JP2004351246A - Method for producing hollow fiber membrane module - Google Patents

Method for producing hollow fiber membrane module Download PDF

Info

Publication number
JP2004351246A
JP2004351246A JP2003148827A JP2003148827A JP2004351246A JP 2004351246 A JP2004351246 A JP 2004351246A JP 2003148827 A JP2003148827 A JP 2003148827A JP 2003148827 A JP2003148827 A JP 2003148827A JP 2004351246 A JP2004351246 A JP 2004351246A
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
potting material
membrane module
bundle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003148827A
Other languages
Japanese (ja)
Other versions
JP2004351246A5 (en
JP4432365B2 (en
Inventor
Koji Takahashi
宏次 高橋
Masahiro Kubota
昌裕 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2003148827A priority Critical patent/JP4432365B2/en
Publication of JP2004351246A publication Critical patent/JP2004351246A/en
Publication of JP2004351246A5 publication Critical patent/JP2004351246A5/ja
Application granted granted Critical
Publication of JP4432365B2 publication Critical patent/JP4432365B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the intrusion of a potting material into hollow fiber membranes without the mixing of impurities when the potting material is injected to bind/fix hollow fiber membrane bundles in a housing container in a hollow fiber membrane module production process. <P>SOLUTION: In the method for producing the hollow fiber membrane module, the end parts of the hollow fiber membrane bundles are bound/fixed by the potting material into one or more cylindrical housing containers. In the method for producing the hollow fiber membrane module, in melting/cutting for cutting the hollow fiber membrane bundles while melting the bundles, after a sheet-like heating element 0.1 mm or below in thickness is used, the bundles are bound/fixed by the potting material. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は中空糸膜モジュールの製造方法に関するものであり、中空糸膜束を収容容器に集束固定するためにポッティング材を注入する際に、中空糸膜内へのポッティング材の侵入を防止する方法に関する。
【0002】
【従来の技術】
近年、中空糸膜モジュールは、水処理膜などの工業分野、血液処理などの医療分野等多岐にわたり利用され、特に浄水器、人工腎臓、人工肺などではその需要がきわめて増加している。
【0003】
一般に中空糸膜モジュールでは、多数の中空糸膜を集束して、中空糸膜束とし、中空糸膜束を筒状収容容器に挿入した後、ポッティング材により中空糸膜束の中空糸膜間及び中空糸膜束と筒状収容容器間の接着をポッティング材により同時に行い、ポッティング材が固化した後、中空糸膜束をポッティング材と同時に中空糸膜束の横断面方向に切断し、固定された中空糸膜の開口端を得る製造方法が用いられている。この集束固定の方法として、多くの場合、中空糸膜束を挿入した筒状収容容器を中空糸膜束の軸方向に垂直な方向に回転して得られる遠心力を利用したポッティングが行われているが、ポッティング材投入時に、中空糸膜の中空部分が開口していると、ポッティング材が中空糸膜内に侵入し、ポッティング材が固化した後、中空糸膜束をポッティング材と同時に中空糸膜束の横断面方向に切断しても、固定された中空糸膜の開口端を得ることができない。
【0004】
そこで、中空糸膜内へのポッティング材の侵入を防止する方法として、次のような方法が実施されている。特公昭62−31962号公報には、ポッティング時の温度と回転数を制御することにより、中空糸膜内へのポッティング材の侵入を防止する方法が記載されている。また、特開昭61−11111号公報、特開昭62−269709号公報には、中空糸膜内に正圧を加え、中空糸膜内にポッティング材の侵入を防止する方法が記載されている。しかし、これらの方法は、中空糸膜の気密性が高いことが前提であるので、気密性の低い中空糸膜ではいずれもポッティング材が侵入してしまう中空糸膜(不通糸)が生じる。また、気密性の低い中空糸膜でも中空糸膜内へのポッティング材の侵入を防止する方法として、中空糸膜を線状発熱体を用いて溶融切断することにより中空糸膜を封止する方法が特開平3−161027号公報、特開昭58−109104号公報に、記載されている。これらの方法は、少数本の中空糸膜を封止する際には有効であるが、10000本前後にも達する中空糸膜を封止する際には、線状発熱体から発せられる熱により溶融する中空糸膜を個々に封止しきれずに中空糸膜が中空糸膜束内の隣接する中空糸膜と接着してしまい、中空糸膜を個々に封止することが出来ない。これを回避するためには、1cm/min程度まで切断速度を下げる必要がある。しかし、1cm/min程度の切断速度では、生産効率において実用的ではない。
【0005】
【発明が解決しようとする課題】
本発明は気密性の低い中空糸膜でも不通糸を生じることなくポッティングでき、且つ、短時間に中空糸膜モジュールを製造すること、さらには、医療分野での製品化を実現するため溶融時に煤等が中空糸膜モジュールに混入しないことを目的を目的した中空糸膜モジュールの製造方法を提供することを課題とする。
【0006】
【課題を解決するための手段】
本発明者は鋭意検討した結果、本発明に至った。
【0007】
すなわち、中空糸膜束の筒状収容容器内へのポッティング材による集束固定において、中空糸膜内へのポッティング材の侵入を確実に防止し、且つ、ポッティング材の注入回数を一度のみとすることにより、短時間で確実なモジュールを作製するものであり、さらに、その工程内で煤等が混入しないように、中空糸膜束を特定の厚みを有する板状発熱体により溶融切断し、中空糸膜束内の中空糸膜個々の切断面を、個々に完全に封止する中空糸膜モジュールの製造方法を確立したものである。
【0008】
本発明は、筒状収容容器内に中空糸膜束の端部をポッティング材にて集束固定する中空糸膜モジュールの製造方法において、厚みが0.1mm以下である板状発熱体を下から上方向に移動させることにより、中空糸膜束を溶融切断した後、ポッティング材にて前記中空糸膜束を集束固定することを特徴とする中空糸膜モジュールの製造方法である。
【0009】
【発明の実施の形態】
本発明は、次の各工程を行うことで、簡単にポッティング材の注入時における中空糸膜内への侵入を防止し、且つ、ポッティング材注入回数を一度とし、短時間での確実なモジュール作製を可能にする。
【0010】
(1)筒状収容容器に、収容容器より長い中空糸膜を挿入する。挿入された中空糸膜束の、はみ出した部分を板状発熱体を用いて溶融切断する。中空糸膜束の封止による溶融量を少なくするため、さらには、溶融切断による煤等が中空糸膜中に混入しないように、前記板状発熱体の厚みは、0.1mm以下にすることが好ましい。
