JP2004351062A - Ultrasonic diagnostic equipment - Google Patents

Ultrasonic diagnostic equipment Download PDF

Info

Publication number
JP2004351062A
JP2004351062A JP2003154349A JP2003154349A JP2004351062A JP 2004351062 A JP2004351062 A JP 2004351062A JP 2003154349 A JP2003154349 A JP 2003154349A JP 2003154349 A JP2003154349 A JP 2003154349A JP 2004351062 A JP2004351062 A JP 2004351062A
Authority
JP
Japan
Prior art keywords
unit
pressurizing
image
displacement
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003154349A
Other languages
Japanese (ja)
Other versions
JP2004351062A5 (en
JP3932485B2 (en
Inventor
Takuji Osaka
卓司 大坂
Takeshi Matsumura
剛 松村
Tetsuya Hayashi
哲矢 林
Mitsuhiro Oshiki
光博 押木
Yukinori Yuasa
超識 湯浅
Naoyuki Murayama
直之 村山
Takeshi Shiina
毅 椎名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2003154349A priority Critical patent/JP3932485B2/en
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to PCT/JP2004/007856 priority patent/WO2004105615A1/en
Priority to EP11007978.7A priority patent/EP2481354B1/en
Priority to CNB2004800151364A priority patent/CN100522069C/en
Priority to EP04735518A priority patent/EP1629777A4/en
Priority to US10/558,642 priority patent/US7914456B2/en
Priority to EP11007979.5A priority patent/EP2484287B1/en
Priority to CN 200810136151 priority patent/CN101317774B/en
Publication of JP2004351062A publication Critical patent/JP2004351062A/en
Publication of JP2004351062A5 publication Critical patent/JP2004351062A5/ja
Application granted granted Critical
Publication of JP3932485B2 publication Critical patent/JP3932485B2/en
Priority to US12/081,335 priority patent/US8007438B2/en
Priority to US12/369,276 priority patent/US8974388B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an operator with operational information on pressurization to obtain proper elastic images. <P>SOLUTION: This ultrasonic diagnostic equipment, which measures displacement values in each part based on two tomograms measured at different times by applying an external force by a pressurizing means to a subject, calculates an elastic modulus in each tissue based on the measured displacement data in each part, and displays the produced elastic images on a display means, is provided with a pressure determination means which determines whether the pressurizing operation by the pressurizing means has been properly performed or not by analyzing the displacement data. As a result, the displaying of the determination result by the pressure determination means on the display and the outputting through voice enable the operator to quickly adjust the pressurizing means to obtain proper elastic images. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、超音波診断装置に係り、具体的には、被検体に圧力を加えながら計測される時系列的に異なる2つの断層像データに基づいて、生体組織の各部位の弾性率を求め、生体組織の硬さ又は柔らかさを表す弾性画像を作成して表示する技術に属する。
【0002】
【従来の技術】
超音波診断装置は、被検体の表面に超音波探触子を当て、その探触子から被検体に超音波を送信するとともに、被検体内部からの反射波を受信し、その受信信号に基づいて被検体の各部の状態を断層像などの画像により表示して診断に供するものである。このような超音波診断装置の分野においては、被検体の体表面から生体組織に外力を加え、時系列的に異なる2つの断層像データに基づいて、生体組織の各部位の変位や圧力に基づいて生体組織の各部位の弾性率を求め、生体組織の硬さ又は柔らかさを表す弾性画像を作成して表示することが提案されている(特許文献1)。
【0003】
この弾性画像によれば、周辺組織に比べて硬い癌細胞等の腫瘍の部位や大きさ等を容易に観察することができる。また、放射線治療、強力超音波照射、レーザ照射、電磁RF波照射、電磁マイクロ波照射等により病変部の治療を施す場合、その治療効果を非侵襲によってモニタしたり、抗癌剤等の薬剤投与の効果などを非侵襲で観察することが要望されており、このような要望に対しても、弾性画像が有効であると考えられている。
【0004】
【特許文献1】
特開平5−317313号公報
【0005】
【発明が解決しようとする課題】
しかしながら、従来の技術では、被検体の体表面から生体組織に外力を加える加圧(減圧を含む。以下、本件明細書において同じ。)操作の適否については考慮されていないことから、必ずしも適切な弾性画像を得ることができない場合がある。
【0006】
すなわち、弾性画像は、生体組織に外力を加えて撮像した時系列的に異なる2つの断層像のフレームデータに基づいて、生体組織の各部位の変位(歪み)及び圧力等から弾性率を求め、歪みそのものの態様を定性的にあるいは弾性率を定量的に画像化したものである。生体組織の各部位の歪みは、加圧の大きさ、加圧の速度、加圧の時間、及び加圧の方向等の加圧操作によって変わり、かつ隣接する2フレーム間の歪みの差がある程度なければ、適正な弾性画像を作成できない。
【0007】
特に、外力は機械的な手段によって加えることもあるが、簡便性から超音波探触子を被検体の体表に押し当てることにより加えることが多く、操作者の手加減によって加圧状態が大きく変動するから、必ずしも適正な弾性画像が得られない場合がある。同様に、被検体にも個人差があるため、例え一定の加圧状態で操作したとしても、適正な弾性画像が得られるとは限らない。
【0008】
また、加圧の方向や押し方によって生体組織に横ズレが生じることがあり、このような加圧操作の場合も、弾性画像に横ズレによる外乱(ノイズ)が含まれ、適正な弾性画像が得られない場合がある。
【0009】
本発明は、操作者に対して適正な弾性画像を得るための加圧の操作情報を提供することを課題とする。
【0010】
【課題を解決するための手段】
上記課題を解決するため、本発明は、被検体との間で超音波を送受信する超音波探触子と、該超音波探触子を駆動する超音波信号を出力する超音波送信手段と、前記被検体に外力を付与する加圧手段と、前記超音波探触子により受波された反射エコー信号から時間的に異なる2つの断層像データを取得し、該2つの断層像データに基づいて各部の変位を計測する変位計測手段と、該変位計測手段により計測された各部の変位データに基づいて各部の組織の弾性率を算出する弾性率演算手段と、該弾性率演算手段によって求められた弾性率に基づいて弾性画像を作成する画像生成手段と、該生成された弾性画像を表示する表示手段とを備えてなる超音波診断装置において、前記変位データを解析して前記加圧手段による加圧操作が適正か否か判定する加圧判定手段と、該加圧判定手段の判定結果を前記表示手段に表示する判定出力手段とを設けたことを特徴とする。
【0011】
このように、加圧操作の適否が表示手段に直ちに表示されることから、操作者は表示された加圧状態の適否に応じて加圧手段(例えば、探触子)による加圧操作を調整することにより、適正な弾性画像を得ることができる。また、変位データを解析して加圧操作の適否を判定しているから、被検体の個人差を含めて加圧操作の適否を判定できる。その結果、操作者にとって使い勝手に優れた弾性画像撮像を実現できる。
【0012】
ここで、加圧判定手段は、変位データに基づいて前記断層像における歪み率分布を求め、該歪み率分布が適正範囲内か否かにより加圧手段による加圧の適否を判定するものとすることができる。これに加えて、あるいは代えて、加圧判定手段は、変位データに基づいて断層像における横ズレの度合いを求め、この横ズレの度合いが適正範囲内か否かにより加圧手段による加圧の適否を判定するものとすることができる。さらに、判定出力手段は、判定結果に基づいて加圧操作を修正するガイダンスを表示又は/及び音声により出力するものとすることができる。
【0013】
【発明の実施の形態】
(実施の形態1)
本発明の一実施の形態について、図1〜図3を用いて説明する。図1は本発明の超音波診断装置のブロック構成図を示し、図2は本実施の形態の超音波診断装置に係る弾性画像取得の処理手順のフローチャートを示し、図3は本実施の形態の表示画像の一例を示す図である。
【0014】
図1に示すように、超音波診断装置は、被検体との間で超音波を送受信する探触子1と、この探触子1から出力される反射エコー信号を取込んで断層像を再構成する断層像構築部2と、再構成された断層像を表示する表示部3とを備えて構成される。探触子1を駆動する超音波信号を出力する超音波送信手段は図示を省略している。弾性演算部4は、断層像構築部2に入力された反射エコー信号のフレームデータを順次取込んで、時系列的に隣り合う2つの断層像データに基づいて断層像各部の組織の変位を計測する変位計測手段と、この変位計測手段により計測された各部の変位データに基づいて各部の組織の弾性率を算出する弾性率演算手段とを含んで構成されている。また、弾性演算部4は、変位データを解析して加圧操作が適正か否か判定する加圧判定手段を備えて構成される。
【0015】
弾性画像構築部5は、弾性演算部4によって求められた弾性率に基づいて弾性画像を作成し、作成した弾性画像を表示部3に出力するとともに、シネメモリ12に格納するようになっている。また、弾性演算部4により判定された加圧操作の判定結果は、それぞれの弾性画像と対応付けて加圧状態メモリ6に格納されるとともに、操作情報出力部7に出力される。操作情報出力部7は、加圧操作の判定結果を表示部3に出力表示するとともに、音声出力部8を介して加圧操作の判定結果を音声により出力できるようになっている。
【0016】
一方、操作入力部9から入力される各種の操作指令や設定情報は中央処理部10に入力され、中央処理部10は入力される指令等に応じてシネメモリ画像再生部11等を制御するようになっている。
【0017】
このように構成される超音波診断装置により弾性画像を取得する動作について図2のフローチャートと図3の表示画像例を参照して説明する。まず、図3(a)に示すように、弾性画像の計測開始時に、断層像構築部2から表示部3に断層像21が出力表示されるとともに、操作情報出力部7から表示部3に加圧状態を表示するダイアログ22が表示される(S1)。ダイアログ22はバーチャート状の横長表示領域を有し、その表示領域に沿って三角系の目印23a,23bが2つ表示され、その目印23aは加圧操作の適正範囲の下限値、目印23bは上限値に対応している。
【0018】
次いで、操作者が探触子1により被検体の体表を加圧して、生体組織を加圧する(S2)。この加圧状態において断層像構築部2は反射エコー信号を順次取込んで表示部3の断層像を更新する(S3)。弾性演算部4は、断層像構築部2から断層像のフレームデータを順次取得し、時系列的に隣り合う2つのフレームデータに基づいて各部の組織の変位を計測し、計測した各部の変位データに基づいて各部の組織の弾性率を算出し(S4)、算出した弾性率のデータは弾性画像構築部5に出力する(S5)。また、ステップS4において、弾性演算部4は、変位データを解析して加圧操作が適正か否か判定して、その判定結果の加圧状態を加圧状態メモリ6に出力する(S7)。この判定は、例えば、図4に示すように、変位データに基づいて断層像における歪み率εの分布31、つまり各画素単位の歪み率を横軸に、同一の歪み率の画素数を縦軸にして、歪み率εの分布を求める。この歪み率分布31の平均値εmが適正範囲の上下限値(εH、εL)の範囲内か否かにより加圧手段による加圧操作の適否を判定する。例えば、図4において、破線で示した歪み率分布32、33は、平均値が上下限値(εH、εL)を外れているので不適切な例である。ちなみに、歪み率分布32は加圧速度が遅すぎる場合の例であり、歪み率分布33は加圧速度が速すぎる場合の例である。また、加圧状態は、例えば8段階の評価レベルで判定されて、加圧状態メモリ6に格納されるとともに、操作情報出力部7に出力される。
【0019】
弾性画像構築部5は、弾性演算部4から出力される弾性率データに基づいてカラーマッピングにより弾性画像を構築し、図3(b)に示すように、表示部3の断層像21に重ねて弾性画像24を表示する(S7)。また、その弾性画像データをシネメモリ12に保存する(S8)。次いで、操作情報出力部7は、弾性演算部4から出力される加圧状態の評価レベルを取得し(S9)、これに基づいてダイアログ22の状態表示を決定して表示部3に出力し(S10)、例えば、図3(c)に示すように、表示部3はダイアログ22の表示を更新する。なお、同図の例は、加圧状態の評価レベルが適正範囲を超えて速すぎる場合を示している。このダイアログ22の表示を見て、操作者が加圧速度を遅く調整することにより、図2のステップS2の戻って実行される次の弾性画像作成処理において、調整された加圧速度に基づいた図3(d)に示すような適正な弾性画像が得られる。したがって、図3(e)に示すように、ダイアログ22の状態表示が目印23a,23bの適正範囲内になり、適正な弾性画像を取得できたことがわかる。なお、図3のダイアログ22の目印23a,23bは、適正範囲の上下限値(εH、εL)に対応する。
【0020】
このように、本実施の形態によれば、加圧操作の適否がダイアログ22に直ちに表示されることから、操作者はダイアログ22に表示された加圧状態の適否に応じて探触子1の操作を調整することにより、適正な弾性画像を得るための加圧操作を容易に行うことができる。しかも、本実施の形態によれば、被検体の個人差を含めて加圧操作の適否を判定できるから、操作者はきわめて簡単に適正な加圧操作を行うことができる。
(実施の形態2)
実施の形態1においては、表示部3に加圧操作の適否をダイアログにより表示する例を示したが、本発明はこれに限らず、加圧操作の適否を音声により出力するようにすることができる。図5は音声により加圧操作の適否を出力する場合のフローチャートを示し、この場合の表示画像の例を図6に示す。図5において、ステップS21は、図2のステップS2〜S8と同一である。操作情報出力部7は、弾性演算部4から出力される加圧状態の評価レベルを取得し(S22)、評価レベルが妥当(適正)か否か判定する(S23)。評価レベルが適正であれば、処理を終了する。評価レベルが適正でなければ、評価レベルが適正範囲を超えて「速い」か「遅い」か判定し、それぞれ評価結果を「速い」、「遅い」の音声に設定する(S25、S26)。これにより、操作情報出力部7から「速い」、「遅い」の音声出力命令が出され(S27)、音声出力部8から指定された音声により評価結果、つまり操作情報が出力される。このときの表示画像の例を、図6(a)〜(e)に示す。
