JP2004349305A - Bimorph-type piezoelectric element and unimorph-type piezoelectric element - Google Patents

Bimorph-type piezoelectric element and unimorph-type piezoelectric element Download PDF

Info

Publication number
JP2004349305A
JP2004349305A JP2003141835A JP2003141835A JP2004349305A JP 2004349305 A JP2004349305 A JP 2004349305A JP 2003141835 A JP2003141835 A JP 2003141835A JP 2003141835 A JP2003141835 A JP 2003141835A JP 2004349305 A JP2004349305 A JP 2004349305A
Authority
JP
Japan
Prior art keywords
piezoelectric element
type piezoelectric
electrodes
electrode
bimorph
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003141835A
Other languages
Japanese (ja)
Inventor
Yoichiro Sakurada
陽一郎 桜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2003141835A priority Critical patent/JP2004349305A/en
Publication of JP2004349305A publication Critical patent/JP2004349305A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bimorph-type piezoelectric element and a unimorph-type piezoelectric element, which are capable of operating without through-holes, manufactured at a low cost with stable yield, and capable of operating surely with high reliability. <P>SOLUTION: A plurality of rectangular piezoelectric materials which are each provided with electrodes formed on both their surfaces are laminated into a laminated piezoelectric element, and the electrodes are so configured that the laminated piezoelectric element is driven by applying two different potentials to the opposed electrodes. The two laminated piezoelectric elements are bonded together into a bimorph-type piezoelectric element interposing an elastic conductive shim layer between them. The bimorph-type piezoelectric element operates in such a manner wherein a voltage is so applied as to make distortions generated in both the laminated piezoelectric elements opposite to each other and to generate a flex displacement. In the bimorph-type piezoelectric element, the electrode provided on the side of the laminated piezoelectric element bonded to the above shim layer is formed so as to recede from the end of the piezoelectric element by a certain distance in the lengthwise direction, and the end of the piezoelectric element where the above electrode is not formed is bonded so as to protrude from the shim layer in the lengthwise direction. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、音響用発音素子、各種圧電センサ、圧電型ポンプ、発電素子等に好適なバイモルフ型圧電素子およびユニモルフ型圧電素子に関する。
【0002】
【従来の技術】
積層圧電素子を活用したバイモルフ素子は、アクチュエータとしては駆動電圧を低下させることが可能である。また、センサや圧電発電を目的とした場合には、構造からくる大きな静電容量のため、見かけ上の大きな圧電e定数の材料の役割をして単板に比較すると、外部からの機械的入力に対して大きな電流を取り出すことが可能となり、用途に応じて広く活用されつつある。
【0003】
例えば、特許文献1では、音響部品の音圧を向上させる手段として積層バイモルフの構成が有効であることを主張している。ところが、実際にこの構成の素子を製造する場合には、一般的には電極端子の一方の取り出し口として使われる導電性の中央のシム層と電気的に絶縁されるべき対抗電極との間での絶縁性確保が困難であった。
【0004】
【特許文献1】
特開平08−336196号公報
【0005】
積層素子の互いに対抗する電極群を二組の極に結線する一般的な手法は、例えば、特許文献2及び特許文献3にあるようなスルーホールを形成して孔(ホール)の内面をメタライズすることで必要な電極群を電気的に結びつける方法が使用されている。このような素子内に貫通孔を形成するこの手法は、動作の激しい用途においては、破壊の要因となる問題があった。また、スルーホールの技法は製造プロセスが多くなり、コストアップの要因となっていた。
【0006】
【特許文献2】
特開平11−233848号公報
【特許文献3】