溶融切断中に、中空糸膜が前記板状発熱体の上部に付着し、燃焼、炭化するのを防止するためである。
【0011】
さらに板状発熱体に幅を持たせることで高い熱容量を持たせることができる。幅は5mm以上にするのが好ましい。
【0012】
板状発熱体の溶融切断時の温度は600〜900℃とするのが好ましい。中空糸膜が瞬間的に前記板状発熱体に接触しても燃焼しない温度であり、かつ、中空糸膜が前記板状発熱体の放射熱でガラス転位する温度である。
溶融切断は、板状発熱体を下から上方向に移動させることにより行う。上から下へ移動させた場合に比べ、下から上方向に移動させた場合には、板状発熱体の熱容量が保持され、さらに中空糸膜に溶融切断前に余熱を与えることができるためである。
【0013】
本発明でいう「板状発熱体」とは、断面形状が多角形であり、前記溶融切断時の移動方向を縦方向とし、中空糸膜軸方向を横方向とすれば、断面形状の縦方向長さを横方向長さで割った値が、1以上であるものをいい、高い温度であっても、中空糸膜の溶融量が小さくできる。
【0014】
前述の線状発熱体とは断面形状が円形のものをいい、温度を上げるためには線の径を大きくすることが必要であり、その為に、中空糸膜の溶融量も増えるという点で相違するものである。板状発熱体を用いることにより10000本の中空糸膜束を25秒以下の所要時間で溶融切断しても、煤等の発生が無く、確実に中空糸膜束を中空糸膜個々に封止できる。
【0015】
板状発熱体としては、エナメル、スチール、銅等を用いることが好ましい。
【0016】
また、中空糸膜としては、セルロース、ポリアクリロニトリル、ポリメチルメタクリレート、ポリエーテルサルフォン、ポリスルホンなどが用いられ、中でも、透水性が高く、高い分隔性能を持つ点でポリスルホンを含むことが好ましい。
【0017】
さらに、中空糸膜の重量に対する水分の重量が、1重量%以下であることが、中空糸膜の熱容量を小さくでき、短時間で溶融切断できるという点で好ましい。
【0018】
(2)(1)の中空糸膜が個々に封止された中空糸膜束入りの筒状収容容器に注型キャップを取付ける。
【0019】
(3)(2)の筒状収容容器に遠心力の付加を行いつつポッティング材を注入して、中空糸膜間及び中空糸膜束と筒状収容容器間の接着を行う。ポッティング材としては、例えば、ウレタン樹脂やエポキシ樹脂などが用いられる。
【0020】
(4)(3)のポッティング材が硬化した後、注型キャップを取り外し、筒状収容容器の長さに合わせて中空糸膜束をポッティング材とともに中空糸膜軸方向と垂直の方向に切断する。
【0021】
(5)(4)により中空糸膜端部の開口した中空糸膜モジュールに、流体の導入口を有するキャップを装着することにより、機能を持つ中空糸膜モジュールが完成する。
【0022】
本発明により、遠心法によるポッティングにおいて、簡単に且つポッティング材注入回数を一度だけとし、短時間で確実なモジュールを作製することができる。さらに本発明により、中空糸膜モジュールの作製工程の時間短縮が可能になる。
【0023】
本発明の中空糸膜は、水処理等の工業分野、あるいは、人工腎臓等の医療分野において好適に用いられる。
【0024】
【実施例】
(実施例1)
分離性能を有する中空糸膜の重量に対する水分の重量が、0%のポリスルホン、ポリビニルピロリドン、ジメチルアセトアミド、水を加熱溶解し、製膜原液としたポリスルホン中空糸膜(外径280μm、膜厚40μm)、10600本を収束したものを筒状収容容器に入れた。
【0025】
この容器を3組用意し、水平に揃え並列に3組並べ、中空糸膜束を、容器端から10mmの位置で、横断面方向に溶融切断した。溶融切断は、幅10mm、厚さ0.1mm、長さ300mmの、電熱加熱により温度を760℃としたニクロム板を用いて行い、下から上方向に、3.17mm/sの速さで移動することにより行った。
【0026】
これに注型キャップを取り付け、遠心力(50G)を付与しつつ、2液混合後の粘度が0.7Pa・sであるポッティング剤を注入することにより、中空糸膜間及び中空糸膜束とモジュールケース間の接着を行った。
【0027】
ポッティング材が硬化した後,前記容器の長さに合わせて、中空糸膜をポッティング材とともに横断面方向に切断した。
【0028】
中空糸膜の開口状態を調べたところ、中空糸膜内へのポッティング材(日本ポリウレタン製二液系ウレタン樹脂KC256−KN421、配合比54:46、粘度1200cps)の侵入が一切見られず、溶融切断時の煤の発生もなく、良好なものであった。
(比較例1)
分離性能を有する中空糸膜の重量に対する水分の重量が、1%以下のポリスルホン中空糸膜(外径280μm、膜厚40μm)、10600本を収束したものを筒状収容容器に入れた。
【0029】
容器を3組用意し、水平に揃え並列に3組並べ、中空糸膜束を、容器端から10mmの位置で横断面方向に溶融切断した。
【0030】
溶融切断は、厚み0.2mm、幅5mm、長さ300mmの、電熱加熱により温度を760℃としたニクロム板を用いて、下から上方向に、3.17mm/sの早さで切断した。この溶融切断時に、板状発熱体の上部に煤が付着し、熱で上昇して、モジュールに付着した。
(比較例2)
分離性能を有する中空糸膜の重量に対する水分の重量が、1%以下のポリスルホン中空糸膜(外径280μm、膜厚40μm)、10600本を収束したものを筒状収容容器に入れた。
【0031】
容器を3組用意し、水平に揃え並列に3組並べ、中空糸膜束を容器端から10mmの位置で横断面方向に、溶融切断した。溶融切断は、幅10mm、厚さ0.1mm、長さ300mmの、電熱加熱により温度を760℃としたニクロム板を用いて、下から上へ3.17mm/sの早さで切断した。
【0032】
得られた中空糸膜束の溶融切断面を調査した。中空糸膜が10600本全ては封止されておらず、封止されている中空糸膜も触れるとすぐに封止部が折れてしまう状態であった。実施例1と同様に、ポッティングを行ったが、中空糸膜の中にポッティング材が浸入してしまった。
(比較例3)
分離性能を有する中空糸膜の重量に対する水分の重量が、1%以下のポリスルホン中空糸膜(外径280μm、膜厚40μm)、10600本を収束したものを筒状収容容器に入れた。
【0033】
容器を3組用意し、水平に揃え並列に3組並べ、中空糸膜束の容器端から10mmの位置で横断面方向に溶融切断した。
【0034】
溶融切断は、線径3mm、長さ300mmの電熱加熱し温度を760℃としたニクロム線を用い、下から上方向に3.17mm/sの早さで切断した。
【0035】
得られた中空糸膜束の溶融切断面を調査した。中空糸膜は封止されていたが、中空糸膜個々の間があいていなかった。実施例1と同様に、ポッティングを行ったが、中空糸膜間のポッティング材によるシールが完全でなかった。
【0036】
【発明の効果】
本発明によれば、中空糸膜束を完全に封止し中空糸膜内へポッティング材の侵入を防止することによって、簡単で且つ短時間で確実なモジュール製造を可能にした。
【図面の簡単な説明】
【図1】実施例において、中空糸膜モジュールを溶融切断する際の概略断面図を示す。
【図2】実施例において、中型キャップを装着させた状態の中空糸モジュールの断面図を示す。
【図3】実施例において、ポッティング後の中空糸膜モジュール端面の断面図を示す。
【符号の説明】
1・・・筒状収容容器、
2・・・中空糸膜束、
3・・・板状発熱体、
4・・・中空糸膜溶融部、
5・・・ポッティング材、
6・・・注型キャップ、
7・・・中空糸膜端部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a hollow fiber membrane module, and a method for preventing intrusion of a potting material into a hollow fiber membrane when pouring a potting material to focus and fix the hollow fiber membrane bundle in a storage container. About.
[0002]
[Prior art]
BACKGROUND ART In recent years, hollow fiber membrane modules have been used in a wide variety of fields such as industrial fields such as water treatment membranes and medical fields such as blood treatment, and the demand for water purifiers, artificial kidneys, artificial lungs and the like has been extremely increased.
[0003]