【0021】
このように、本実施の形態によれば、操作者は表示画像を見なくても音声により操作情報が得られるから、適正な弾性画像を得るための加圧操作を容易に行うことができる。
(実施の形態3)
図7に、図1のシネメモリ12に保存した弾性画像を再生して表示する場合のフローチャートを示す。操作入力部9から中央処理装置10に対してシネメモリ再生を命令すると(S31)、中央処理装置10はシネメモリ画像再生部11にシネメモリ再生の命令が出力される(S32)。これにより、シネメモリ画像再生部11は、シネメモリ12から弾性画像を取得し(S33)、かつ、加圧状態メモリ6から読み出した弾性画像に同期する加圧状態の評価結果を取得する(S34)。次いで、読み出した加圧状態が妥当であるか否か判定し(S35)、妥当でない場合は処理を終了する。妥当な場合は、中央処理装置10はシネメモリ画像再生部11により再生された弾性画像を表示部3に表示させる命令を出力する(S36)。これにより、シネメモリ12に保存されている弾性画像が表示部3に表示される(S37)。つまり、シネメモリ12に保存されている適正な弾性画像のみが再生表示される。
(実施の形態4)
実施の形態1〜3は、加圧操作の速度が適切か否かによる操作情報を提供する実施の形態であったが、本発明はこれに限らず、本実施の形態のように、生体組織が横ズレを起こすような加圧の場合に、操作情報を提供することができる。すなわち、加圧操作の過程において加圧速度が時間的に一定であっても、被検体を垂直方向に均等に加圧できている時間帯(以下、時相という、)ばかりであるとは限らない。例えば、被検体を斜め方向に、あるいは不均一に加圧してしまう時相があると、生体組織に加わる応力分布が不連続になる時相が生ずる。このような時相においては、時間変化に不連続に飛んだ座標領域が生ずるため、得られる弾性画像に時間的に飛びのある領域が外乱(ノイズ)として含まれ、画像診断を適切に行えないという問題がある。つまり、垂直方向に均等に加圧できていない等によって、生体組織が横方向に移動してしまう横ズレが生ずると、画像診断を適切に行えないという問題がある。
【0022】
本実施の形態は、そのような加圧操作によって生体組織が横ズレした場合を検知して、操作情報を提供するようにしたものである。本実施の形態は、図1の実施の形態における弾性演算部4を構成する加圧判定手段を横ズレ判定手段38に置き換えることによって実現できる。つまり、図8に示すように、断層像構築部2からRFデータのフレームデータを取込んで変位を計測する変位計測手段39から変位データを取込んで横ズレの度合いを判定し、その判定結果を加圧状態メモリ6に格納するようになっている。図8において、弾性率演算手段40は、変位データに基づいて組織各部の弾性率を演算するものであり、図1の弾性演算部4に含まれる機能である。
【0023】
図9に、本実施の形態に係る横ズレ判定手段38における処理手順を中心としたフローチャートを示す。操作入力部9から中央処理部10に弾性診断モードがオンされると、図10に示すように、表示部3に断層像35に弾性画像を求める関心領域(ROI)36と、弾性率を表すカラーマップ37が表示される(S41)。次いで、変位計測手段39は、断層像構築部2から時系列的に隣り合う1組のフレームデータを取込み(S42)、相関処理などにより断層像上の各画素の変位もしくは移動ベクトル(変位の方向と大きさ)を計測するとともに、横ズレを検出する(S43〜S45)。
【0024】
変位計測手段39における相関処理には、例えば、周知のブロックマッチング法を適用することができる。ブロックマッチング法は、画像をN×N画素(Nは自然数)からなるブロックに分け、現フレームにおいて着目しているブロックに最も画像が近似しているブロックを前フレームから探し、これを参照して予測符号化する手法である。図11に示すように、N×N画素からなるブロックを相関窓41とし、N×N画素からなるブロックを複数含んでなる領域を探索範囲42とする。また、前フレームにおいて参照されたブロックが、現フレームのブロックに対しても最も相関が大きい個所とする。ここで、説明を簡単にするために、図11に示すように、探索範囲42の大きさを、相関窓41の9個分の大きさとする。つまり、相関窓41を中心として、上下左右及び斜め方向に、相関窓41と同一の大きさのブロックを配置したものとする。なお、相関窓41及び探索範囲42は、任意に設定することができることはいうまでもない。いま、探触子から加えられた応力が被検体の垂直方向に均等に加わったとすると、現フレームと前フレームの相関が最も大きくなるブロックは、図11の中心の相関窓41に対して上下方向に位置するブロック−2、8になる。一方、探触子からの応力によって被検体の組織が横方向に移動してしまった場合、相関が最も大きくなるブロックは相関窓41の左右に位置するブロック−4、6となる(ただし、ブロック−1、3、7、9を含めてもよい。)。そして、1つの探索範囲42内において、相関が最大となるブロックの位置を求めるために、9個のブロックに対して相関演算を行い、最も相関が大きいブロック位置を求める。この相関演算において、例えば、横に位置するブロック−2又は8において相関が最大になった場合は、横ズレしていると判断し、横ズレカウンタをカウントアップする。このようにして、ROI内の対象となるデータに対して相関処理を実施し、ROI内における変位量と、横ズレカウンタのカウント数Cを算出する。また、ROI内のデータは、探索範囲42によって分割されるから、その分割された探索範囲42の個数Aについても算出される。ROI内における変位量は弾性率演算手段40に送られ、横ズレカウンタのカウント数Cと分割された探索範囲42の個数Aは横ズレ判定手段38に送られる。
【0025】
横ズレ判定手段38は、入力されるA、Cに基づいて横ズレを判定する(S46)。この判定は、次式(1)が成立するか否かによる。ここで、Xは、経験的に定めたしきい値である。
【0026】
A/X<C (1)
式(1)の大小関係が成立する場合は、被検体に対し垂直方向に均一に力が加わっていると判断することができる。この場合、横ズレ発生フラグを「0」として加圧状態メモリ6に蓄える(S47)。逆に、式(1)の関係が成り立たない場合は、被検体に垂直方向に均一に力が加わっていない状態で、生体組織が横ズレを起こしていると判断できる。この場合は、横ズレフラグを「1」にして加圧状態メモリ6に蓄える(S52)。この加圧状態メモリ6の内容は、例えば図10に示すように、断層像35の下辺部に「横ズレ」と表示することにより警告する(S56)。
【0027】
一方、弾性率演算手段40は、変位計測手段39により計測された変位量Bに基づいて歪みデータSを算出し(S48、S53)、図1の弾性画像構築部5は歪みデータSの階調化処理を施して弾性画像を構築して表示部3に表示する。
【0028】
このように、本実施の形態によれば、操作者は、探触子の力が被検体にどのように加わっているかをリアルタイムに確認することができ、横ズレを起こしている場合は、探触子の操作を調整して横ズレがおきにくい押し方に調整することができるから、適正な弾性画像を速やかに得ることができる。
【0029】
【発明の効果】
以上述べたように、本発明によれば、操作者に対して適正な弾性画像を得るための加圧の操作情報を提供することができるから、効率的に弾性画像を得ることができる。
【図面の簡単な説明】
【図1】本発明の超音波診断装置の一実施の形態のブロック構成図を示す。
【図2】本実施の形態の超音波診断装置に係る弾性画像取得の処理手順のフローチャートを示す。
【図3】本実施の形態の表示画像の一例を示す図である。
【図4】加圧操作の適否の判定に用いる歪み率分布の例を示す図である。
【図5】音声により加圧操作の適否を出力する場合のフローチャートを示す。
【図6】図5の実施の形態の表示画像の例を示す
【図7】シネメモリに保存した弾性画像を再生して表示する場合のフローチャートを示す。
【図8】本発明の実施の形態4に係る特徴部の横ズレ判定手段周りの構成を示す図である。
【図9】横ズレ判定手段における処理手順を中心としたフローチャートを示す。
【図10】図8実施の形態の表示画像の状態を示す図である。
【図11】横ズレを検出するブロックマッチング法を説明する図である。
【符号の説明】
1 探触子
2 断層像構築部
3 表示部
4 弾性演算部
5 弾性画像構築部
6 加圧状態メモリ
7 操作情報出力部
8 音声出力部
9 操作入力部
10 中央処理部
11 シネメモリ画像再生部
12 シネメモリ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an ultrasonic diagnostic apparatus, and specifically, obtains an elastic modulus of each part of a living tissue based on two tomographic image data that are different in time series and are measured while applying pressure to a subject. And a technique for creating and displaying an elastic image representing the hardness or softness of a living tissue.
[0002]
[Prior art]
An ultrasonic diagnostic apparatus applies an ultrasonic probe to the surface of a subject, transmits ultrasonic waves from the probe to the subject, receives a reflected wave from the inside of the subject, and based on the received signal. The state of each part of the subject is displayed as an image such as a tomographic image for diagnosis. In the field of such an ultrasonic diagnostic apparatus, an external force is applied to the living tissue from the body surface of a subject, and based on two tomographic image data different in time series, based on displacement and pressure of each part of the living tissue. It has been proposed that the elastic modulus of each part of a living tissue is obtained by using the method, and an elastic image showing the hardness or softness of the living tissue is created and displayed (Patent Document 1).
[0003]
According to this elasticity image, it is possible to easily observe the site and size of a tumor such as a cancer cell that is harder than the surrounding tissue. In addition, when treating a lesion by radiotherapy, high-intensity ultrasonic irradiation, laser irradiation, electromagnetic RF wave irradiation, electromagnetic microwave irradiation, etc., the therapeutic effect can be monitored non-invasively, and the effect of drug administration such as anticancer drugs There is a demand for non-invasive observation of such images, and it is considered that an elasticity image is effective for such a demand.
[0004]
[Patent Document 1]
JP-A-5-317313
[Problems to be solved by the invention]
However, in the related art, the appropriateness of the pressurizing (including depressurization; hereinafter, the same in the present specification) operation of applying an external force to the living tissue from the body surface of the subject is not considered, and therefore, it is not necessarily appropriate. In some cases, an elastic image cannot be obtained.
[0006]
That is, the elasticity image obtains the elastic modulus from the displacement (strain), the pressure, and the like of each part of the living tissue based on the frame data of two time-series different tomographic images obtained by applying an external force to the living tissue, This is a qualitative image of the mode of the distortion itself or a quantitative image of the elastic modulus. The distortion of each part of the living tissue changes depending on the pressing operation such as the size of the pressing, the pressing speed, the pressing time, and the pressing direction, and the difference in the distortion between two adjacent frames is some degree. Otherwise, an appropriate elasticity image cannot be created.
[0007]
In particular, external force may be applied by mechanical means, but for simplicity, it is often applied by pressing the ultrasonic probe against the body surface of the subject, and the pressurized state fluctuates greatly due to the operator's hand. Therefore, an appropriate elastic image may not always be obtained. Similarly, since there are individual differences among subjects, even if the subject is operated under a constant pressurized state, an appropriate elasticity image is not always obtained.
[0008]
In addition, lateral displacement may occur in the living tissue depending on the direction of pressing and the pressing method. Even in the case of such a pressing operation, disturbance (noise) due to the lateral displacement is included in the elastic image, and an appropriate elastic image is not obtained. May not be obtained.