特開2000−094679号公報
【0007】
他の方法として側面の一部に層毎に交互にはみ出た内部電極端に外部電極を帯状に塗布して結合する手法は、単体の積層型の圧電素子では、きわめて一般的であるが、導電性のシム層に接着剤で接合する場合にはシム層からみると対抗極になる側の外部電極の帯との間隔が一層の厚みになるため、接着の過程で導通して歩留まりを落としたり、動作の過程で急激に絶縁性が低下したり導通して機能を失う問題があった。
【0008】
図4は、従来の側面電極で連結する基本的なバイモルフ型圧電素子の説明図である。図4(a)は断面図であり、図4(b)は上面図である。また、図5は、従来のスルーホールを用いる場合の基本的なバイモルフ型圧電素子の説明図である。図5(a)は断面図であり、図5(b)は上面図である。
【0009】
まず、従来のバイモルフ型圧電素子の基本的な製造プロセスと構成を説明する。圧電セラミック材料の粉末と有機バインダー及び有機溶剤で調合されたスラリーをドクターブレード法や押し出し成形法で成膜されたシートの両面に所望の銀を主とする電極ペーストを用いて電極パターンが印刷され、対抗する電極同志は互いにその端部に相当する部分で位置をずらして順次積層して所定の形状に分離切断する。この時、両端面には内部電極が一層毎に露出するように構成する。この過程では、素子の両面(最外層)には電極を印刷しないで裸にしておく場合が多い。
【0010】
この後で積層体を大気中450℃〜600℃で数時間焼成する事で含まれる有機物をすべて分解させた後に、密閉容器中で900℃から1200℃の間の温度にて本焼成する。次に、両面及び端面に外部電極を施す。この処理で圧電素子の各層の内部電極は、交互に連結されて両端の電極に電圧を印加すると各層に電界が印加できるような構成となり、圧電素子の原型が完成する。
【0011】
【発明が解決しようとする課題】
この両面外部1及び側面外部電極3a,3bの形成は、電極ペーストの印刷と焼き付けあるいは蒸着もしくはスパッタリングなどのいずれの手法を用いても良い。次に、バイモルフ型素子もしくはユニモルフ型素子を構成するために導体のシム層5と接合する場合、シム層と対抗する側の側面外部電極3a,3bとシム層5との間の距離が近く、絶縁が非常に困難であり、これは一層あたりの厚みが薄くなるにつれて、その難易度が急激に増大する。
【0012】
具体的に言えば、一層が50μmで積層数が三層の場合に素子の厚みは150μmにすぎないが、これの側面に内部電極を連結するように側面に外部電極を形成する場合には、殆ど側面の厚み方向全体に電極が分布しやすく、そのままでシム層に接着するとシム層と電気的に短絡して機能を示さなくなる確率が非常に高く、製造面で著しく歩留まりが低い。また、仮に接着のプロセスで短絡しなくても実際に使用する過程で駆動の変形を通じて次第に絶縁性が低下して短絡し信頼性が乏しい。
【0013】
本発明の目的は、スルーホールを用いず、かつ安定した歩留まりの低コストで、動作上の信頼性が確保されたバイモルフ型圧電素子およびユニモルフ型圧電素子を提供することである。
【0014】
【課題を解決するための手段】
本発明は、積層素子を用いるバイモルフ型、ユニモルフ型の圧電素子構成でシム層と接着される側の積層圧電素子の電極は、長さ方向の一方の端部より一定の間隔をもって形成されており、この電極が形成されない圧電素子の端部分がシム層から長さ方向にはみ出て接合されていることを特徴とする。
【0015】
即ち、本発明は、両面に電極を形成した矩形状の圧電材料を複数枚積層し、向かい合う電極同士が互いに二つの異なる電位に接続されて駆動されるように電極構成された積層圧電素子二つの間に弾性を有する導電性のシム層を接合し、双方の圧電素子に発生する歪みが互いに逆になるような電圧印加により屈曲変位を生じさせるバイモルフ型圧電素子であって、前記シム層と接着される側の積層圧電素子の電極は、長さ方向の一方の端部より一定の間隔をもって形成されており、この電極が形成されない圧電素子の端部分がシム層から長さ方向にはみ出て接合されたバイモルフ型圧電素子である。
【0016】
また、本発明は、両面に電極を形成した円盤状の圧電材料を複数枚積層し、向かい合う電極同士が互いに二つの異なる電位に接続されて駆動されるように電極構成された積層圧電素子二つの間に弾性を有する導電性のシム層を接合し、双方の圧電素子に発生する歪みが互いに逆になるような電圧印加により屈曲変位を生じさせるバイモルフ型圧電素子であって、前記シム層と接着される側の積層圧電素子の電極は、円の一端に三日月状の電極形成の空白部を備えており、該圧電素子の三日月状の空白部分がシム層からはみ出て接合されるように構成されたバイモルフ型圧電素子である。
【0017】
また、本発明は、前記バイモルフ型圧電素子の構成で電極が形成されない圧電素子の端部分がシム層から長さ方向にはみ出て接合されている部分に電気的に絶縁性の弾性体を組み込んだバイモルフ型圧電素子である。
【0018】
また、本発明は、電極を形成した矩形状の圧電材料を複数枚積層し、向かい合う電極同士が互いに二つの異なる電位に接続されて駆動されるように電極構成された積層圧電素子と、弾性を有する導電性のシム層を接合し、電圧印加により屈曲変位を生じさせるユニモルフ型圧電素子であって、前記シム層と接着される側の積層圧電素子の電極は、長さ方向の一方の端部より一定の間隔をもって形成されており、この電極が形成されない圧電素子の端部分がシム層から長さ方向にはみ出て接合されたユニモルフ型圧電素子である。
【0019】
また、本発明は、前記ユニモルフ型圧電素子の構成で電極が形成されない圧電素子の端部分がシム層から長さ方向にはみ出て接合されている部分に電気的に絶縁性の弾性体を組み込んだユニモルフ型圧電素子である。
【0020】
【発明の実施の形態】
本発明の実施の形態によるバイモルフ型圧電素子およびユニモルフ型圧電素子について、以下に説明する。
【0021】
本発明のバイモルフ型圧電素子およびユニモルフ型圧電素子は、積層素子を用いるバイモルフ、ユニモルフタイプの圧電素子で、スルーホールを用いず、かつ安定した歩留まりの低コストの製造プロセスを見いだすこと、さらに動作上の信頼性の確保するという目的として、シム層と接着される側の積層圧電素子の電極は、長さ方向の一方の端部より一定の間隔をもって形成されており、この電極が形成されない圧電素子の端部分をシム層から長さ方向にはみ出して接合した構成である。更に、この構成で製造プロセス、特に接合プロセスの圧力分布や、実際に使用する場合での素子の強度や信頼性を確保するために、このシム層の欠けた部分に電気的な絶縁体を組み込む構成としている。
【0022】
【実施例】
本発明の実施例によるバイモルフ型圧電素子およびユニモルフ型圧電素子について、以下に説明する。
【0023】
(実施例1)
図1は、本発明の実施例1のバイモルフ型圧電素子の構成の説明図である。図1(a)は断面図であり、図1(b)は上面図である。図1に示すバイモルフ型圧電素子において、4は圧電セラミック層、2は内部電極、3a,3bは側面外部電極、5は中間にある導電体より構成されるシム層、6は絶縁体を示している。
【0024】
ここで、圧電素子は材質としてNECトーキン製のN10材を用いてシートを作製し、基本的には、従来技術にて記載したプロセスを用いて素子を作製した。一層あたりの焼成後の厚みは約50μmで、全体の厚みは外部電極形成後には平均170μmである。
【0025】
シム層として厚み100μmの真鍮を用いた。外形は全長35mmで、幅は8mmの矩形状の素子である。シムの欠けた部分を埋める絶縁材料として、シムと同じ厚みを有するガラスエポキシ樹脂を用いた。
【0026】
これらの素子について、矩形状のものは図4の従来の構成と、図1、図2の本発明の構成について、各10ヶずつ試作した。矩形状では、従来構成では10ヶ中6ヶが短絡したが、本発明の構成では短絡は一ヶも発生しなかった。
【0027】
さらに、素子の圧電的機能として、15Vの直流電圧を印加した場合の変位について測定するため、矩形状の素子については一端を固定して他端の変位を工具顕微鏡で計測した。その結果、いずれも220μの変位が観測された。
【0028】
次に、発生力について15V印加時の自由端の変位を拘束するのに必要な力を、ロードセルを用いて計測した。その結果、いずれの場合にも約0.09Nの力が計測され、本発明の構成においては機能上遜色のないことが証明された。
【0029】
(実施例2)
図2は、本発明の実施例2のバイモルフ型圧電素子の構成の説明図である。図2に示すように、バイモルフ型圧電素子では、シム層5の部分が左右のいずれの側にもはみ出ない構成を示している。
【0030】
(実施例3)
図3は本発明の実施例3のバイモルフ型圧電素子の構成の説明図である。図3(a)は断面図、図3(b)は上面図である。図3に示すように、4は圧電セラミック層を示し、2は内部電極を示し、3a,3bは側面外部電極を示し、5は中間にある導電体より構成されるシム層を示し、6は絶縁体を示している。
【0031】
ここで、圧電素子は材質としてNECトーキン製のN10材を用いてシートを作製し、基本的には、従来の技術にて記載したプロセスを用いて素子を作製した。一層あたりの焼成後の厚みは約50μmで、全体の厚みは外部電極形成後には平均170μmである。シム層として厚み100μmの真鍮を用いた。外形が30φの円盤状で、シム形状は30φで、深さ1mmだけ両端から2カ所切り取りのあるものを用いている。ここでは、弦状に切り取ったが、三日月状、その他の形状であっても良い。
【0032】
シムの欠けた部分を埋める絶縁材料として、シムと同じ厚みを有するガラスエポキシ樹脂を用いた。これらの素子について、従来の構成として、シム層の切り取りのないもの、図3の本明の構成のものを各10ヶずつ試作した。円盤状では、従来構成では10ヶ中10ヶがすべて短絡したが、本発明の構成では短絡は0であった。以上の結果、本発明の有効性が証明された。
【0033】
さらに、素子の圧電的機能として、発生力について15V印加時の自由端の変位を拘束するに必要な力についてロードセルを用いて計測した。その結果、円盤状の素子について、発生力のみ計測したが、いずれも約0.09Nの発生力が計測され、円盤の場合も本発明の構成においては機能上遜色のないことが証明された。
【0034】
(実施例4)
本発明の実施例4のユニモルフ型圧電素子構成について説明する。発明のユニモルフ型圧電素子は、先に説明した図1、図2、図3の構成にて、片側のみに圧電素子を形成するものである。ここでは、図は省略する。
【0035】
本発明のユニモルフ型圧電素子は、電極を形成した矩形状の圧電材料を複数枚積層し、向かい合う電極同士が互いに二つの異なる電位に接続されて駆動されるように電極構成された積層圧電素子一つと、弾性を有する導電性のシム層を接合し、電圧印加により屈曲変位を生じさせるユニモルフ型圧電素子であって、前記シム層と接着される側の積層圧電素子の電極は、長さ方向の一方の端部より一定の間隔をもって形成されており、この電極が形成されない圧電素子の端部分がシム層から長さ方向にはみ出て接合されたユニモルフ型圧電素子とする。矩形状、円盤状の素子を各10ヶ作製したが、短絡したものはなかった。
【0036】
【発明の効果】
以上説明したように、本発明の積層型圧電バイモルフまたは圧電ユニモルフの構成によって、安定した歩留まりで低コストの製造プロセスで動作上の信頼性の確保できる積層型のバイモルフ型圧力素子またはユニモルフ型圧電素子を提供できる。
【図面の簡単な説明】
【図1】
本発明の実施例1のバイモルフ型圧力素子の構成の説明図。図1(a)は断面図、図1(b)は上面図。
【図2】
本発明の実施例2のバイモルフ型圧力素子の構成の説明図。
【図3】
本発明の実施例3のバイモルフ型圧力素子の構成の説明図。図3(a)は断面図、図3(b)は上面図。
【図4】
従来の側面電極で連結する基本的なバイモルフ型圧電素子の説明図。図4(a)は断面図、図4(b)は上面図。
【図5】
従来のスルーホールを用いる場合の基本的なバイモルフ型圧電素子の説明図。図5(a)は断面図、図5(b)は上面図。
【符号の説明】
1 両面外部電極
2 内部電極
3a,3b 側面外部電極
4 圧電セラミック層
5 シム層
6 絶縁体
7 接着側の外部電極と接着層
8 スルーホール(内部メタライズ処理)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a bimorph-type piezoelectric element and a unimorph-type piezoelectric element suitable for a sound generating element for sound, various piezoelectric sensors, a piezoelectric pump, a power generating element, and the like.
[0002]
[Prior art]
A bimorph element using a laminated piezoelectric element can lower the drive voltage as an actuator. In addition, when a sensor or a piezoelectric power generation is intended, since it has a large capacitance due to its structure, it plays a role of a material having an apparently large piezoelectric e-constant. It is possible to extract a large current with respect to the current, and it is being widely used depending on the application.
[0003]
For example, Patent Literature 1 claims that the configuration of a laminated bimorph is effective as a means for improving the sound pressure of an acoustic component. However, when actually manufacturing an element having this configuration, generally, a conductive central shim layer used as one outlet of an electrode terminal and a counter electrode to be electrically insulated are disposed between the shim layer and the counter electrode to be electrically insulated. It was difficult to secure the insulation of the steel.
[0004]
[Patent Document 1]
JP-A-08-336196
A general method of connecting opposing electrode groups of a multilayer element to two sets of poles is to form a through hole and metallize the inner surface of the hole as disclosed in Patent Documents 2 and 3, for example. Therefore, a method of electrically connecting necessary electrode groups is used. This method of forming a through hole in such an element has a problem of causing destruction in an application where operation is severe. In addition, the through-hole technique requires a large number of manufacturing processes, which causes a cost increase.
[0006]
[Patent Document 2]
JP-A-11-233848 [Patent Document 3]
Japanese Patent Application Laid-Open No. 2000-094679
As another method, a method of applying an external electrode in a band shape to the end of an internal electrode that alternately protrudes on a part of the side surface for each layer and joining it is very common for a single laminated piezoelectric element, When bonding to a conductive shim layer with an adhesive, the gap between the external electrode band on the side that becomes the counter electrode when viewed from the shim layer becomes a thicker layer, so conduction occurs during the bonding process and the yield decreases. In addition, there has been a problem that the insulating property is suddenly reduced in the course of operation or the function is lost due to conduction.
[0008]
FIG. 4 is an explanatory diagram of a basic bimorph type piezoelectric element connected by a conventional side electrode. FIG. 4A is a sectional view, and FIG. 4B is a top view. FIG. 5 is an explanatory view of a basic bimorph type piezoelectric element when a conventional through hole is used. FIG. 5A is a cross-sectional view, and FIG. 5B is a top view.
[0009]
First, a basic manufacturing process and configuration of a conventional bimorph type piezoelectric element will be described. An electrode pattern is printed using a silver-based electrode paste on both surfaces of a sheet formed by slurrying a powder of a piezoelectric ceramic material with an organic binder and an organic solvent by a doctor blade method or an extrusion molding method. The opposing electrodes are sequentially stacked with their positions shifted from each other at portions corresponding to their ends, and separated and cut into a predetermined shape. At this time, the internal electrodes are configured to be exposed on both end surfaces one by one. In this process, electrodes are often left unprinted on both sides (outermost layer) of the element without being printed.
[0010]
Thereafter, the laminated body is baked in air at 450 ° C. to 600 ° C. for several hours to decompose all the organic substances contained therein, and then baked at a temperature between 900 ° C. and 1200 ° C. in a closed container. Next, external electrodes are applied to both surfaces and end surfaces. In this process, the internal electrodes of each layer of the piezoelectric element are alternately connected, and when a voltage is applied to the electrodes at both ends, an electric field can be applied to each layer. Thus, the prototype of the piezoelectric element is completed.
[0011]
[Problems to be solved by the invention]
The formation of the outer surface 1 on both sides and the outer electrodes 3a and 3b may be performed by any method such as printing and baking of an electrode paste, evaporation or sputtering. Next, in the case of bonding to the shim layer 5 of the conductor to form a bimorph element or a unimorph element, the distance between the side external electrodes 3a and 3b on the side opposite to the shim layer and the shim layer 5 is short, Insulation is very difficult, and the difficulty increases sharply as the thickness per layer is reduced.
[0012]
More specifically, the thickness of the element is only 150 μm when one layer is 50 μm and the number of layers is three, but when an external electrode is formed on the side surface so as to connect the internal electrode to the side surface, The electrodes are likely to be distributed almost entirely in the thickness direction of the side surface, and if they are adhered to the shim layer as they are, there is a very high probability that the function will not be exhibited due to an electrical short circuit with the shim layer, and the production yield will be extremely low. In addition, even if a short circuit is not caused in the bonding process, the insulating property is gradually reduced due to the deformation of the drive during the actual use, resulting in a short circuit and poor reliability.
[0013]
An object of the present invention is to provide a bimorph-type piezoelectric element and a unimorph-type piezoelectric element that do not use a through-hole, have a stable yield, are low-cost, and have reliable operation.
[0014]
[Means for Solving the Problems]
The present invention provides a bimorph-type or unimorph-type piezoelectric element using a multilayer element, and the electrodes of the multilayer piezoelectric element to be bonded to the shim layer are formed at a constant interval from one end in the length direction. An end portion of the piezoelectric element on which the electrode is not formed is joined to the shim layer by protruding in the length direction from the shim layer.
[0015]
That is, the present invention provides a method of stacking a plurality of rectangular piezoelectric materials having electrodes formed on both sides thereof, and forming two stacked piezoelectric elements in which electrodes facing each other are connected to and driven at two different potentials. A bimorph type piezoelectric element in which a conductive shim layer having elasticity is joined between the piezoelectric elements and a bending displacement is generated by applying a voltage such that the strain generated in both piezoelectric elements is opposite to each other. The electrode of the laminated piezoelectric element on the side to be formed is formed at a constant interval from one end in the length direction, and the end of the piezoelectric element where this electrode is not formed protrudes from the shim layer in the length direction and is joined. This is a bimorph type piezoelectric element that has been manufactured.
[0016]
Further, the present invention provides a method of stacking a plurality of disk-shaped piezoelectric materials having electrodes formed on both surfaces thereof, and forming two stacked piezoelectric elements having electrodes configured such that opposing electrodes are driven by being connected to two different potentials. A bimorph type piezoelectric element in which a conductive shim layer having elasticity is joined between the piezoelectric elements and a bending displacement is generated by applying a voltage such that the strain generated in both piezoelectric elements is opposite to each other. The electrode of the laminated piezoelectric element on the side to be formed has a crescent-shaped electrode blank at one end of a circle, and is configured such that the crescent-shaped blank of the piezoelectric element protrudes from the shim layer and is joined. This is a bimorph type piezoelectric element.
[0017]
Further, in the present invention, an electrically insulating elastic body is incorporated in a portion where the end portion of the piezoelectric element where no electrode is formed in the configuration of the bimorph type piezoelectric element protrudes from the shim layer in the length direction and is joined. This is a bimorph type piezoelectric element.
[0018]
Further, the present invention provides a laminated piezoelectric element in which a plurality of rectangular piezoelectric materials on which electrodes are formed are laminated, and electrodes facing each other are connected to and driven at two different potentials. A unimorph type piezoelectric element that joins conductive shim layers having the same and causes bending displacement by voltage application, wherein the electrode of the laminated piezoelectric element that is bonded to the shim layer has one end in the length direction. The unimorph type piezoelectric element is formed at a more constant interval, and the end portion of the piezoelectric element where this electrode is not formed protrudes from the shim layer in the length direction and is joined.
[0019]
Further, the present invention incorporates an electrically insulating elastic body in a portion where the end portion of the piezoelectric element where no electrode is formed in the configuration of the unimorph type piezoelectric element protrudes from the shim layer in the length direction and is joined. This is a unimorph type piezoelectric element.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
A bimorph type piezoelectric element and a unimorph type piezoelectric element according to an embodiment of the present invention will be described below.
[0021]
The bimorph type piezoelectric element and the unimorph type piezoelectric element of the present invention are a bimorph type and a unimorph type piezoelectric element using a laminated element. For the purpose of ensuring the reliability of the piezoelectric element, the electrodes of the laminated piezoelectric element on the side to be bonded to the shim layer are formed at a constant interval from one end in the length direction, and the piezoelectric element on which this electrode is not formed is formed. Are joined out of the shim layer in the length direction. Furthermore, in order to secure the pressure distribution in the manufacturing process, particularly the bonding process, and the strength and reliability of the element in actual use, an electric insulator is incorporated in the portion where the shim layer is missing. It has a configuration.
[0022]
【Example】
A bimorph type piezoelectric element and a unimorph type piezoelectric element according to an embodiment of the present invention will be described below.
[0023]
(Example 1)
FIG. 1 is an explanatory diagram of a configuration of a bimorph type piezoelectric element according to Example 1 of the present invention. FIG. 1A is a cross-sectional view, and FIG. 1B is a top view. In the bimorph type piezoelectric element shown in FIG. 1, 4 is a piezoelectric ceramic layer, 2 is an internal electrode, 3a and 3b are side external electrodes, 5 is a shim layer composed of an intermediate conductor, and 6 is an insulator. I have.
[0024]
Here, as the piezoelectric element, a sheet was manufactured using N10 material manufactured by NEC TOKIN, and the element was basically manufactured using the process described in the related art. The thickness of one layer after firing is about 50 μm, and the total thickness is 170 μm on average after the external electrodes are formed.
[0025]
Brass with a thickness of 100 μm was used as the shim layer. The external shape is a rectangular element having a total length of 35 mm and a width of 8 mm. A glass epoxy resin having the same thickness as that of the shim was used as an insulating material for filling the missing portion of the shim.
[0026]
Regarding these elements, rectangular elements were prototyped for each of the conventional configuration shown in FIG. 4 and the configuration of the present invention shown in FIGS. In the rectangular configuration, six out of ten short-circuits occurred in the conventional configuration, but no short-circuit occurred in the configuration of the present invention.
[0027]
Further, as a piezoelectric function of the element, in order to measure the displacement when a DC voltage of 15 V was applied, one end of the rectangular element was fixed and the displacement of the other end was measured with a tool microscope. As a result, a displacement of 220 μ was observed in each case.
[0028]
Next, the force required to restrain the displacement of the free end when 15 V was applied was measured using a load cell. As a result, in each case, a force of about 0.09 N was measured, and it was proved that the configuration of the present invention was functionally comparable.
[0029]
(Example 2)
FIG. 2 is an explanatory diagram of the configuration of the bimorph type piezoelectric element according to the second embodiment of the present invention. As shown in FIG. 2, the bimorph type piezoelectric element has a configuration in which the shim layer 5 does not protrude to any of the left and right sides.
[0030]
(Example 3)
FIG. 3 is an explanatory diagram of the configuration of the bimorph type piezoelectric element according to the third embodiment of the present invention. FIG. 3A is a sectional view, and FIG. 3B is a top view. As shown in FIG. 3, reference numeral 4 denotes a piezoelectric ceramic layer, reference numeral 2 denotes an internal electrode, reference numerals 3a and 3b denote side external electrodes, reference numeral 5 denotes a shim layer composed of an intermediate conductor, and reference numeral 6 denotes a shim layer. 2 shows an insulator.
[0031]
Here, as the piezoelectric element, a sheet was manufactured using N10 material manufactured by NEC TOKIN, and basically, the element was manufactured using the process described in the related art. The thickness of one layer after firing is about 50 μm, and the total thickness is 170 μm on average after the external electrodes are formed. Brass with a thickness of 100 μm was used as the shim layer. The outer shape is a disk shape of 30φ, the shim shape is 30φ, and a depth of 1 mm and two cutouts from both ends are used. Here, it is cut in a chord shape, but may be in a crescent shape or another shape.
[0032]
A glass epoxy resin having the same thickness as that of the shim was used as an insulating material for filling the missing portion of the shim. As these conventional devices, 10 devices each having no shim layer cutout and the device according to the present invention shown in FIG. In the case of the disk shape, all 10 out of 10 short-circuited in the conventional configuration, but the short-circuit was 0 in the configuration of the present invention. As a result, the effectiveness of the present invention has been proved.
[0033]
Further, as a piezoelectric function of the element, the force required to restrain the displacement of the free end when a voltage of 15 V was applied was measured using a load cell. As a result, for the disc-shaped element, only the generated force was measured. In each case, a generated force of about 0.09 N was measured, and it was proved that the function of the disk according to the present invention was not inferior to the function.
[0034]
(Example 4)
Fourth Embodiment A configuration of a unimorph type piezoelectric element according to a fourth embodiment of the present invention will be described. The unimorph type piezoelectric element of the present invention has a configuration in which the piezoelectric element is formed only on one side in the configuration shown in FIGS. 1, 2 and 3 described above. Here, the illustration is omitted.
[0035]
The unimorph type piezoelectric element of the present invention is a multilayered piezoelectric element in which a plurality of rectangular piezoelectric materials having electrodes formed thereon are laminated, and the electrodes are configured such that opposing electrodes are connected to and driven at two different potentials. And a unimorph type piezoelectric element that joins an elastic conductive shim layer and generates a bending displacement by applying a voltage, wherein the electrode of the laminated piezoelectric element that is bonded to the shim layer has a lengthwise direction. A unimorph type piezoelectric element is formed at a certain interval from one end, and the end of the piezoelectric element where this electrode is not formed protrudes from the shim layer in the longitudinal direction and is joined. Ten rectangular and disk-shaped elements were produced, but none were short-circuited.
[0036]
【The invention's effect】
As described above, the configuration of the multilayer piezoelectric bimorph or the piezoelectric unimorph of the present invention enables a stable yield and a low cost manufacturing process to ensure the operational reliability of the multilayer bimorph pressure element or the unimorph piezoelectric element. Can be provided.
[Brief description of the drawings]
FIG.
FIG. 1 is an explanatory diagram of a configuration of a bimorph pressure element according to a first embodiment of the present invention. 1A is a sectional view, and FIG. 1B is a top view.
FIG. 2
FIG. 4 is an explanatory diagram of a configuration of a bimorph pressure element according to a second embodiment of the present invention.
FIG. 3
FIG. 7 is an explanatory diagram of a configuration of a bimorph pressure element according to a third embodiment of the present invention. 3A is a sectional view, and FIG. 3B is a top view.
FIG. 4
FIG. 4 is an explanatory view of a basic bimorph type piezoelectric element connected by a conventional side electrode. 4A is a sectional view, and FIG. 4B is a top view.
FIG. 5
FIG. 4 is an explanatory diagram of a basic bimorph type piezoelectric element when a conventional through hole is used. FIG. 5A is a sectional view, and FIG. 5B is a top view.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Double-sided external electrode 2 Internal electrode 3a, 3b Side external electrode 4 Piezoelectric ceramic layer 5 Shim layer 6 Insulator 7 Adhesive side external electrode and adhesive layer 8 Through hole (internal metallization processing)

Claims (5)

両面に電極を形成した矩形状の圧電材料を複数枚積層し、向かい合う電極同士が互いに二つの異なる電位に接続されて駆動されるように電極構成された積層圧電素子二つの間に弾性を有する導電性のシム層を接合し、前記二つの圧電素子に発生する歪みが互いに逆になるような電圧印加により屈曲変位を生じさせるバイモルフ型圧電素子であって、前記シム層と接着される側の積層圧電素子の電極は、長さ方向の一方の端部より一定の間隔をもって形成されており、この電極が形成されない圧電素子の端部分がシム層から長さ方向にはみ出て接合されたことを特徴とするバイモルフ型圧電素子。A plurality of rectangular piezoelectric materials having electrodes formed on both surfaces are laminated, and the opposing electrodes are connected to two different potentials and are driven so that they are electrically connected to each other. A bimorph type piezoelectric element which joins a plurality of shim layers and generates a bending displacement by applying a voltage such that the strains generated in the two piezoelectric elements are opposite to each other, and the lamination on the side bonded to the shim layer The electrodes of the piezoelectric element are formed at a certain interval from one end in the length direction, and the end of the piezoelectric element where this electrode is not formed protrudes from the shim layer in the length direction and is joined. A bimorph type piezoelectric element. 両面に電極を形成した円盤状の圧電材料を複数枚積層し、向かい合う電極同士が互いに二つの異なる電位に接続されて駆動されるように電極構成された積層圧電素子二つの間に弾性を有する導電性のシム層を接合し、前記二つの圧電素子に発生する歪みが互いに逆になるような電圧印加により屈曲変位を生じさせるバイモルフ型圧電素子であって、前記シム層と接着される側の積層圧電素子の電極は、円の一端に電極形成の空白部を備えており、該圧電素子の空白部分がシム層からはみ出て接合されるように構成されたことを特徴とするバイモルフ型圧電素子。A plurality of disc-shaped piezoelectric materials having electrodes formed on both sides are laminated, and the opposing electrodes are connected to two different potentials and are driven by being connected to two different potentials. A bimorph type piezoelectric element which joins a plurality of shim layers and generates a bending displacement by applying a voltage such that the strains generated in the two piezoelectric elements are opposite to each other, and the lamination on the side bonded to the shim layer A bimorph type piezoelectric element, wherein the electrode of the piezoelectric element includes a blank portion for forming an electrode at one end of a circle, and the blank portion of the piezoelectric element protrudes from the shim layer and is joined. 請求項1または2に記載のバイモルフ型圧電素子において、電極が形成されない圧電素子の端部分でシム層から長さ方向にはみ出て接合されている部分に電気的に絶縁性の弾性体を組み込んだことを特徴とするバイモルフ型圧電素子。3. The bimorph type piezoelectric element according to claim 1, wherein an electrically insulating elastic body is incorporated in a portion of the end of the piezoelectric element where no electrode is formed, which is protruded from the shim layer in the length direction and is joined. A bimorph type piezoelectric element characterized by the above-mentioned. 電極を形成した矩形状の圧電材料を複数枚積層し、向かい合う電極同士が互いに二つの異なる電位に接続されて駆動されるように電極構成された積層圧電素子一つと、弾性を有する導電性のシム層を接合し、電圧印加により屈曲変位を生じさせるユニモルフ型圧電素子であって、前記シム層と接着される側の積層圧電素子の電極は、長さ方向の一方の端部より一定の間隔をもって形成されており、この電極が形成されない圧電素子の端部分がシム層から長さ方向にはみ出て接合されたことを特徴とするユニモルフ型圧電素子。One laminated piezoelectric element, in which a plurality of rectangular piezoelectric materials having electrodes formed thereon are laminated, and electrodes facing each other are connected to and driven at two different potentials, and a conductive shim having elasticity. A unimorph type piezoelectric element that joins layers and generates bending displacement by voltage application, wherein electrodes of the laminated piezoelectric element that is bonded to the shim layer are spaced apart from one end in the length direction at a constant interval. A unimorph type piezoelectric element, wherein an end portion of the formed piezoelectric element, on which the electrode is not formed, protrudes from the shim layer in the length direction and is joined. 請求項4に記載のユニモルフ型圧電素子において、電極が形成されない圧電素子の端部分でシム層から長さ方向にはみ出て接合されている部分に電気的に絶縁性の弾性体を組み込んだことを特徴とするユニモルフ型圧電素子。The unimorph type piezoelectric element according to claim 4, wherein an electrically insulating elastic body is incorporated in a portion of the end of the piezoelectric element where no electrode is formed, which is protruded from the shim layer in the length direction and joined. Characteristic unimorph type piezoelectric element.
JP2003141835A 2003-05-20 2003-05-20 Bimorph-type piezoelectric element and unimorph-type piezoelectric element Withdrawn JP2004349305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003141835A JP2004349305A (en) 2003-05-20 2003-05-20 Bimorph-type piezoelectric element and unimorph-type piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003141835A JP2004349305A (en) 2003-05-20 2003-05-20 Bimorph-type piezoelectric element and unimorph-type piezoelectric element

Publications (1)

Publication Number Publication Date
JP2004349305A true JP2004349305A (en) 2004-12-09

Family

ID=33530090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003141835A Withdrawn JP2004349305A (en) 2003-05-20 2003-05-20 Bimorph-type piezoelectric element and unimorph-type piezoelectric element

Country Status (1)

Country Link
JP (1) JP2004349305A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007034954A (en) * 2005-07-29 2007-02-08 Sony Corp Input/output device and electronic equipment having input/output device
US9946120B2 (en) 2015-10-30 2018-04-17 Samsung Display Co., Ltd. Display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007034954A (en) * 2005-07-29 2007-02-08 Sony Corp Input/output device and electronic equipment having input/output device
JP4604902B2 (en) * 2005-07-29 2011-01-05 ソニー株式会社 INPUT / OUTPUT DEVICE AND ELECTRONIC DEVICE HAVING INPUT / OUTPUT DEVICE
US9946120B2 (en) 2015-10-30 2018-04-17 Samsung Display Co., Ltd. Display device

Similar Documents

Publication Publication Date Title
JP2567046B2 (en) Stacked displacement element
JP2007173456A (en) Stacked piezoelectric bimorph element, and method of manufacturing same
KR100695374B1 (en) Piezo Element with a Multiple-Layer Structure Produced by Folding
JP2007287910A (en) Laminated piezoelectric bimorph element
JP2001210884A (en) Stacked type piezoelectric actuator
JP3668072B2 (en) Multilayer piezoelectric actuator
WO2013031715A1 (en) Layered piezoelectric element
JPH11112046A (en) Piezoelectric actuator and its manufacture
JPH05218519A (en) Electrostrictive effect element
JP2003009555A (en) Laminated electrical energy-mechanical energy transducer and vibration wave drive device
JP2004349305A (en) Bimorph-type piezoelectric element and unimorph-type piezoelectric element
JP7163570B2 (en) Laminated piezoelectric element and vibration device
WO2010024276A1 (en) Laminated piezoelectric element
JP3881474B2 (en) Multilayer piezoelectric actuator
JP2007019420A (en) Stacked piezoelectric element
JPH10241993A (en) Laminated ceramic electronic component
JP2001313428A (en) Laminated type piezoelectric actuator and injection device
US20150048720A1 (en) Piezoelectric actuator module and method of manufacturing the same
JP2006245027A (en) Multilayer piezoelectric element
JP3250918B2 (en) Multilayer piezoelectric element
JP5687278B2 (en) Multilayer piezoelectric actuator
JPH0476969A (en) Electrostrictive effect element
JP2001102649A (en) Laminated piezoelectric actuator
JP2007266468A (en) Laminated piezoelectric element
JP2012529180A (en) Piezoelectric multilayer actuator assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060508

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090608