In general, in a hollow fiber membrane module, a number of hollow fiber membranes are bundled to form a hollow fiber membrane bundle, and after inserting the hollow fiber membrane bundle into a cylindrical storage container, a potting material is used between the hollow fiber membranes of the hollow fiber membrane bundle and The bonding between the hollow fiber membrane bundle and the cylindrical storage container was performed simultaneously by the potting material, and after the potting material was solidified, the hollow fiber membrane bundle was cut simultaneously with the potting material in the cross-sectional direction of the hollow fiber membrane bundle and fixed. A manufacturing method for obtaining an open end of a hollow fiber membrane has been used. As a method of fixing and fixing the bundle, in many cases, potting is performed using centrifugal force obtained by rotating the cylindrical storage container into which the hollow fiber membrane bundle is inserted in a direction perpendicular to the axial direction of the hollow fiber membrane bundle. However, if the hollow portion of the hollow fiber membrane is open when the potting material is charged, the potting material enters into the hollow fiber membrane, and after the potting material has solidified, the hollow fiber membrane bundle is transferred simultaneously with the potting material. Even when the membrane bundle is cut in the cross-sectional direction, the open end of the fixed hollow fiber membrane cannot be obtained.
[0004]
Therefore, the following method has been implemented as a method for preventing the intrusion of the potting material into the hollow fiber membrane. Japanese Patent Publication No. Sho 62-31962 describes a method of controlling the temperature and the number of rotations at the time of potting to prevent a potting material from entering the hollow fiber membrane. JP-A-61-11111 and JP-A-62-269709 describe a method of applying a positive pressure to a hollow fiber membrane to prevent a potting material from entering the hollow fiber membrane. . However, since these methods are based on the premise that the hollow fiber membrane has high airtightness, any hollow fiber membrane having low airtightness causes a hollow fiber membrane (impervious fiber) into which a potting material enters. Further, as a method for preventing the intrusion of the potting material into the hollow fiber membrane even with a low airtight hollow fiber membrane, a method of sealing the hollow fiber membrane by melting and cutting the hollow fiber membrane using a linear heating element. Are described in JP-A-3-161027 and JP-A-58-109104. These methods are effective when sealing a small number of hollow fiber membranes. However, when sealing about 10,000 hollow fiber membranes, they are melted by the heat generated from the linear heating element. The hollow fiber membranes cannot be individually sealed, and the hollow fiber membranes adhere to the adjacent hollow fiber membranes in the hollow fiber membrane bundle, and the hollow fiber membranes cannot be individually sealed. In order to avoid this, it is necessary to reduce the cutting speed to about 1 cm / min. However, a cutting speed of about 1 cm / min is not practical in terms of production efficiency.
[0005]
[Problems to be solved by the invention]
The present invention is capable of potting a hollow fiber membrane having low airtightness without causing a thread breakage, and producing a hollow fiber membrane module in a short time. It is an object of the present invention to provide a method of manufacturing a hollow fiber membrane module for the purpose of preventing the mixing of such components into the hollow fiber membrane module.
[0006]
[Means for Solving the Problems]
The present inventors have conducted intensive studies and, as a result, have arrived at the present invention.
[0007]
That is, in focusing and fixing the hollow fiber membrane bundle into the cylindrical storage container by the potting material, the intrusion of the potting material into the hollow fiber membrane is reliably prevented, and the number of times of injecting the potting material is only once. Thus, a reliable module can be manufactured in a short time, and further, the hollow fiber membrane bundle is melt-cut with a plate-shaped heating element having a specific thickness so that soot and the like are not mixed in the process. The present invention has established a method for manufacturing a hollow fiber membrane module that completely and individually seals the cut surfaces of hollow fiber membranes in a membrane bundle.
[0008]
The present invention relates to a method for manufacturing a hollow fiber membrane module in which the ends of hollow fiber membrane bundles are bundled and fixed in a cylindrical storage container with a potting material, wherein a plate-shaped heating element having a thickness of 0.1 mm or less is placed from bottom to top. A method for manufacturing a hollow fiber membrane module, characterized in that the hollow fiber membrane bundle is melted and cut by moving the hollow fiber membrane bundle in a direction, and then the hollow fiber membrane bundle is focused and fixed with a potting material.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
According to the present invention, by performing the following steps, it is possible to easily prevent the intrusion into the hollow fiber membrane at the time of injecting the potting material, and make the number of times of injecting the potting material once, and to produce a reliable module in a short time Enable.
[0010]
(1) A hollow fiber membrane longer than the storage container is inserted into the cylindrical storage container. The protruding portion of the inserted hollow fiber membrane bundle is melt-cut using a plate-like heating element. In order to reduce the amount of melting due to the sealing of the hollow fiber membrane bundle, the thickness of the plate-shaped heating element should be 0.1 mm or less so that soot and the like due to melting and cutting do not enter the hollow fiber membrane. Is preferred.
This is to prevent the hollow fiber membrane from adhering to the upper part of the plate-shaped heating element during the melting and cutting and burning or carbonizing.
[0011]
Further, by giving the plate-shaped heating element a width, a high heat capacity can be provided. Preferably, the width is at least 5 mm.
[0012]
The temperature at the time of melting and cutting the plate-shaped heating element is preferably set to 600 to 900 ° C. This is a temperature at which the hollow fiber membrane does not burn even if it comes into contact with the plate-shaped heating element instantaneously, and a temperature at which the hollow fiber membrane undergoes glass transition by radiant heat of the plate-shaped heating element.
Melt cutting is performed by moving the plate-shaped heating element upward from below. When moved upward from below, compared to when moved downward from above, the heat capacity of the plate-shaped heating element is maintained, and further, the residual heat can be given to the hollow fiber membrane before melting and cutting. is there.
[0013]
The term "plate-like heating element" as used in the present invention has a polygonal cross-sectional shape, and the moving direction during the melting and cutting is the vertical direction, and the hollow fiber membrane axial direction is the horizontal direction. A value obtained by dividing the length by the lateral length is 1 or more. Even when the temperature is high, the melting amount of the hollow fiber membrane can be reduced.
[0014]
The above-mentioned linear heating element has a circular cross-sectional shape, and in order to raise the temperature, it is necessary to increase the diameter of the wire, so that the amount of melting of the hollow fiber membrane also increases. It is different. Even if 10000 hollow fiber membrane bundles are melted and cut in less than 25 seconds by using a plate-shaped heating element, no soot is generated and the hollow fiber membrane bundles are securely sealed individually. it can.
[0015]
It is preferable to use enamel, steel, copper, or the like as the plate-like heating element.
[0016]
As the hollow fiber membrane, cellulose, polyacrylonitrile, polymethyl methacrylate, polyether sulfone, polysulfone, or the like is used. Among them, it is preferable that polysulfone is contained because of high water permeability and high separation performance.
[0017]
Further, it is preferable that the weight of water relative to the weight of the hollow fiber membrane is 1% by weight or less, since the heat capacity of the hollow fiber membrane can be reduced and the melt cutting can be performed in a short time.
[0018]
(2) Attach the casting cap to the cylindrical storage container containing the hollow fiber membrane bundle in which the hollow fiber membranes of (1) are individually sealed.
[0019]
(3) A potting material is injected into the cylindrical storage container of (2) while applying a centrifugal force to bond between the hollow fiber membranes and between the hollow fiber membrane bundle and the cylindrical storage container. As the potting material, for example, a urethane resin or an epoxy resin is used.
[0020]
(4) After the potting material of (3) is cured, the casting cap is removed, and the hollow fiber membrane bundle is cut together with the potting material in a direction perpendicular to the hollow fiber membrane axis direction according to the length of the cylindrical storage container. .
[0021]
(5) A hollow fiber membrane module having a function is completed by attaching a cap having a fluid inlet to the hollow fiber membrane module having the hollow fiber membrane end opened according to (4).
[0022]
ADVANTAGE OF THE INVENTION According to this invention, in the potting by a centrifugal method, a potting material injection | pouring number is made only once and a reliable module can be manufactured in a short time. Further, according to the present invention, it is possible to shorten the time of the manufacturing process of the hollow fiber membrane module.
[0023]
The hollow fiber membrane of the present invention is suitably used in an industrial field such as water treatment or a medical field such as an artificial kidney.
[0024]
【Example】
(Example 1)
A polysulfone hollow fiber membrane (outer diameter: 280 μm, film thickness: 40 μm) obtained by heating and dissolving 0% polysulfone, polyvinylpyrrolidone, dimethylacetamide, and water with respect to the weight of the hollow fiber membrane having separation performance. The converged 10600 pieces were placed in a cylindrical container.
[0025]
Three sets of these containers were prepared, and three sets were arranged in parallel horizontally. The hollow fiber membrane bundle was melt-cut in a cross-sectional direction at a position 10 mm from the end of the container. Melt cutting is performed using a nichrome plate with a width of 10 mm, a thickness of 0.1 mm, and a length of 300 mm, the temperature of which is 760 ° C. by electric heating, and moves from bottom to top at a speed of 3.17 mm / s. It was done by doing.
[0026]
A casting cap was attached thereto, and a centrifugal force (50 G) was applied thereto, and a potting agent having a viscosity of 0.7 Pa · s after mixing of the two liquids was injected, so that the hollow fiber membranes and the hollow fiber membrane bundle were in contact with each other. Bonding between module cases was performed.
[0027]
After the potting material was cured, the hollow fiber membrane was cut along with the potting material in the cross-sectional direction according to the length of the container.
[0028]
When the opening state of the hollow fiber membrane was examined, no penetration of the potting material (two-component urethane resin KC256-KN421 manufactured by Nippon Polyurethane, compounding ratio 54:46, viscosity 1200 cps) was found in the hollow fiber membrane, and the hollow fiber membrane was melted. There was no generation of soot at the time of cutting, and it was good.
(Comparative Example 1)