[0009]
SUMMARY OF THE INVENTION It is an object of the present invention to provide pressure operation information for obtaining an appropriate elastic image to an operator.
[0010]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides an ultrasonic probe that transmits and receives ultrasonic waves to and from a subject, an ultrasonic transmission unit that outputs an ultrasonic signal that drives the ultrasonic probe, Pressurizing means for applying an external force to the subject, and two temporally different tomographic image data obtained from reflected echo signals received by the ultrasonic probe, based on the two tomographic image data The displacement measuring means for measuring the displacement of each part, the elastic modulus calculating means for calculating the elastic modulus of the tissue of each part based on the displacement data of each part measured by the displacement measuring means, and the elastic modulus calculating means In an ultrasonic diagnostic apparatus comprising: an image generating unit that generates an elasticity image based on an elasticity modulus; and a display unit that displays the generated elasticity image, the displacement data is analyzed to apply a pressure by the pressing unit. Pressure operation A pressure determination means, characterized in that the determination result of the pressurizing determining means is provided and a determination output means for displaying on the display means.
[0011]
As described above, since the appropriateness of the pressurizing operation is immediately displayed on the display means, the operator adjusts the pressurizing operation by the pressurizing means (for example, a probe) according to the appropriateness of the displayed pressurized state. By doing so, an appropriate elastic image can be obtained. Further, since the displacement data is analyzed to determine whether or not the pressurizing operation is appropriate, it is possible to determine whether or not the pressurizing operation is appropriate including the individual difference of the subject. As a result, it is possible to realize an elastic image pickup which is excellent in convenience for the operator.
[0012]
Here, the pressurizing determination unit obtains a strain rate distribution in the tomographic image based on the displacement data, and determines whether pressurization by the pressurizing unit is appropriate based on whether the strain rate distribution is within an appropriate range. be able to. In addition to or instead of this, the pressurizing determination means obtains the degree of the lateral shift in the tomographic image based on the displacement data, and determines whether the pressurizing by the pressurizing means depends on whether the degree of the lateral shift is within an appropriate range. Compliance can be determined. Furthermore, the determination output means may output guidance and / or voice for correcting the pressurizing operation based on the determination result.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
(Embodiment 1)
An embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows a block diagram of an ultrasonic diagnostic apparatus of the present invention, FIG. 2 shows a flowchart of a processing procedure of elastic image acquisition according to the ultrasonic diagnostic apparatus of the present embodiment, and FIG. It is a figure showing an example of a display image.
[0014]
As shown in FIG. 1, the ultrasonic diagnostic apparatus takes in a probe 1 for transmitting and receiving ultrasonic waves to and from a subject, and a reflected echo signal output from the probe 1 to reconstruct a tomographic image. It comprises a tomographic image constructing unit 2 to be configured and a display unit 3 for displaying a reconstructed tomographic image. The illustration of an ultrasonic transmission unit that outputs an ultrasonic signal for driving the probe 1 is omitted. The elasticity calculation unit 4 sequentially captures the frame data of the reflected echo signal input to the tomographic image construction unit 2 and measures the displacement of the tissue of each part of the tomographic image based on two time-series adjacent tomographic image data. And an elastic modulus calculating means for calculating the elastic modulus of the tissue of each part based on the displacement data of each part measured by the displacement measuring means. Further, the elasticity calculation unit 4 is configured to include a pressure determination unit that analyzes the displacement data and determines whether the pressure operation is appropriate.
[0015]
The elasticity image construction unit 5 creates an elasticity image based on the elasticity modulus obtained by the elasticity calculation unit 4, outputs the created elasticity image to the display unit 3, and stores it in the cine memory 12. The result of the pressing operation determined by the elasticity calculating unit 4 is stored in the pressurized state memory 6 in association with each elasticity image and output to the operation information output unit 7. The operation information output unit 7 outputs and displays the determination result of the pressing operation on the display unit 3 and can output the determination result of the pressing operation by voice via the voice output unit 8.
[0016]
On the other hand, various operation commands and setting information input from the operation input unit 9 are input to the central processing unit 10, and the central processing unit 10 controls the cine memory image reproducing unit 11 and the like according to the input instruction and the like. Has become.
[0017]
An operation of acquiring an elasticity image by the ultrasonic diagnostic apparatus configured as described above will be described with reference to a flowchart of FIG. 2 and a display image example of FIG. First, as shown in FIG. 3A, at the start of the measurement of the elasticity image, the tomographic image 21 is output and displayed on the display unit 3 from the tomographic image construction unit 2 and is added to the display unit 3 from the operation information output unit 7. A dialog 22 for displaying the pressure state is displayed (S1). The dialog 22 has a bar chart-like horizontally long display area, and two triangular marks 23a and 23b are displayed along the display area. The mark 23a is a lower limit value of an appropriate range of the pressing operation, and the mark 23b is Corresponds to the upper limit.
[0018]
Next, the operator presses the body surface of the subject with the probe 1 to press the living tissue (S2). In this pressurized state, the tomographic image construction unit 2 sequentially acquires the reflected echo signals and updates the tomographic image on the display unit 3 (S3). The elasticity calculation unit 4 sequentially acquires frame data of the tomographic image from the tomographic image construction unit 2, measures the displacement of the tissue of each part based on two frame data adjacent in time series, and measures the measured displacement data of each part. The elastic modulus of the tissue of each part is calculated on the basis of (S4), and the data of the calculated elastic modulus is output to the elastic image construction unit 5 (S5). In step S4, the elasticity calculation unit 4 analyzes the displacement data to determine whether or not the pressing operation is appropriate, and outputs the determined pressing state to the pressing state memory 6 (S7). For example, as shown in FIG. 4, the distribution 31 of the distortion rate ε in the tomographic image based on the displacement data, that is, the distortion rate of each pixel is set on the horizontal axis, and the number of pixels having the same distortion rate is set on the vertical axis, as shown in FIG. Then, the distribution of the strain rate ε is obtained. Appropriateness of the pressurizing operation by the pressurizing means is determined based on whether or not the average value εm of the strain rate distribution 31 is within the upper and lower limits (εH, εL) of the appropriate range. For example, the distortion rate distributions 32 and 33 indicated by broken lines in FIG. 4 are inappropriate examples because the average values are out of the upper and lower limits (εH, εL). Incidentally, the strain rate distribution 32 is an example when the pressing speed is too slow, and the strain rate distribution 33 is an example when the pressing speed is too fast. The pressurized state is determined at, for example, eight evaluation levels, stored in the pressurized state memory 6 and output to the operation information output unit 7.
[0019]
The elasticity image constructing unit 5 constructs an elasticity image by color mapping based on the elasticity modulus data output from the elasticity calculating unit 4, and superimposes the elasticity image on the tomographic image 21 of the display unit 3 as shown in FIG. The elasticity image 24 is displayed (S7). Further, the elastic image data is stored in the cine memory 12 (S8). Next, the operation information output unit 7 acquires the evaluation level of the pressurized state output from the elasticity calculation unit 4 (S9), determines the state display of the dialog 22 based on this, and outputs it to the display unit 3 ( S10) For example, as shown in FIG. 3C, the display unit 3 updates the display of the dialog 22. Note that the example in the figure shows a case where the evaluation level in the pressurized state is too fast, exceeding the appropriate range. The operator adjusts the pressurizing speed to a lower value while watching the display of the dialog 22, and based on the adjusted pressurizing speed in the next elastic image creating process executed by returning to step S2 in FIG. An appropriate elastic image as shown in FIG. 3D is obtained. Therefore, as shown in FIG. 3E, the state display of the dialog 22 is within the proper range of the marks 23a and 23b, and it can be understood that a proper elasticity image has been obtained. The marks 23a and 23b of the dialog 22 in FIG. 3 correspond to the upper and lower limits (εH, εL) of the appropriate range.
[0020]
As described above, according to the present embodiment, the suitability of the pressurizing operation is immediately displayed on the dialog 22, so that the operator can adjust the probe 1 according to the suitability of the pressurized state displayed on the dialog 22. By adjusting the operation, a pressing operation for obtaining an appropriate elastic image can be easily performed. Moreover, according to the present embodiment, it is possible to determine whether or not the pressurizing operation is appropriate including the individual difference of the subject, so that the operator can very easily perform the appropriate pressurizing operation.
(Embodiment 2)
In the first embodiment, an example is shown in which the appropriateness of the pressurizing operation is displayed on the display unit 3 by a dialog, but the present invention is not limited to this, and the appropriateness of the pressurizing operation may be output by voice. it can. FIG. 5 is a flowchart showing a case where the appropriateness of the pressing operation is output by voice, and FIG. 6 shows an example of a display image in this case. In FIG. 5, step S21 is the same as steps S2 to S8 in FIG. The operation information output unit 7 acquires the evaluation level of the pressurized state output from the elasticity calculation unit 4 (S22), and determines whether the evaluation level is appropriate (proper) (S23). If the evaluation level is appropriate, the process ends. If the evaluation level is not appropriate, it is determined whether the evaluation level exceeds the appropriate range and is "fast" or "slow", and the evaluation result is set to "fast" or "slow" sound, respectively (S25, S26). As a result, "fast" and "slow" voice output commands are issued from the operation information output unit 7 (S27), and the evaluation result, that is, the operation information is output by the voice specified by the voice output unit 8. FIGS. 6A to 6E show examples of display images at this time.
[0021]
As described above, according to the present embodiment, the operator can obtain the operation information by voice without looking at the display image, so that the pressing operation for obtaining the appropriate elastic image can be easily performed.
(Embodiment 3)
FIG. 7 shows a flowchart in the case where the elastic image stored in the cine memory 12 of FIG. 1 is reproduced and displayed. When the operation input unit 9 instructs the central processing unit 10 to reproduce cine memory (S31), the central processing unit 10 outputs a cine memory reproduction instruction to the cine memory image reproducing unit 11 (S32). Accordingly, the cine memory image reproducing unit 11 acquires the elasticity image from the cine memory 12 (S33), and acquires the evaluation result of the pressurized state synchronized with the elasticity image read out from the pressurized state memory 6 (S34). Next, it is determined whether the read-out pressurized state is appropriate (S35), and if not, the process ends. If appropriate, the central processing unit 10 outputs a command to display the elasticity image reproduced by the cine memory image reproduction unit 11 on the display unit 3 (S36). Thereby, the elasticity image stored in the cine memory 12 is displayed on the display unit 3 (S37). That is, only the appropriate elastic image stored in the cine memory 12 is reproduced and displayed.
(Embodiment 4)
Embodiments 1 to 3 are embodiments in which operation information is provided based on whether or not the speed of the pressurizing operation is appropriate. However, the present invention is not limited to this. The operation information can be provided in the case of a pressure that causes lateral displacement. In other words, even if the pressurizing speed is temporally constant in the process of the pressurizing operation, it is not always the time period (hereinafter, referred to as a time phase) in which the subject can be evenly pressurized in the vertical direction. Absent. For example, when there is a time phase in which the subject is pressed obliquely or non-uniformly, a time phase occurs in which the distribution of stress applied to the living tissue becomes discontinuous. In such a time phase, since a coordinate area that jumps discontinuously occurs in the time change, an area where the time jumps is included as a disturbance (noise) in the obtained elasticity image, and image diagnosis cannot be appropriately performed. There is a problem. In other words, there is a problem that image diagnosis cannot be performed properly when a lateral shift occurs in which the living tissue moves in the horizontal direction due to, for example, inability to apply pressure evenly in the vertical direction.
[0022]
In the present embodiment, the case where the living tissue is laterally displaced by such a pressing operation is detected, and operation information is provided. This embodiment can be realized by replacing the pressure determining means constituting the elasticity calculating unit 4 in the embodiment of FIG. That is, as shown in FIG. 8, the displacement data is taken in from the displacement measuring means 39 which takes in the frame data of the RF data from the tomographic image construction unit 2 and measures the displacement, and judges the degree of the lateral shift. Is stored in the pressurized state memory 6. 8, elastic modulus calculating means 40 calculates the elastic modulus of each part of the tissue based on the displacement data, and is a function included in the elasticity calculating unit 4 of FIG.
[0023]
FIG. 9 shows a flowchart focusing on the processing procedure in the lateral displacement determining means 38 according to the present embodiment. When the elasticity diagnosis mode is turned on from the operation input unit 9 to the central processing unit 10, as shown in FIG. 10, a region of interest (ROI) 36 for obtaining an elasticity image on the tomographic image 35 and the elasticity modulus are displayed on the display unit 3. The color map 37 is displayed (S41). Next, the displacement measuring unit 39 fetches a set of frame data adjacent in time series from the tomographic image construction unit 2 (S42), and performs displacement or movement vector (direction of displacement) of each pixel on the tomographic image by correlation processing or the like. And size), and detect a lateral shift (S43 to S45).
[0024]
For example, a well-known block matching method can be applied to the correlation processing in the displacement measuring unit 39. In the block matching method, an image is divided into blocks each including N × N pixels (N is a natural number), and a block in which the image is closest to the block of interest in the current frame is searched from the previous frame, and the block is referred to. This is a method of predictive encoding. As illustrated in FIG. 11, a block including N × N pixels is set as a correlation window 41, and an area including a plurality of blocks including N × N pixels is set as a search range 42. It is also assumed that the block referred to in the previous frame has the highest correlation with the block in the current frame. Here, in order to simplify the explanation, the size of the search range 42 is set to the size of nine correlation windows 41 as shown in FIG. That is, it is assumed that blocks having the same size as the correlation window 41 are arranged in the vertical, horizontal, and oblique directions around the correlation window 41. Needless to say, the correlation window 41 and the search range 42 can be set arbitrarily. Now, assuming that the stress applied from the probe is evenly applied in the vertical direction of the subject, the block in which the correlation between the current frame and the previous frame is the largest is the vertical direction with respect to the central correlation window 41 in FIG. Block-2,8. On the other hand, when the tissue of the subject has moved in the lateral direction due to the stress from the probe, the blocks having the largest correlation are blocks -4 and 6 located on the left and right of the correlation window 41 (however, the blocks are referred to as blocks 4 and 6). -1, 3, 7, 9). Then, in order to find the position of the block having the largest correlation within one search range 42, a correlation operation is performed on the nine blocks to find the block position having the largest correlation. In this correlation calculation, for example, when the correlation is the maximum in the horizontally located blocks -2 or 8, it is determined that there is a lateral displacement, and the lateral displacement counter is counted up. In this way, the correlation processing is performed on the target data in the ROI, and the displacement amount in the ROI and the count number C of the lateral displacement counter are calculated. Further, since the data in the ROI is divided by the search range 42, the number A of the divided search ranges 42 is also calculated. The amount of displacement in the ROI is sent to the elastic modulus calculating means 40, and the count number C of the horizontal shift counter and the number A of the divided search ranges 42 are sent to the horizontal shift determining means 38.
[0025]
The lateral deviation determining means 38 determines a lateral deviation based on the input A and C (S46). This determination depends on whether the following equation (1) holds. Here, X is a threshold value determined empirically.
[0026]
A / X <C (1)
When the magnitude relation of Expression (1) is established, it can be determined that a force is uniformly applied to the subject in the vertical direction. In this case, the lateral displacement occurrence flag is set to "0" and stored in the pressurized state memory 6 (S47). Conversely, when the relationship of Expression (1) does not hold, it can be determined that the biological tissue is laterally displaced in a state where the force is not uniformly applied to the subject in the vertical direction. In this case, the lateral displacement flag is set to "1" and stored in the pressurized state memory 6 (S52). The contents of the pressurized state memory 6 are warned by displaying "lateral deviation" on the lower side of the tomographic image 35, for example, as shown in FIG. 10 (S56).
[0027]
On the other hand, the elasticity modulus calculating means 40 calculates the strain data S based on the displacement amount B measured by the displacement measuring means 39 (S48, S53), and the elasticity image constructing section 5 of FIG. The elasticity image is constructed by performing the conversion process and displayed on the display unit 3.
[0028]
As described above, according to the present embodiment, the operator can check in real time how the force of the probe is being applied to the subject. Since it is possible to adjust the operation of the tentacle so that the lateral displacement does not easily occur, it is possible to quickly obtain an appropriate elastic image.
[0029]
【The invention's effect】
As described above, according to the present invention, it is possible to provide the operator with operation information of pressurization for obtaining an appropriate elastic image, and thus it is possible to efficiently obtain an elastic image.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an embodiment of an ultrasonic diagnostic apparatus according to the present invention.
FIG. 2 shows a flowchart of a processing procedure for acquiring an elasticity image according to the ultrasonic diagnostic apparatus of the present embodiment.
FIG. 3 is a diagram illustrating an example of a display image according to the present embodiment.
FIG. 4 is a diagram showing an example of a distortion rate distribution used for determining whether or not a pressing operation is appropriate.
FIG. 5 shows a flowchart in the case of outputting the propriety of pressurization operation by voice.
6 shows an example of a display image according to the embodiment of FIG. 5; FIG. 7 shows a flowchart in a case where an elastic image stored in a cine memory is reproduced and displayed;
FIG. 8 is a diagram showing a configuration around a lateral shift judging means of a characteristic portion according to Embodiment 4 of the present invention.
FIG. 9 is a flowchart mainly showing a processing procedure in a lateral displacement determining unit.
FIG. 10 is a diagram illustrating a state of a display image according to the embodiment in FIG. 8;
FIG. 11 is a diagram illustrating a block matching method for detecting a lateral shift.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 probe 2 tomographic image construction unit 3 display unit 4 elasticity calculation unit 5 elasticity image construction unit 6 pressurized state memory 7 operation information output unit 8 audio output unit 9 operation input unit 10 central processing unit 11 cine memory image reproduction unit 12 cine memory

Claims (4)

被検体との間で超音波を送受信する超音波探触子と、該超音波探触子を駆動する超音波信号を出力する超音波送信手段と、前記被検体に外力を付与する加圧手段と、前記超音波探触子により受波された反射エコー信号から時間的に異なる2つの断層像データを取得し、該2つの断層像データに基づいて各部の変位を計測する変位計測手段と、該変位計測手段により計測された各部の変位データに基づいて各部の組織の弾性率を算出する弾性率演算手段と、該弾性率演算手段によって求められた弾性率に基づいて弾性画像を作成する画像生成手段と、該生成された弾性画像を表示する表示手段とを備えてなる超音波診断装置において、
前記変位データを解析して前記加圧手段による加圧操作が適正か否か判定する加圧判定手段と、該加圧判定手段の判定結果を前記表示手段に表示する判定出力手段とを設けたことを特徴とする超音波診断装置。
An ultrasonic probe that transmits and receives ultrasonic waves to and from the subject, an ultrasonic transmitting unit that outputs an ultrasonic signal that drives the ultrasonic probe, and a pressurizing unit that applies an external force to the subject Displacement measurement means for acquiring two temporally different tomographic image data from the reflected echo signals received by the ultrasonic probe, and measuring the displacement of each part based on the two tomographic image data; Elastic modulus calculating means for calculating the elastic modulus of the tissue of each part based on the displacement data of each part measured by the displacement measuring means, and an image for creating an elastic image based on the elastic modulus obtained by the elastic modulus calculating means Generating means, an ultrasonic diagnostic apparatus including a display means for displaying the generated elasticity image,
A pressure determination unit that analyzes the displacement data to determine whether the pressure operation by the pressure unit is appropriate; and a determination output unit that displays a determination result of the pressure determination unit on the display unit. An ultrasonic diagnostic apparatus, comprising:
前記加圧判定手段は、前記変位データに基づいて前記断層像における歪み率分布を求め、該歪み率分布が適正範囲内か否かにより前記加圧手段による加圧の適否を判定することを特徴とする請求項1に記載の超音波診断装置。The pressurizing determination unit obtains a strain rate distribution in the tomographic image based on the displacement data, and determines whether pressurization by the pressurizing unit is appropriate based on whether the strain rate distribution is within an appropriate range. The ultrasonic diagnostic apparatus according to claim 1, wherein 前記加圧判定手段は、前記変位データに基づいて前記断層像における横ズレの度合いを求め、該横ズレの度合いが適正範囲内か否かにより前記加圧手段による加圧の適否を判定することを特徴とする請求項1に記載の超音波診断装置。The pressurizing determination unit obtains a degree of a lateral shift in the tomographic image based on the displacement data, and determines whether the pressurizing unit is appropriate for the pressurization based on whether the degree of the lateral shift is within an appropriate range. The ultrasonic diagnostic apparatus according to claim 1, wherein: 前記判定出力手段は、前記判定結果に基づいて加圧操作を修正するガイダンスを表示又は/及び音声により出力することを特徴とする請求項2又は3に記載の超音波診断装置。4. The ultrasonic diagnostic apparatus according to claim 2, wherein the determination output unit outputs guidance and / or voice for correcting a pressurizing operation based on the determination result. 5.
JP2003154349A 2003-05-30 2003-05-30 Ultrasonic diagnostic equipment Expired - Fee Related JP3932485B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2003154349A JP3932485B2 (en) 2003-05-30 2003-05-30 Ultrasonic diagnostic equipment
CN 200810136151 CN101317774B (en) 2003-05-30 2004-05-31 Ultrasonic diagnostic equipment
CNB2004800151364A CN100522069C (en) 2003-05-30 2004-05-31 Ultrasonic probe and ultrasonic elasticity imaging device
EP04735518A EP1629777A4 (en) 2003-05-30 2004-05-31 Ultrasonic probe and ultrasonic elasticity imaging device
US10/558,642 US7914456B2 (en) 2003-05-30 2004-05-31 Ultrasonic probe and ultrasonic elasticity imaging device
EP11007979.5A EP2484287B1 (en) 2003-05-30 2004-05-31 Ultrasound probe and ultrasound elasticity imaging apparatus
PCT/JP2004/007856 WO2004105615A1 (en) 2003-05-30 2004-05-31 Ultrasonic probe and ultrasonic elasticity imaging device
EP11007978.7A EP2481354B1 (en) 2003-05-30 2004-05-31 Ultrasound elasticity imaging apparatus and method
US12/081,335 US8007438B2 (en) 2003-05-30 2008-04-15 Ultrasound probe and ultrasound elasticity imaging apparatus
US12/369,276 US8974388B2 (en) 2003-05-30 2009-02-11 Ultrasound probe and ultrasound elasticity imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003154349A JP3932485B2 (en) 2003-05-30 2003-05-30 Ultrasonic diagnostic equipment

Publications (3)

Publication Number Publication Date
JP2004351062A true JP2004351062A (en) 2004-12-16
JP2004351062A5 JP2004351062A5 (en) 2007-03-08
JP3932485B2 JP3932485B2 (en) 2007-06-20

Family

ID=34049030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003154349A Expired - Fee Related JP3932485B2 (en) 2003-05-30 2003-05-30 Ultrasonic diagnostic equipment

Country Status (2)

Country Link
JP (1) JP3932485B2 (en)
CN (2) CN101317774B (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005120358A1 (en) * 2004-06-09 2005-12-22 Hitachi Medical Corporation Elastic image display method and ultrasonographic device
WO2005122907A1 (en) * 2004-06-22 2005-12-29 Hitachi Medical Corporation Ultrasonograph and elasticity image display method
WO2006073088A1 (en) * 2005-01-04 2006-07-13 Hitachi Medical Corporation Ultrasonographic device, ultrasonographic program, and ultrasonographic method
WO2006121031A1 (en) * 2005-05-09 2006-11-16 Hitachi Medical Corporation Ultrasonograph and ultrasonic image display method
WO2007046272A1 (en) * 2005-10-19 2007-04-26 Hitachi Medical Corporation Ultrasonograph for creating elastic image
EP1800604A1 (en) * 2004-10-08 2007-06-27 Hitachi Medical Corporation Ultrasonic diagnosis device
WO2008010500A1 (en) * 2006-07-18 2008-01-24 Hitachi Medical Corporation Untrasonic diagnosis device
WO2009107673A1 (en) 2008-02-25 2009-09-03 株式会社 東芝 Ultrasonic diagnostic device, ultrasonic imaging device, and recording medium for recording ultrasonic imaging program
EP2266464A1 (en) * 2009-06-26 2010-12-29 Kabushiki Kaisha Toshiba Ultrasonic diagnosis apparatus and ultrasonic diagnosis support information providing method
JP2011072526A (en) * 2009-09-30 2011-04-14 Toshiba Corp Ultrasonic diagnostic apparatus
JP2011092224A (en) * 2009-10-27 2011-05-12 Ge Medical Systems Global Technology Co Llc Ultrasonic diagnostic apparatus
WO2011102401A1 (en) * 2010-02-17 2011-08-25 株式会社 日立メディコ Method for evaluating image quality of elastogram, and ultrasonic diagnostic device
JPWO2011010626A1 (en) * 2009-07-24 2012-12-27 株式会社日立メディコ Ultrasonic diagnostic apparatus, elastic image storage / reproduction method, and elastic image storage / reproduction program
JP2013542046A (en) * 2010-11-10 2013-11-21 エコーメトリックス,エルエルシー Ultrasound image processing system and method
WO2014112168A1 (en) 2013-01-18 2014-07-24 オリンパスメディカルシステムズ株式会社 Ultrasonic observation system
US8968200B2 (en) 2008-02-21 2015-03-03 Hitachi Medical Corporation Ultrasonic elastography for cross sectional tissue measurement method and apparatus

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2281508B1 (en) * 2008-04-25 2017-06-21 Hitachi, Ltd. Ultrasonic diagnostic device
US20120041313A1 (en) * 2009-04-24 2012-02-16 Hitachi Medical Corporation Ultrasonic imaging device
JP4999969B2 (en) * 2010-07-13 2012-08-15 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Ultrasonic diagnostic apparatus and control program therefor
JP5917039B2 (en) 2010-09-13 2016-05-11 キヤノン株式会社 Subject information acquisition device
US20130307863A1 (en) * 2011-02-23 2013-11-21 Hitachi Medical Corporation Ultrasound diagnostic device and image display method
EP3020339A4 (en) * 2014-08-25 2017-04-05 Olympus Corporation Ultrasound observation apparatus, ultrasound observation system, and method for operating ultrasound observation apparatus
CN104622511B (en) * 2015-01-26 2017-06-20 首都医科大学附属北京天坛医院 A kind of device and ultrasonic detection method of utilization ultrasound examination skeletal muscle Mechanics of Machinery parameter
JP6474682B2 (en) * 2015-05-14 2019-02-27 株式会社キーエンス Ultrasonic flow switch
KR102035993B1 (en) 2015-09-03 2019-10-25 지멘스 메디컬 솔루션즈 유에스에이, 인크. Ultrasound system and method for generating elastic image
CN109475343B (en) * 2016-08-01 2024-04-02 深圳迈瑞生物医疗电子股份有限公司 Shear wave elastography measurement display method and system
WO2020061770A1 (en) * 2018-09-25 2020-04-02 深圳迈瑞生物医疗电子股份有限公司 Elastography method and device, and storage medium

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4545385A (en) * 1982-03-23 1985-10-08 Siemens Aktiengesellschaft Ultrasound examination device for scanning body parts
US5922018A (en) * 1992-12-21 1999-07-13 Artann Corporation Method for using a transrectal probe to mechanically image the prostate gland
US5265612A (en) * 1992-12-21 1993-11-30 Medical Biophysics International Intracavity ultrasonic device for elasticity imaging
US6569108B2 (en) * 2001-03-28 2003-05-27 Profile, Llc Real time mechanical imaging of the prostate

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005120358A1 (en) * 2004-06-09 2005-12-22 Hitachi Medical Corporation Elastic image display method and ultrasonographic device
WO2005122907A1 (en) * 2004-06-22 2005-12-29 Hitachi Medical Corporation Ultrasonograph and elasticity image display method
US8353831B2 (en) 2004-06-22 2013-01-15 Hitachi Medical Corporation Diagnostic ultrasound system and method of displaying elasticity image
EP1800604A1 (en) * 2004-10-08 2007-06-27 Hitachi Medical Corporation Ultrasonic diagnosis device
EP1800604A4 (en) * 2004-10-08 2008-03-19 Hitachi Medical Corp Ultrasonic diagnosis device
JP2013034883A (en) * 2005-01-04 2013-02-21 Hitachi Medical Corp Ultrasound diagnostic apparatus
JPWO2006073088A1 (en) * 2005-01-04 2008-06-12 株式会社日立メディコ Ultrasonic diagnostic apparatus, ultrasonic imaging program, and ultrasonic imaging method
US7766836B2 (en) 2005-01-04 2010-08-03 Hitachi Medical Corporation Ultrasound diagnostic apparatus, program for imaging an ultrasonogram, and method for imaging an ultrasonogram
WO2006073088A1 (en) * 2005-01-04 2006-07-13 Hitachi Medical Corporation Ultrasonographic device, ultrasonographic program, and ultrasonographic method
WO2006121031A1 (en) * 2005-05-09 2006-11-16 Hitachi Medical Corporation Ultrasonograph and ultrasonic image display method
US9060737B2 (en) 2005-05-09 2015-06-23 Hitachi Medical Corporation Ultrasonic diagnostic apparatus and ultrasonic image display method
WO2007046272A1 (en) * 2005-10-19 2007-04-26 Hitachi Medical Corporation Ultrasonograph for creating elastic image
JPWO2008010500A1 (en) * 2006-07-18 2009-12-17 株式会社日立メディコ Ultrasonic diagnostic equipment
WO2008010500A1 (en) * 2006-07-18 2008-01-24 Hitachi Medical Corporation Untrasonic diagnosis device
US8968200B2 (en) 2008-02-21 2015-03-03 Hitachi Medical Corporation Ultrasonic elastography for cross sectional tissue measurement method and apparatus
EP2138103A1 (en) * 2008-02-25 2009-12-30 Kabushiki Kaisha Toshiba Ultrasonic diagnostic device, ultrasonic imaging device, and recording medium for recording ultrasonic imaging program
US9451930B2 (en) 2008-02-25 2016-09-27 Kabushiki Kaisha Toshiba Ultrasonic diagnosis apparatus, ultrasonic image processing apparatus, and recording medium on which ultrasonic image processing program is recorded
EP2138103A4 (en) * 2008-02-25 2012-02-22 Toshiba Kk Ultrasonic diagnostic device, ultrasonic imaging device, and recording medium for recording ultrasonic imaging program
WO2009107673A1 (en) 2008-02-25 2009-09-03 株式会社 東芝 Ultrasonic diagnostic device, ultrasonic imaging device, and recording medium for recording ultrasonic imaging program
JP2011025011A (en) * 2009-06-26 2011-02-10 Toshiba Corp Ultrasonic diagnosis apparatus and ultrasonic diagnosis apparatus control program
EP2266464A1 (en) * 2009-06-26 2010-12-29 Kabushiki Kaisha Toshiba Ultrasonic diagnosis apparatus and ultrasonic diagnosis support information providing method
JPWO2011010626A1 (en) * 2009-07-24 2012-12-27 株式会社日立メディコ Ultrasonic diagnostic apparatus, elastic image storage / reproduction method, and elastic image storage / reproduction program
JP2011072526A (en) * 2009-09-30 2011-04-14 Toshiba Corp Ultrasonic diagnostic apparatus
JP2011092224A (en) * 2009-10-27 2011-05-12 Ge Medical Systems Global Technology Co Llc Ultrasonic diagnostic apparatus
US9310473B2 (en) 2010-02-17 2016-04-12 Hitachi Medical Corporation Method for evaluating image quality of elastic image, and ultrasonic diagnostic apparatus
WO2011102401A1 (en) * 2010-02-17 2011-08-25 株式会社 日立メディコ Method for evaluating image quality of elastogram, and ultrasonic diagnostic device
JP2013542046A (en) * 2010-11-10 2013-11-21 エコーメトリックス,エルエルシー Ultrasound image processing system and method
WO2014112168A1 (en) 2013-01-18 2014-07-24 オリンパスメディカルシステムズ株式会社 Ultrasonic observation system
US9332964B2 (en) 2013-01-18 2016-05-10 Olympus Corporation Ultrasound observation system

Also Published As

Publication number Publication date
CN101317774A (en) 2008-12-10
CN100522069C (en) 2009-08-05
CN101317774B (en) 2013-03-06
CN1798524A (en) 2006-07-05
JP3932485B2 (en) 2007-06-20

Similar Documents

Publication Publication Date Title
JP3932485B2 (en) Ultrasonic diagnostic equipment
JP5113387B2 (en) Ultrasonic diagnostic apparatus and ultrasonic image display method
US8172754B2 (en) Ultrasonograph
US8475382B2 (en) Ultrasound diagnostic apparatus and method for tracing movement of tissue
JP5400919B2 (en) Method of operating ultrasonic diagnostic apparatus and ultrasonic diagnostic apparatus
EP2481354B1 (en) Ultrasound elasticity imaging apparatus and method
EP1938754A1 (en) Ultrasonograph for creating elastic image
JP4509027B2 (en) Ultrasonic diagnostic equipment
US8801614B2 (en) On-axis shear wave characterization with ultrasound
WO2005122906A1 (en) Ultrasonic diagnositic apparatus
US20110098563A1 (en) Ultrasonic diagnostic apparatus, ultrasonic image display method and ultrasonic diagnostic program
US8394024B2 (en) Ultrasound diagnostic apparatus and method for tracing movement of tissue
US20120108972A1 (en) Ultrasound diagnostic apparatus and method for tracing movement of tissue
JP2007105400A (en) Ultrasonic diagnosis device, and image processing device
JP2005066041A (en) Ultrasonic probe and ultrasonic diagnostic equipment
JP2020096894A (en) Ultrasonic diagnostic apparatus and operation method of ultrasonic diagnostic apparatus
KR101629541B1 (en) Ultrasonic diagnostic apparatus and control program thereof
US20110112402A1 (en) Image processing apparatus, image processing program, storage medium and ultra-sonograph
JP4889540B2 (en) Ultrasonic diagnostic equipment
JP2004267464A (en) Ultrasonic diagnostic device
US20160317128A1 (en) Ultrasound processing apparatus and method, and program
EP3357429B1 (en) Ultrasonic diagnosis apparatus and control method for same
KR102174348B1 (en) System for measuring properties of soft tissue quantitatively
JP2021186257A (en) Medical image diagnostic apparatus and medical image processing apparatus
KR20100112668A (en) Ultrasound system and method of providing guide information

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060428

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070122

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070122

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070307

R150 Certificate of patent or registration of utility model

Ref document number: 3932485

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees