an injection molding method, a light guide plate manufactured by a cast plate manufacturing method generally has high heat resistance due to a high molecular weight, and has a high frictional heat during processing. It is known that a defect such as a burn defect in which the light guide plate is melted and whitened due to heat, and a brightness reduction defect which is generated by melting and deforming or whitening the light guide plate due to heat generated by the cold cathode tube are unlikely to occur.
[0006]
As a method for producing a light-scattering light-guiding plate containing fine particles by a cast plate manufacturing method, for example, a method of producing a light-guiding plate by adding the fine particles themselves to a polymerizable raw material, stirring and dispersing and polymerizing, is used. (For example, see Patent Document 1). On the other hand, there is also a method of producing a light guide plate by melting and kneading oxide fine particles having improved dispersion stability by lipophilic surface treatment (silane treatment) with a raw material resin and extruding the resin (for example, see Patent Document 2). ).
[0007]
[Patent Document 1]
JP-A-2002-148443
[Patent Document 2]
JP-A-5-341284
[0008]
[Problems to be solved by the invention]
However, the method disclosed in Patent Document 1 is a method in which inorganic fine particles are directly dispersed in a polymerizable raw material. However, after the dispersion step, the inorganic fine particles may be re-agglomerated. That is, Patent Document 1 does not consider the dispersibility stability of the inorganic fine particles at all.
[0009]
Further, the method disclosed in Patent Document 2 is useful with respect to a melt-kneading method such as extrusion molding, but in a cast plate making method using a glass plate or an SUS plate as a mold, the remaining unreacted silane compound causes a mold. Then, it becomes difficult to separate the light scattering light guide plate.
[0010]
The present invention has been made to solve the above-described problems of the related arts. That is, an object of the present invention is to provide a method of manufacturing a light-scattering light-guiding plate by a cast plate manufacturing method, in which inorganic fine particles mixed in a polymerizable raw material are uniformly dispersed without aggregation, whereby high brightness and in-plane brightness are obtained. An object of the present invention is to provide a method capable of manufacturing a light-scattering light-guide plate having excellent uniformity.
[0011]
[Means for Solving the Problems]
The present invention relates to a method for producing a light-scattering light-guiding plate by polymerizing a polymerizable raw material containing methyl methacrylate as a main component containing inorganic fine particles having an average particle diameter of 0.1 μm or more and 20 μm or less, wherein the inorganic fine particles 10 mass To 85 parts by mass and 15 to 90 parts by mass of the methacrylic resin (I) are melt-kneaded to produce a methacrylic resin composition containing inorganic fine particles, and the methacrylic resin composition containing inorganic fine particles is mixed with the methacrylic resin. A light-scattering light-guiding plate characterized by having a step of dissolving it in a polymerizable raw material containing methyl acid as a main component at a concentration of 0.02 ppm or more and 10 ppm or less in terms of inorganic fine particle concentration and polymerizing by a cast plate manufacturing method. It is a manufacturing method.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, an inorganic fine particle having an average particle diameter of 0.1 μm or more and 20 μm or less and a methacrylic resin (I) are melt-kneaded in advance to produce a methacrylic resin composition containing inorganic fine particles, and this is mainly composed of methyl methacrylate. By dissolving in the polymerizable raw material, the aggregation of the inorganic fine particles can be suppressed, and the inorganic fine particles can be uniformly and stably dispersed in the polymerizable raw material. When the polymerizable raw material in which the inorganic fine particles are uniformly dispersed is polymerized by a cast plate manufacturing method, a light-scattering light-guide plate having high luminance and excellent in-plane luminance uniformity can be obtained.
[0013]
Here, the inorganic fine particle-containing methacrylic resin composition has 10 to 85 parts by mass of inorganic fine particles having an average particle size of 0.1 to 20 μm, and 15 to 90 parts by mass of methacrylic resin (I). Is a composition (total 100 parts by mass) obtained by melt-kneading. When the amount of the inorganic fine particles is 10 parts by mass or more, the amount of the inorganic fine particle-containing methacrylic resin composition for obtaining a desired high luminance performance can be reduced, which is efficient. Further, the lower limit is preferably at least 30 parts by mass, more preferably at least 50 parts by mass. On the other hand, when the amount of the inorganic fine particles is 85 parts by mass or less, the effect of coating the surface of the inorganic fine particles with the methacrylic resin (I) is easily obtained, and when the inorganic fine particles are dissolved and dispersed in the polymerizable raw material, Can be suppressed, the dispersibility of the inorganic fine particles inside the light guide plate is excellent, and the effects of high luminance and in-plane luminance uniformity can be obtained. Further, the upper limit is preferably 80 parts by mass or less.
[0014]
The methacrylic resin (I) is typically a resin obtained by polymerizing a monomer containing at least methyl methacrylate, and is a resin obtained by copolymerizing methyl methacrylate and another monomer. It may be. As other monomers, various vinyl monomers known to be copolymerizable with methyl methacrylate can be used. For example, methyl acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, cyclohexyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, (Meth) acrylic acid esters other than methyl methacrylate such as 2-hydroxyethyl (meth) acrylate, and aromatic vinyl compounds such as styrene and α-methylstyrene. Here, “(meth) acryl” is a general term for acryl and methacryl (hereinafter the same).
[0015]
The methacrylic resin (I) was obtained by polymerization using 50 to 100 parts by mass of a methyl methacrylate monomer and 0 to 50 parts by mass of another copolymerizable monomer. Resins are preferred. When the amount of the methyl methacrylate unit is 50% by mass or more, the compatibility of the obtained inorganic fine particle-containing methacrylic resin composition with the polymerizable raw material increases.
[0016]
The methacrylic resin (I) preferably has an intrinsic viscosity η at 25 ° C. of 0.02 or more and 0.06 or less. When it is 0.02 or more, sufficient kneading can be performed when the inorganic fine particles are melt-kneaded, so that excellent inorganic fine particle dispersibility can be obtained. Further, when it is 0.06 or less, the solubility of the inorganic fine particle-containing methacrylic resin composition in the polymerizable raw material becomes good, the uniform dispersibility of the inorganic fine particles in the polymerizable raw material is excellent, and the light guide plate has high brightness and surface. The effect of the inner luminance uniformity is improved.
[0017]
Such a methacrylic resin (I) can be obtained by using a conventionally known technique such as suspension polymerization. For example, in a mixture of methyl methacrylate and other monomers copolymerizable with methyl methacrylate, a polymerization initiator and, if necessary, a chain transfer agent are stirred and dissolved, and the obtained homogeneous mixture is dispersed with a dispersion stabilizer. The polymer is suspended in a dispersing medium (for example, water), kept at a predetermined polymerization temperature for a certain period of time, and polymerized. The obtained polymer is filtered, washed with water, and dried to obtain a desired methacrylic resin (I). ) Is obtained.
[0018]
As the inorganic fine particles, it is preferable to use inorganic fine particles having a refractive index different from the refractive index (1.49) of the methacrylic resin (I) from the viewpoint of light diffusion. The difference in the refractive index between the methacrylic resin (I) and the inorganic fine particles is preferably 0.001 or more. Examples of a material constituting such inorganic fine particles include titanium oxide (rutile type refractive index 2.75), silica (refractive index 1.46), barium sulfate (refractive index 1.65), and calcium carbonate (refractive index). 1.66) and the like, and it is preferable to arbitrarily select and use one or more of these. In particular, it is preferable to use titanium oxide since the light scattering effect is greater as the difference in the refractive index between the light guide plate substrate and the inorganic fine particles is larger.
[0019]
The average particle diameter of the inorganic fine particles is from 0.1 μm to 20 μm, preferably from 0.1 μm to 10 μm. When the average particle diameter is 0.1 μm or more, the wavelength dependence of light scattering properties is suppressed, and problems such as the yellow color tone of light emitted from the light guide plate can be prevented. Further, when it is 20 μm or less, it is possible to prevent a bright spot defect due to light scattering of the fine particles, and to obtain an excellent high luminance effect. The shape of the fine particles is not particularly limited, such as a true sphere, a sphere, a cubic shape, and an irregular shape.
[0020]
As a method of melt-kneading the inorganic fine particles into the methacrylic resin (I), various conventionally known techniques can be used. For example, the methacrylic resin (I) and the inorganic fine particles are mixed in advance using a mixing device such as a Henschel mixer or a blender, and the mixture is melt-kneaded using a kneading device such as a single-screw or twin-screw extruder or various kneaders. There is a way to do that. The melting temperature at the time of melt-kneading may be appropriately determined according to the composition of the methacrylic resin (I) to be used.
[0021]
In addition to the inorganic fine particles and the methacrylic resin (I), various kinds of conventionally known various additives such as a dispersing aid for improving the dispersibility of the inorganic fine particles and a fluidity improving material for improving the fluidity during melt-kneading. Additives may be added.
[0022]
In the present invention, the methacrylic resin composition containing inorganic fine particles described above is dissolved in a polymerizable raw material containing methyl methacrylate as a main component. Thereby, the methacrylic resin (I) coated on at least a part of the surface of the inorganic fine particles develops compatibility with the polymerizable raw material containing methyl methacrylate as a main component, and the inorganic fine particles are uniformly and stably dispersed. A polymerizable raw material can be obtained. That is, dissolving the methacrylic resin composition containing the inorganic fine particles herein means dissolving the methacrylic resin (I) component in the composition in the polymerizable raw material.
[0023]
Examples of the polymerizable raw material containing methyl methacrylate as a main component include, for example, methyl methacrylate homopolymer or a copolymer obtained from methyl methacrylate and another monomer, and methyl methacrylate or methyl methacrylate and A syrup-like polymerizable raw material comprising a mixture of copolymerizable monomers is preferred. Further, the content of methyl methacrylate in the polymerizable raw material (including the methyl methacrylate unit content in the case of including a methyl methacrylate polymer) is preferably 50% by mass or more.
[0024]
In the polymerizable raw material, as other monomers, various vinyl monomers known to be copolymerizable with methyl methacrylate can be used. For example, methyl acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, cyclohexyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, (Meth) acrylic acid esters other than methyl methacrylate such as 2-hydroxyethyl (meth) acrylate, and aromatic vinyl compounds such as styrene and α-methylstyrene. Further, the polymerizable raw material may contain, for example, polyfunctional (meth) acrylates such as ethylene glycol di (meth) acrylate, diethylene glycol (meth) acrylate, and neopentyl glycol di (meth) acrylate.
[0025]
When a syrup-like polymerizable material is used, the polymer content is preferably less than 60% by mass. The polymerizable raw material in which the inorganic fine particle-containing methacrylic resin composition is dissolved preferably has a viscosity at 20 ° C. of 200 mPa · s to 10,000 mPa · s. If this is 200 mPa · s or more, sedimentation of the inorganic fine particles during polymerization can be more effectively prevented. In addition, when it is 10,000 mPa · s or less, the handling properties in the cast plate making method are not inferior, and the inorganic fine particles can be uniformly dispersed.
[0026]
The inorganic fine particle-containing methacrylic resin composition is dissolved in the polymerizable material at a concentration of 0.02 ppm or more and 10 ppm or less in terms of inorganic fine particles. Therefore, the concentration of the inorganic fine particles in the light guide plate obtained by the present invention falls within the above range. When this concentration is 0.02 ppm or more, it is easy to obtain excellent high luminance and in-plane luminance uniformity. If it is 10 ppm or less, it is possible to prevent a problem of in-plane luminance nonuniformity such as an increase in luminance near the light source when the light guide plate is incorporated in the backlight. Further, the lower limit of the concentration is preferably 0.05 ppm or more, and the upper limit is preferably 5 ppm or less.
[0027]
As a method for dissolving the methacrylic resin composition containing the inorganic fine particles in the polymerizable raw material, various conventionally known techniques can be used. For example, the methacrylic resin composition containing inorganic fine particles can be dissolved using a stirrer equipped with a stirring blade, a stirrer such as a homogenizer, or an ultrasonic device, and the inorganic fine particles can be dispersed in the polymerizable raw material.
[0028]
The inorganic fine particle-containing methacrylic resin composition may be directly added to and dissolved in the polymerizable raw material, or may be methyl methacrylate or a mixture of methyl methacrylate and a monomer copolymerizable with methyl methacrylate ( Alternatively, the methacrylic resin composition containing the inorganic fine particles may be dissolved in advance in a part of the polymerizable raw material) and then mixed with the syrup-like polymerizable raw material.
[0029]
In the present invention, as described above, the inorganic fine particle-containing methacrylic resin composition is dissolved in a polymerizable raw material containing methyl methacrylate as a main component, and the resulting polymer is polymerized by a cast plate manufacturing method. Get.
[0030]
A polymerization initiator is usually used in the cast plate making method. As the polymerization initiator, those which dissolve when added to the polymerizable raw material are preferable. For example, an azo-based polymerization initiator or a peroxide-based polymerization initiator can be used. In addition, other than the above, for example, chain transfer agents, ultraviolet absorbers, stabilizers such as antioxidants, flame retardants, antistatic agents, mold release agents that facilitate the release of the resin plate from the mold, and the like. Various known additives may be added.
[0031]
Examples of the mold used in the cast plate manufacturing method include a mold made of a glass plate or a mirror-polished stainless steel plate, and a mold using an endless belt made of a continuous stainless steel plate.
[0032]
As a batch casting method using a glass plate or a mirror-polished stainless steel plate, for example, a mold made of two glass plates or a mirror-polished stainless steel plate and an endless gasket made of polyvinyl chloride is used. In the space, a polymerizable material in which the inorganic fine particle-containing methacrylic resin composition and the polymerization initiator are dissolved is injected, the polymerizable material is polymerized and cured, and the formed plate polymer is peeled off from the mold and taken out. Method.
[0033]
As a continuous cast plate making method using an endless belt made of a continuous stainless steel plate or the like, a pair of endless belts running opposite to each other at a predetermined interval and running following the running of the endless belt. A polymerizable material in which a methacrylic resin composition containing inorganic fine particles is dissolved and a polymerization initiator is injected into a space formed by the two gaskets, and the polymerizable material is polymerized and cured to form a plate-like weight. A method in which the union is separated from the endless belt and taken out is used.
[0034]
As a polymerization apparatus having a pair of endless belts running opposite to each other at a predetermined interval and used in the continuous casting plate forming method, for example, an apparatus described in JP-B-46-41602 can be used.
[0035]
FIG. 1 is a schematic sectional view illustrating such a belt-type continuous casting plate making apparatus. In the apparatus shown in FIG. 1, a pair of endless belts 1 and 2 arranged vertically are tensioned by main pulleys 3, 4, 5 and 6, respectively, and run at the same speed. The upper and lower carrier rolls 7 support the running endless belts 1 and 2 horizontally, and apply a linear load to the belt surface from a direction perpendicular to the running direction of the belt and perpendicular to the belt surface.
[0036]
The polymerizable raw material in which the inorganic fine particle-containing methacrylic resin composition and the polymerization initiator are dissolved is supplied from the injection device 14 between the endless belts 1 and 2. The vicinity of both end portions of the endless belts 1 and 2 is sealed by two elastic gaskets 12, thereby forming a space of the mold.
[0037]
The polymerizable raw material supplied between the endless belts 1 and 2 starts polymerization by heating with a hot water spray 9 in a first polymerization zone 8 as the endless belts 1 and 2 run, and then in a second polymerization zone 10 After being heated by a far-infrared heater to complete the polymerization and cooled in the cooling zone 11, the acrylic resin sheet is taken out in the direction of arrow 13.
[0038]
The initial polymerization temperature is preferably 30C to 90C, and the polymerization time is preferably about 0.5 to 20 hours. However, the temperature and time are not limited to these ranges. For example, a method in which polymerization is performed at a low temperature at first and then the temperature is increased to continue the polymerization can be used. Thereafter, it is also preferable to complete the polymerization by heating at a high temperature of about 100 ° C. to 130 ° C. for 0.1 hour to 5 hours.
[0039]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples. In the following description, “parts” are based on mass. Each evaluation was performed according to the following method.
[0040]
"Average particle diameter": Measured with a methanol solvent using a laser diffraction / scattering particle size distribution analyzer (trade name: LA-910, manufactured by Horiba, Ltd.).
[0041]
“Intrinsic viscosity η of methacrylic resin (I)”: 1.0 g of methacrylic resin (I) was dissolved in 100 ml of chloroform and measured at 25 ° C. with an Ostwald viscometer.
[0042]
-"Polymerization rate of methyl methacrylate syrup": 10 g of methyl methacrylate syrup was dissolved in 100 ml of chloroform, and the solution was dropped into 1 L of n-hexane and stirred to reprecipitate a polymer. Thereafter, the glass filter NO. The solvent was filtered through 2G3 (pore size: 40 μm to 100 μm) to obtain a polymer. Further, the polymer was allowed to stand in a vacuum dryer at 80 ° C. for 24 hours to evaporate the solvent and dry. The mass of the dried polymer was measured, and the ratio of the polymer precipitated from the initially dissolved methyl methacrylate syrup was calculated to be the syrup polymerization rate.
[0043]
-"Viscosity of polymerizable raw material (Y-1)": The viscosity of the polymerizable raw material (Y-1) at a temperature of 20C was measured using a B-type viscometer (manufactured by Tokyo Keiki, Model BL).
[0044]
"Average luminance of light guide plate": Using a luminance meter with a viewing angle of 1 degree (manufactured by Minolta, luminance meter LS100), at each measurement point obtained by dividing the entire exit surface of the light guide plate into 5 × 5 = 5 = 25. The luminance was measured from the direction normal to the emission surface, and the average value was calculated.
[0045]
-"Uniformity of luminance of light guide plate": The uniformity of luminance uses the values of the MIN luminance (minimum luminance) and the MAX luminance (maximum luminance) of the measured luminance at each measurement point when calculating the average luminance. Was calculated from the following equation. Luminance uniformity = (MIN luminance / MAX luminance) × 100 (%).
[0046]
<Examples 1 to 7, Comparative Examples 1 to 5>
(Production of methacrylic resin (I))
First, an aqueous solution of an anionic polymer compound (X1) used as a dispersant was produced as follows. To a mixture of 58 parts of sodium 2-sulfoethyl methacrylate, 31 parts of an aqueous solution of potassium methacrylate (potassium methacrylate content: 30% by mass), and 11 parts of methyl methacrylate, 900 parts of deionized water is added, and the mixture is stirred and dissolved. I let it. Next, the mixture was heated to 60 ° C. while stirring under a nitrogen atmosphere, and stirred and maintained for 6 hours to obtain an anionic polymer compound (X1). At this time, when the temperature of the mixture reached 50 ° C., 0.1 part of ammonium sulfate was added as a polymerization initiator, and 11 parts of methyl methacrylate, which was separately measured, was continuously dropped over 75 minutes.
[0047]
0.4 part of an aqueous solution of an anionic polymer compound (X1) as a dispersant is added to a container filled with 150 parts of deionized water, and 0.5 part of sodium sulfate is further added as a dispersing agent, followed by stirring and dissolution. To obtain a deionized water mixture.
[0048]
Further, methyl methacrylate and other monomers shown in Table 1 as well as a polymerization initiator and a chain transfer agent shown in Table 1 were added to another pressure-resistant reaction vessel, followed by stirring and dissolution. Next, the previously prepared deionized water mixture was charged, and the mixture was stirred at a stirring speed of 500 rpm for 15 minutes while purging with nitrogen, and then heated to 75 ° C. for polymerization. After a polymerization peak at which the temperature in the system showed a maximum value due to the heat generated by the polymerization, a heat treatment at 95 ° C. for 60 minutes was performed to complete the polymerization. The resulting polymer was filtered, washed with water, and dried to obtain three types of methacrylic resins (I) AC. Table 1 shows the intrinsic viscosity η at 25 ° C. of these methacrylic resins (I) AC.
[0049]
(Production of methacrylic resin composition containing inorganic fine particles)
The inorganic fine particles and the methacrylic resins (I) A to C shown in Table 2 were mixed at 1700 rpm for 1 minute using a Henschel mixer (trade name: HENSHEL FM-20B, manufactured by Mitsui Miike Seisakusho), and further a 30 mmφ twin screw extruder ( Extrusion at 150 ° C. using a trade name PCM-30 extruder manufactured by Ikegai Iron Works, to obtain seven types of inorganic fine particle-containing methacrylic resin compositions A-1 to 3, B-1, and C-1 to 3. Was. The titanium oxide raw material itself was D-1.
[0050]
(Manufacture of light scattering light guide plate)
A methacrylic resin composition containing inorganic fine particles shown in Tables 3 and 4 and a monomer were mixed and stirred and dissolved to obtain a pre-treatment dispersion. (Note that in Comparative Examples 1 and 4, and 5, Was directly mixed with methyl methacrylate syrup).
[0051]
Subsequently, methyl methacrylate syrup composed of polymethyl methacrylate and methyl methacrylate having the specific polymerization rates shown in Tables 3 and 4 was mixed with the above-mentioned pretreatment dispersion, and stirred for 30 minutes to obtain a polymerizable raw material ( Y-1) was obtained.
Tables 3 and 4 show the viscosity at 20 ° C. of the polymerizable raw material (Y-1).
[0052]
Subsequently, 2,2′-azobis (2,4-dimethylvaleronitrile) was added as a polymerization initiator to the polymerizable raw material (Y-1) at a ratio shown in Tables 3 and 4, and further as an ultraviolet absorber. 0.005 parts of 2- (5-methyl-2-hydroxyphenyl) -benzotriazole was added and stirred for 30 minutes. Here, in Example 4 described in Table 3, 0.03 part of n-dodecyl mercaptan was further added as a chain transfer agent, and the mixture was stirred for 30 minutes. Thereafter, degassing was performed under reduced pressure to obtain a polymerizable raw material (Y-2) in which the inorganic fine particle-containing methacrylic resin composition was dissolved and an initiator and the like were added.
[0053]
In Example 2, Examples 4 to 7, and Comparative Examples 1 to 5, two SUS plates having a length of 400 mm, a width of 500 mm, and a thickness of 1.5 mm were arranged via an endless tube made of polyvinyl chloride around the SUS plate. The polymerizable raw material (Y-2) was injected into the mold having the above configuration. Then, the mold was heated in a 70 ° C hot water bath to polymerize the polymerizable raw material (Y-2) for 1 hour, and then the polymerization was completed in an air bath at 130 ° C for 1 hour to obtain a size of 350 mm × An acrylic resin plate having a thickness of 450 mm and a thickness of 6 mm was obtained.
[0054]
On the other hand, in Examples 1 and 3, the continuous casting plate making apparatus shown in FIG. 1 was used. That is, the polymerizable material (Y-2) is filled in a space formed by a pair of endless belts running opposite to each other at a predetermined interval and two gaskets running following the running of the endless belt. The polymerization was carried out for 1 hour by heating with a hot water spray 9 at 70 ° C. in the first polymerization zone 8, followed by heating to 130 ° C. for 0.5 hour with a far infrared heater in the second polymerization zone 10 to complete the polymerization, An acrylic resin plate having a thickness of 6 mm was obtained.
[0055]
A panel saw (manufactured by SHINX, trade name: SZIVG-4000) is used to obtain each of the acrylic resin plates obtained as described above so that the planar shape becomes a rectangular width of 241 mm and a length of 319 mm (diagonal length of 399.8 mm). It was cut, and four peripheral sides were mirror-polished with a grinding and polishing machine (manufactured by Megalo Technica, trade name: Pla Beauty) to obtain a light guide plate.
[0056]
On the back of this light guide plate, a white ink (manufactured by Seiko Advance, trade name: CAV Mayvan 120 White) is applied with a dot pattern for 15 inches (dot gradation) such that the center of the light guide becomes darker and becomes thinner toward the light source. The light diffusion layer was screen-printed using a 250-mesh screen subjected to the above (2). Further, a cold cathode tube (manufactured by Harrison Toshiba Lighting Co., Ltd.) having an outer diameter of 4.8 mm is arranged on both long sides of the light guide plate together with a U-shaped metal lamp reflex, and a reflective film (manufactured by Tsujiden) is provided on the dot pattern printing surface side. , Trade name RF188). Also, on the non-printing surface side of the dot pattern, one light diffusion sheet (trade name: D121, made by Tsudiden) and a prism sheet (trade name: BEFII, made by Sumitomo 3M) are further arranged on the light diffusion sheet so that the prism rows are alternately arranged. Two sheets were overlaid.
[0057]
Further, a dedicated inverter was set in the cold cathode tube, a voltage of 12 V was applied, the luminance after lighting for 15 minutes was measured, and the average luminance and luminance uniformity were calculated. The results are shown in Tables 3 and 4.
[0058]
[Table 1]
Figure 2004351649
[0059]
[Table 2]
Figure 2004351649
[0060]
[Table 3]
Figure 2004351649
[0061]
[Table 4]
Figure 2004351649
The abbreviations in Tables 1 to 4 are as follows.
"MMA": Methyl methacrylate
"EA": Ethyl acrylate
"St": Styrene
"AIBN": 2,2'-azobisisobutyronitrile
"N-OM": n-octyl mercaptan
"N-DM": n-dodecyl mercaptan
"MMA syrup": syrup consisting of a polymer obtained by polymerizing a part of methyl methacrylate and methyl methacrylate
"MA": Methyl acrylate
"BA": butyl acrylate
"EDMA": ethylene glycol dimethacrylate
"ADVN": 2,2'-azobis (2,4-dimethylvaleronitrile)
Annotations in luminance uniformity
* 1: Luminance near the lamp is high, and in-plane luminance uniformity is poor.
* 2: Bright spot failure
* 3: Poor dispersion of inorganic fine particles. In addition, the occurrence of defective bright spots due to poorly dispersed particles occurs.
[0062]
【The invention's effect】
As described above, according to the present invention, in a method of manufacturing a light-scattering light-guiding plate by a cast plate manufacturing method, inorganic fine particles mixed in a polymerizable raw material are uniformly dispersed without agglomeration, thereby achieving high brightness. In addition, a light-scattering light guide plate having excellent in-plane luminance uniformity can be manufactured.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view illustrating a belt-type continuous cast plate making apparatus that can be used in the method of the present invention.
[Explanation of symbols]
1,2 Endless belt
3, 4, 5, 6 main pulley
7 carrier roll
8 First polymerization zone
9 Hot water spray
10 Second polymerization zone
11 cooling zones
12 gaskets
13 Removal direction of acrylic resin plate
14 Polymerizable raw material injection device

Claims (5)

平均粒子径0.1μm以上20μm以下の無機微粒子を含有するメタクリル酸メチルを主成分とする重合性原料を重合して光散乱導光板を製造する方法において、
予め前記無機微粒子10質量部以上85質量部以下とメタクリル系樹脂(I)15質量部以上90質量部以下を溶融混練して無機微粒子含有メタクリル系樹脂組成物を製造し、該無機微粒子含有メタクリル系樹脂組成物を前記メタクリル酸メチルを主成分とする重合性原料中に無機微粒子濃度換算で0.02ppm以上10ppm以下の濃度で溶解させて、キャスト製板法により重合する工程を有することを特徴とする光散乱導光板の製造方法。
In a method for producing a light-scattering light-guiding plate by polymerizing a polymerizable raw material containing methyl methacrylate as a main component containing inorganic fine particles having an average particle diameter of 0.1 μm or more and 20 μm or less,
10 to 85 parts by mass of the inorganic fine particles and 15 to 90 parts by mass of the methacrylic resin (I) are previously melt-kneaded to produce a methacrylic resin composition containing the inorganic fine particles. A step of dissolving the resin composition in a polymerizable raw material containing methyl methacrylate as a main component at a concentration of 0.02 ppm or more and 10 ppm or less in terms of the concentration of inorganic fine particles, and polymerizing by a cast plate manufacturing method. Of producing a light-scattering light-guiding plate.
メタクリル酸メチルを主成分とする重合性原料が、メタクリル酸メチル単独重合体またはメタクリル酸メチルと他の単量体から得た共重合体、および、メタクリル酸メチルまたはメタクリル酸メチルと他の共重合可能な単量体の混合物からなるシロップ状の重合性原料であり、さらに無機微粒子含有メタクリル系樹脂組成物を溶解した重合性原料の20℃における粘度は200mPa・s以上10000mPa・s以下である請求項1記載の光散乱導光板の製造方法。Polymerizable raw materials containing methyl methacrylate as a main component are methyl methacrylate homopolymer or copolymer obtained from methyl methacrylate and other monomers, and methyl methacrylate or methyl methacrylate and other copolymers. A syrup-like polymerizable raw material comprising a mixture of possible monomers, and the viscosity at 20 ° C. of the polymerizable raw material in which the inorganic fine particle-containing methacrylic resin composition is dissolved is at least 200 mPa · s and at most 10,000 mPa · s. Item 2. A method for producing a light-scattering light guide plate according to Item 1. 無機微粒子が、酸化チタンである請求項1記載の光散乱導光板の製造方法。The method according to claim 1, wherein the inorganic fine particles are titanium oxide. メタクリル系樹脂(I)が、メタクリル酸メチル単量体50質量部以上100質量部以下と、他の共重合可能な単量体0質量部以上50質量部以下を用いて重合して得た樹脂であり、かつ該メタクリル系樹脂(I)の25℃固有粘度ηが0.02以上0.06以下である請求項1記載の光散乱導光板の製造方法。A resin obtained by polymerizing a methacrylic resin (I) using 50 to 100 parts by mass of a methyl methacrylate monomer and 0 to 50 parts by mass of another copolymerizable monomer. The method for producing a light-scattering light-guide plate according to claim 1, wherein the methacrylic resin (I) has an intrinsic viscosity η at 25 ° C of 0.02 or more and 0.06 or less. キャスト製板法が、所定の間隔をもって対向して走行する一対のエンドレスベルトの対向面と、該エンドレスベルトの走行に追随して走行する二つのガスケットとから形成される空間部に、無機微粒子含有メタクリル系樹脂組成物を溶解させた重合性原料を注入し、該重合性原料を重合硬化させ、形成された板状重合体を該エンドレスベルトから剥離して取り出す連続キャスト製板法である請求項1記載の光散乱導光板の製造方法。An inorganic fine particle is contained in a space formed by a casting plate method, which includes a pair of endless belts running opposite to each other at a predetermined interval and two gaskets running following the running of the endless belt. A continuous cast plate making method in which a polymerizable material in which a methacrylic resin composition is dissolved is injected, the polymerizable material is polymerized and cured, and the formed plate-like polymer is peeled off from the endless belt and taken out. 2. The method for producing a light-scattering light guide plate according to 1.
JP2003149199A 2003-05-27 2003-05-27 Method for manufacturing light scattering light guide plate Pending JP2004351649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003149199A JP2004351649A (en) 2003-05-27 2003-05-27 Method for manufacturing light scattering light guide plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003149199A JP2004351649A (en) 2003-05-27 2003-05-27 Method for manufacturing light scattering light guide plate

Publications (1)

Publication Number Publication Date
JP2004351649A true JP2004351649A (en) 2004-12-16

Family

ID=34045379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003149199A Pending JP2004351649A (en) 2003-05-27 2003-05-27 Method for manufacturing light scattering light guide plate

Country Status (1)

Country Link
JP (1) JP2004351649A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007058060A1 (en) * 2005-11-17 2007-05-24 Asahi Kasei Chemicals Corporation Light guide plate
JP2008248086A (en) * 2007-03-30 2008-10-16 Sumitomo Chemical Co Ltd Method of manufacturing methacrylic resin composition containing inorganic particles
WO2010018793A1 (en) * 2008-08-12 2010-02-18 三菱レイヨン株式会社 Process for continuously producing acrylic resin sheet
JP2010171010A (en) * 2009-01-23 2010-08-05 Taiwan Nanotechnology Corp Light guide plate
JP2011112812A (en) * 2009-11-26 2011-06-09 Oki Data Corp Static eliminator, developing device, and image forming apparatus
WO2011124412A1 (en) 2010-04-08 2011-10-13 Evonik Röhm Gmbh Optical waveguide bodies with high light intensity and high transparency
CN101463113B (en) * 2007-12-19 2011-11-23 奇美实业股份有限公司 Method for preparing metacrylic acid ester resin constituent for light guide board
KR20120103461A (en) * 2011-03-09 2012-09-19 스미또모 가가꾸 가부시끼가이샤 A resin composition for a light guide plate and a light guide plate
DE102012205749A1 (en) 2012-04-10 2013-10-10 Evonik Industries Ag Advertising light box with lateral cavity backlighting and special lens for optimized light distribution
WO2018151030A1 (en) * 2017-02-16 2018-08-23 株式会社クラレ Resin composition comprising acrylic block copolymer and light diffusing agent
WO2019172243A1 (en) 2018-03-07 2019-09-12 三菱ケミカル株式会社 Transparent resin composition, resin molded body, lamp cover, lamp cover for vehicles, combination lamp cover, and vehicle

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5137581B2 (en) * 2005-11-17 2013-02-06 旭化成ケミカルズ株式会社 Light guide plate
WO2007058060A1 (en) * 2005-11-17 2007-05-24 Asahi Kasei Chemicals Corporation Light guide plate
JP2008248086A (en) * 2007-03-30 2008-10-16 Sumitomo Chemical Co Ltd Method of manufacturing methacrylic resin composition containing inorganic particles
CN101463113B (en) * 2007-12-19 2011-11-23 奇美实业股份有限公司 Method for preparing metacrylic acid ester resin constituent for light guide board
WO2010018793A1 (en) * 2008-08-12 2010-02-18 三菱レイヨン株式会社 Process for continuously producing acrylic resin sheet
KR101555737B1 (en) 2008-08-12 2015-09-25 미츠비시 레이온 가부시키가이샤 Process for continuously producing acrylic resin sheet
JP5747439B2 (en) * 2008-08-12 2015-07-15 三菱レイヨン株式会社 Method for continuously producing acrylic resin sheet
JP2010171010A (en) * 2009-01-23 2010-08-05 Taiwan Nanotechnology Corp Light guide plate
JP2011112812A (en) * 2009-11-26 2011-06-09 Oki Data Corp Static eliminator, developing device, and image forming apparatus
US8571444B2 (en) 2009-11-26 2013-10-29 Oki Data Corporation Neutralization device, developing device and image forming apparatus
JP2013527968A (en) * 2010-04-08 2013-07-04 エボニック レーム ゲゼルシャフト ミット ベシュレンクテル ハフツング Light guide with high light intensity and high transparency
EP2556395B1 (en) 2010-04-08 2017-10-18 Evonik Röhm GmbH Light conduction body with high light intensity and high transparency
US10007048B2 (en) 2010-04-08 2018-06-26 Evonik Roehm Gmbh Light guide body having high luminous intensity and high transparency
CN102834752A (en) * 2010-04-08 2012-12-19 赢创罗姆有限公司 Light guide body having high luminous intensity and high transparency
WO2011124412A1 (en) 2010-04-08 2011-10-13 Evonik Röhm Gmbh Optical waveguide bodies with high light intensity and high transparency
JP2012188503A (en) * 2011-03-09 2012-10-04 Sumitomo Chemical Co Ltd Resin composition for light guide plate, and light guide plate
CN102675791A (en) * 2011-03-09 2012-09-19 住友化学株式会社 Resin composition used for light guide plate and light guide plate
KR20120103461A (en) * 2011-03-09 2012-09-19 스미또모 가가꾸 가부시끼가이샤 A resin composition for a light guide plate and a light guide plate
WO2013152911A1 (en) 2012-04-10 2013-10-17 Evonik Industries Ag Advertising light box having lateral cavity backlighting and specific pane for optimized light distribution
DE102012205749A1 (en) 2012-04-10 2013-10-10 Evonik Industries Ag Advertising light box with lateral cavity backlighting and special lens for optimized light distribution
WO2018151030A1 (en) * 2017-02-16 2018-08-23 株式会社クラレ Resin composition comprising acrylic block copolymer and light diffusing agent
US10935697B2 (en) 2017-02-16 2021-03-02 Kuraray Co., Ltd. Resin composition including acrylic block copolymer and light diffusing agent
WO2019172243A1 (en) 2018-03-07 2019-09-12 三菱ケミカル株式会社 Transparent resin composition, resin molded body, lamp cover, lamp cover for vehicles, combination lamp cover, and vehicle
US11269130B2 (en) 2018-03-07 2022-03-08 Mitsubishi Chemical Corporation Transparent resin composition, resin molded body, lamp cover, lamp cover for vehicles, combination lamp cover, and vehicle

Similar Documents

Publication Publication Date Title
JP3850373B2 (en) Light guide plate and method for producing transparent thermoplastic resin composition for light guide plate
CN101310213B (en) Light diffusion plate for liquid crystal display
JP2004351649A (en) Method for manufacturing light scattering light guide plate
WO2006054509A1 (en) Resin extruded plate for high luminance light guide plate and method for producing the same
JP3507713B2 (en) Light diffusing resin composition
JP2007153959A (en) Resin composition for light-diffusing plate and light-diffusing plate
JP2009302034A (en) Acrylic sheet or film for thin light guide plate
JP2004226604A (en) Synthetic resin particle, light diffusion plate, backlight unit for liquid crystal display and liquid crystal display device
JP2006268060A (en) Light guide and method for producing transparent thermoplastic resin composition for the light guide
JP2008015442A (en) Extruded polymer plate for anisotropic light scattering having high dimensional stability
JP2000169722A (en) Light-diffusing thermoplastic resin composition and its molded article
JP3927846B2 (en) Acrylic resin plate for light guide plate and method for producing the same, light guide plate, surface light emitting device including the same, and display device
JP2006232877A (en) Light-diffusing agent and light-diffusing resin composition using the same
JP2011094119A (en) Light diffusible composite resin particle, method for producing the same, light diffusible resin composition, and illumination cover
JP2009126996A (en) Resin composition for light diffusion plate and light diffusion plate
JP2007114331A (en) Light diffusing organic fine particles and light diffusion resin molding using same
JP2005326761A (en) Light guide with excellent optical characteristics
JPH1067829A (en) Microparticle suitable for light-diffusing plastic
JP2012053273A (en) Light guide plate and edge-lit type surface light source device using the same
JP2006237114A (en) Diffusion unit for led
JPH11158205A (en) Acrylic luminous resin molded article
JP2006160980A (en) Light-diffusive resin composition
JP2000169721A (en) Thermoplastic resin composition excellent in light diffusible and its molded item
KR100708900B1 (en) Light Scattered Light Guiding Plates and Liquid Crystal Display Device Using the Same
KR100665801B1 (en) Multi-functional Light Guiding Plates and Method for Continuous Preparation of the Same