A polysulfone hollow fiber membrane (outer diameter: 280 μm, film thickness: 40 μm) in which the weight of water relative to the weight of the hollow fiber membrane having separation performance was 1% or less, and 10600 pieces were converged and placed in a cylindrical container.
[0029]
Three sets of containers were prepared, three sets were arranged horizontally, and the hollow fiber membrane bundle was melt-cut in the cross-sectional direction at a position of 10 mm from the end of the container.
[0030]
Melt cutting was performed using a nichrome plate having a thickness of 0.2 mm, a width of 5 mm, and a length of 300 mm and having a temperature of 760 ° C. by electric heating, and was cut from the bottom upward at a speed of 3.17 mm / s. At the time of this melting cutting, soot adhered to the upper part of the plate-shaped heating element, rose by heat and adhered to the module.
(Comparative Example 2)
A polysulfone hollow fiber membrane (outer diameter: 280 μm, film thickness: 40 μm) in which the weight of water relative to the weight of the hollow fiber membrane having separation performance was 1% or less, and 10600 pieces were converged and placed in a cylindrical container.
[0031]
Three sets of containers were prepared, three sets were aligned horizontally, and three sets were arranged side by side. The hollow fiber membrane bundle was melt-cut in the cross-sectional direction at a position of 10 mm from the end of the container. Melt cutting was performed at a rate of 3.17 mm / s from bottom to top using a nichrome plate having a width of 10 mm, a thickness of 0.1 mm, and a length of 300 mm and having a temperature of 760 ° C. by electric heating.
[0032]
The melt cut surface of the obtained hollow fiber membrane bundle was investigated. All of the 10600 hollow fiber membranes were not sealed, and the sealed portion was immediately broken when the sealed hollow fiber membrane was touched. Potting was performed in the same manner as in Example 1, but the potting material penetrated into the hollow fiber membrane.
(Comparative Example 3)
A polysulfone hollow fiber membrane (outer diameter: 280 μm, film thickness: 40 μm) in which the weight of water relative to the weight of the hollow fiber membrane having separation performance was 1% or less, and 10600 pieces were converged and placed in a cylindrical container.
[0033]
Three sets of containers were prepared, and three sets were arranged horizontally and arranged in parallel, and the hollow fiber membrane bundle was melt-cut in a cross-sectional direction at a position 10 mm from the end of the container.
[0034]
Melt cutting was performed by using a nichrome wire having a wire diameter of 3 mm and a length of 300 mm and heated at 760 ° C. by heating at a speed of 3.17 mm / s from the bottom to the top.
[0035]
The melt cut surface of the obtained hollow fiber membrane bundle was investigated. Although the hollow fiber membrane was sealed, there was no gap between the hollow fiber membranes. Potting was performed in the same manner as in Example 1, but the sealing between the hollow fiber membranes with the potting material was not complete.
[0036]
【The invention's effect】
Advantageous Effects of Invention According to the present invention, it is possible to easily and reliably manufacture a module in a short time by completely sealing a hollow fiber membrane bundle and preventing a potting material from entering the hollow fiber membrane.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view when a hollow fiber membrane module is melt-cut in an embodiment.
FIG. 2 is a cross-sectional view of a hollow fiber module with a medium-sized cap mounted in the embodiment.
FIG. 3 is a cross-sectional view of an end face of a hollow fiber membrane module after potting in an example.
[Explanation of symbols]
1 ... cylindrical container,
2. Hollow fiber membrane bundle
3 ... plate-like heating element,
4 ・ ・ ・ Hollow fiber membrane fusion part
5 Potting material,
6 ... casting cap,
7 ... End of hollow fiber membrane

Claims (4)

筒状収容容器内に中空糸膜束の端部をポッティング材にて集束固定する中空糸膜モジュールの製造方法において、厚みが0.1mm以下である板状発熱体を下から上方向に移動させることにより、中空糸膜束を溶融切断した後、ポッティング材にて前記中空糸膜束を集束固定することを特徴とする中空糸膜モジュールの製造方法。In a method for manufacturing a hollow fiber membrane module in which an end of a hollow fiber membrane bundle is focused and fixed by a potting material in a cylindrical storage container, a plate-shaped heating element having a thickness of 0.1 mm or less is moved upward from below. Thus, after the hollow fiber membrane bundle is melted and cut, the hollow fiber membrane bundle is focused and fixed with a potting material. 前記中空糸膜束の集束固定が、1回のポッティング材注入で行うことを特徴とする請求項1記載の中空糸膜モジュールの製造方法。The method for manufacturing a hollow fiber membrane module according to claim 1, wherein the fixing of the bundle of the hollow fiber membrane bundles is performed by a single potting material injection. 前記中空糸膜の重量に対する水分の重量が、1重量%以下であることを特徴とする請求項1または請求項2記載の中空糸膜モジュールの製造方法。The method for producing a hollow fiber membrane module according to claim 1 or 2, wherein the weight of water relative to the weight of the hollow fiber membrane is 1% by weight or less. 前記中空糸膜の材質としてポリスルホンを含むことを特徴とする請求項1、請求項2または請求項3記載の中空糸膜モジュールの製造方法。4. The method for producing a hollow fiber membrane module according to claim 1, wherein the hollow fiber membrane contains polysulfone as a material.
JP2003148827A 2003-05-27 2003-05-27 Method for producing hollow fiber membrane module Expired - Fee Related JP4432365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003148827A JP4432365B2 (en) 2003-05-27 2003-05-27 Method for producing hollow fiber membrane module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003148827A JP4432365B2 (en) 2003-05-27 2003-05-27 Method for producing hollow fiber membrane module

Publications (3)

Publication Number Publication Date
JP2004351246A true JP2004351246A (en) 2004-12-16
JP2004351246A5 JP2004351246A5 (en) 2006-07-06
JP4432365B2 JP4432365B2 (en) 2010-03-17

Family

ID=34045096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003148827A Expired - Fee Related JP4432365B2 (en) 2003-05-27 2003-05-27 Method for producing hollow fiber membrane module

Country Status (1)

Country Link
JP (1) JP4432365B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102784629A (en) * 2012-07-17 2012-11-21 上海偲达弗材料科技有限公司 Preparation method of hollow fiber molecular sieve adsorbent assembly
KR101518511B1 (en) 2008-12-10 2015-05-07 코오롱인더스트리 주식회사 Apparatus and Method for Manufacturing Hollow Fiber Membrane Module
JP2017514673A (en) * 2014-04-17 2017-06-08 ガンブロ・ルンディア・エービーGambro Lundia Ab Thermoforming of fiber bundles
CN108744982A (en) * 2018-07-06 2018-11-06 南京久盈膜科技有限公司 A kind of hollow fiber film assembly and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101518511B1 (en) 2008-12-10 2015-05-07 코오롱인더스트리 주식회사 Apparatus and Method for Manufacturing Hollow Fiber Membrane Module
CN102784629A (en) * 2012-07-17 2012-11-21 上海偲达弗材料科技有限公司 Preparation method of hollow fiber molecular sieve adsorbent assembly
JP2017514673A (en) * 2014-04-17 2017-06-08 ガンブロ・ルンディア・エービーGambro Lundia Ab Thermoforming of fiber bundles
CN108744982A (en) * 2018-07-06 2018-11-06 南京久盈膜科技有限公司 A kind of hollow fiber film assembly and its manufacturing method

Also Published As

Publication number Publication date
JP4432365B2 (en) 2010-03-17

Similar Documents

Publication Publication Date Title
JP4514959B2 (en) Method for producing hollow fiber membrane
US7628916B2 (en) Hollow fiber module
JP5019835B2 (en) Filtration module
JP2015506269A (en) Hollow fiber cartridge and components and methods for their construction
JP2021102768A (en) Blended potting resins and use thereof
EP3034277B1 (en) Bonded body and bonding method
JP2004351246A (en) Method for producing hollow fiber membrane module
CN101623596A (en) Hollow-fiber membrane module with stress buffer end
US7347937B1 (en) Perfluorinated thermoplastic filter cartridge
JP4669312B2 (en) Method for producing hollow fiber membrane module
JP5810094B2 (en) Method for making a hollow fiber filtration device surrounded by two thermoplastic parts
JPH07171356A (en) Hollow fiber membrane assembly and manufacture thereof
JP7213982B2 (en) Method of manufacturing a filtration and/or diffusion device
JP2596001Y2 (en) External pressure filtration type hollow fiber membrane module
JPH04354521A (en) Hollow fiber type porous separating membrane element and production thereof
JP2001038160A (en) Production of hollow fiber membrane module
JPH01148310A (en) Method for sealing end of hollow yarn membrane
JPH0463117A (en) Hollow fiber membrane-type separation unit and its manufacture
JP2003164736A (en) Method for manufacturing hollow fiber membrane module
JP3628383B2 (en) Hollow fiber membrane module for hot water filtration treatment and manufacturing method thereof
JPH03106422A (en) Fluid separation module and its manufacture
JPH0368427A (en) Fluid separating module and production thereof
JP2006224052A (en) Production method of hollow fiber membrane module
JPH03245826A (en) Preparation of hollow yarn membrane module
JPS63158103A (en) Production of hollow yarn type module

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091214

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees