JP2004349211A - Evaluation method of anode active material for lithium secondary battery - Google Patents

Evaluation method of anode active material for lithium secondary battery Download PDF

Info

Publication number
JP2004349211A
JP2004349211A JP2003147975A JP2003147975A JP2004349211A JP 2004349211 A JP2004349211 A JP 2004349211A JP 2003147975 A JP2003147975 A JP 2003147975A JP 2003147975 A JP2003147975 A JP 2003147975A JP 2004349211 A JP2004349211 A JP 2004349211A
Authority
JP
Japan
Prior art keywords
positive electrode
crystallite size
active material
secondary battery
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003147975A
Other languages
Japanese (ja)
Other versions
JP4228287B2 (en
Inventor
Shigeji Takagi
繁治 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003147975A priority Critical patent/JP4228287B2/en
Publication of JP2004349211A publication Critical patent/JP2004349211A/en
Application granted granted Critical
Publication of JP4228287B2 publication Critical patent/JP4228287B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method to evaluate rapidly and simply a positive electrode capacity regarding a positive electrode active material having lithium manganate as a main component. <P>SOLUTION: Regarding the positive electrode component in which the main component is lithium manganate, this has a crystallite size measuring process to measure the crystallite size of the positive electrode active material for the lithium secondary battery based on an X-ray diffraction method, and a presumption process to presume the positive electrode capacity from the crystallite size is provided. This method is based on a knowledge that the crystallite size has a high correlation with the positive electrode capacity and the crystallite size of the lithium manganate can be measured with a high precision by the X-ray diffractometry. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、マンガン酸リチウムを主成分とするリチウム二次電池用正極活物質の評価方法に関し、特にリチウム二次電池に適用した際の正極容量を実際の電池を組み立てなくても高精度で推定できるリチウム二次電池用正極活物質の評価方法に関する。
【0002】
【従来の技術】
パソコン、ビデオカメラ、携帯電話等の小型化に伴い、これらの情報関連機器、通信機器の分野に用いる電源として、エネルギー密度の高いリチウム二次電池が実用化され広く普及している。一方で、自動車の分野においても、環境問題、資源問題から電気自動車の開発が急がれており、この電気自動車用の電源としてもリチウム二次電池が検討されている。
【0003】
リチウム二次電池には、4V級の作動電圧が得られるものとして、スピネル構造のLiMn、層状岩塩構造のLiCoO、LiNiO、及びそれらの一部元素を他元素で置換したリチウム遷移金属複合酸化物からなる正極活物質がよく知られている。これらのリチウム遷移金属複合酸化物の中でもLiMnはマンガンの資源量が豊富であることや充電状態での安定性が高いことなどの利点をもつ。
【0004】
ところで、これらのLiMn等のリチウム遷移金属複合酸化物からなる正極活物質は、合成条件の微妙な変動、例えば、原料の組成配合、熱処理温度、雰囲気(酸素濃度や露点やCO含有量)、時間等で、その結晶構造が変化してしまう。結晶構造が変化した正極活物質は、同程度の組成比を有しても、リチウムの吸蔵・脱離の様子が大きく異なり、電池に適用した場合の性能が大きく異なってくる。特に電池容量は電池性能のうちでも基本的なもので、製造した電池が設計通りの電池容量をもつことが当然に求められる。
【0005】
したがって、製造した正極活物質を用いて電池を構成する前に、各製造ロット毎に、電池に用いた場合に適正な特性を有するものか否かについて評価することが必要である。
【0006】
従来の正極活物質を評価する方法としては、試験電池等の実際の電池を製造し電極性能試験を行っていた。
【0007】
【特許文献1】特開2001−332261号公報
【0008】
【発明が解決しようとする課題】
しかしながら、電池を製造した後に行う電極性能試験は、信頼できる検査法ではあるが、実際に電池を製作して行うので、かなりの煩雑さが伴う。また種々の特性評価を行うためには長時間試験を行う必要がある。つまりロット検査のような用途への適用は困難である。
【0009】
上記課題に鑑みて、本発明は特にマンガン酸リチウムを主成分とする正極活物質について、リチウム二次電池に適用した場合の電池容量(正極容量)を迅速・簡便に評価する方法を提供することを解決すべき課題とする。
【0010】
【課題を解決するための手段】
上記課題を解決する目的で本発明者は鋭意研究を行い以下の発明を完成した。すなわち、本発明のリチウム二次電池用正極活物質の評価方法は、遷移金属としてマンガンを主成分とするリチウム遷移金属複合酸化物からなるリチウム二次電池用正極活物質の評価方法であって、
X線回折法に基づき該リチウム二次電池用正極活物質の結晶子サイズを測定する結晶子サイズ測定工程と、該結晶子サイズから正極容量を推定する推定工程と、を有することを特徴とする(請求項1)。
【0011】
つまり本発明者は、マンガン酸リチウムについて結晶子サイズと正極容量との相関性を発見し、且つマンガン酸リチウムの結晶子サイズがX線回折法により高精度で測定できるとの知見を得て本発明を完成させた。なお、特許文献1にはリチウム遷移金属複合酸化物(主にニッケル酸リチウム)を正極活物質としたリチウム二次電池について、結晶子サイズと電池の耐久性との関連が開示されている。
【0012】
そして、前記結晶子サイズ測定工程により求めた結晶子サイズは格子歪み成分が分離されていることが好ましい(請求項2)。X線回折法により結晶子サイズを測定すると、結晶子サイズに格子歪み成分の影響が現れるが、格子歪み成分は正極性能に大きな影響を与えないと推定しているので分離して評価することが好ましい。ここで、マンガン酸リチウムは結晶構造が等方的であるので格子歪み成分の分離が比較的容易である。
【0013】
例えば、前記結晶子サイズ測定工程はX線回折により測定した複数の回折線に基づき、Wilson法により結晶子サイズを算出する工程とすることで容易に格子歪み成分を分離した結晶子サイズを測定することができる(請求項3)。また、前記Wilson法は4つ以上の回折線を用いて結晶子サイズを算出する方法であることが測定精度向上のためには好ましい(請求項4)。
【0014】
【発明の実施の形態】
本発明のリチウム二次電池用正極活物質の評価方法が適用できる正極活物質は遷移金属としてマンガンを主成分とするリチウム遷移金属複合酸化物からなる。例えば、純粋なマンガン酸リチウム(LiMn)のほか、マンガンの一部が他元素で置換されたリチウムマンガン複合酸化物(LiMn2−xMe、0≦x≦2、MeはTi、Cr、Fe、Co、Ni、Cu、Zn等)であってもよい。
【0015】
正極活物質はMnの化合物とリチウムの化合物とその他含有させる元素の化合物とから合成される。正極活物質の合成は構成元素を含む原料を混合した粉末を焼成する固相法が一般的である。固相法の他には溶融含浸法、水熱合成法、イオン交換法、液相法等が挙げられる。
【0016】
溶融含浸法はLiNO等のリチウム塩を溶融させてMnOOH等のマンガン酸化物中に含浸させた後に熱処理を行う方法である。水熱合成法は加圧下でγ−MnOOH及びLiOH等からなる原料の水溶液を比較的低温で反応させる方法である。
【0017】
イオン交換法はあらかじめ合成したマンガン複合酸化物中にリチウムをイオン交換により導入し、焼成する方法である。液相法は超音波熱分解、ゾルゲル法等である。
【0018】
合成の出発物質としては価格、品質の安定性、取り扱い性、不純物含有量、供給の安定性、反応性等の観点から適正に選択される。Mnの化合物としては電解二酸化マンガン、化学二酸化マンガン等が、リチウムの化合物としてはLiCO、LiNO等が例示できる。固相法ではこれらの原料を大気中にて焼成する。
【0019】
正極活物質は合成法、合成条件及び出発物質によって結晶子サイズ、粒径、粒子形状、比表面積等が大きく変化し、正極性能に与える影響が大きい。特に結晶子サイズの大きさが正極性能に与える影響は非常に大きい。なお、本明細書中において「結晶子」とはリチウム遷移金属複合酸化物を構成する単結晶領域をいう。隣接する結晶子間では格子が乱れている。
【0020】
〔リチウム二次電池用正極活物質の評価方法〕
本実施形態の評価方法は結晶子サイズ測定工程と推定工程とをもつ。本評価方法は正極活物質を製造した状態のままで行うことができるほか、正極を形成した後でも適用できる。また、電池の状態にまで組み立て使用した後に正極を取り出して評価することもできる。正極活物質を製造した状態そのまま、又は正極の状態で本評価方法を適用することで製造された正極活物質の性能が評価できる。また、使用後の電池内から取り出した正極について評価を行うことで電池の劣化状態を評価できる。
【0021】
一般的な正極は、前述のリチウム遷移金属複合酸化物に結着剤や導電化材等の必要に応じた添加剤を混合し、必要に応じ適当な溶媒を加えてペースト状の正極合材としたものを、アルミニウム等の金属箔製の集電体表面に塗布乾燥し、その後プレスによって活物質密度を高めることによって形成する。結着剤は、活物質粒子および導電化材粒子を繋ぎ止める役割を果たすものでポリテトラフルオロエチレン、ポリフッ化ビニリデン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂を用いることができる。これら活物質、導電化材、結着剤を分散させる溶剤としては、N−メチル−2−ピロリドン等の有機溶剤を用いることができる。
【0022】
結晶子サイズ測定工程は、X線回折法に基づきリチウム二次電池用正極活物質の結晶子サイズを測定する工程である。X線回折法では結晶子サイズの平均値が測定できる。本実施形態の評価方法の目的を達成するには結晶子サイズの平均値が測定できることで充分である。
【0023】
また、X線回折法における測定条件は特に限定しない。例えば、対象となるリチウム遷移金属複合酸化物における測定可能なブラッグ条件を満たす波長と、測定可能となる強度とをもち、扱いやすいX線が選択される。例えばCuKα線等を任意の強度で用いることができる。
【0024】
X線回折法により測定した回折角と回折線の幅との関係より結晶子サイズを算出する方法としては特に限定しないが、格子歪み成分が分離されていることが好ましい。格子歪み成分を分離して結晶子サイズを算出できる方法としてはWilson法が挙げられる。
【0025】
Wilson法は結晶子サイズによる回折線の拡がりをコーシー(Cauchy)関数で近似し、格子歪み成分による回折線の拡がりをガウス(Gauss)関数で近似する方法である。つまり、回折線の拡がりをコーシー関数及びガウス関数の線形結合により近似する方法である。具体的には、回折線のピーク位置θ(ブラッグ角:rad)と、その回折線の積分幅β(rad)とから導出される、β/(tanθ・sinθ)をX軸に、β/tanθをY軸にそれぞれプロットする。
【0026】
ここで、積分幅とは回折線を上下方向に2分したときに面積が半分になる高さにおける回折線の幅をいい、測定値から、X線回折測定装置の光学的拡がりを差し引いた幅である。複数の回折線についてプロットした点について直線で近似し、その直線の勾配(コーシー関数のパラメータに関係)から結晶子サイズが算出され、Y軸の切片(ガウス関数のパラメータに関係)から格子歪み成分が算出できる(結晶子の大きさと格子歪プログラム取扱説明書、理学電機株式会社)。具体的には式(1):(結晶子サイズ)=1.05×1.54/(近似直線の勾配)/10(nm)より算出される。
【0027】
Wilson法において用いる回折線の数は2以上であれば近似直線を求めることができるが、測定精度を向上するためには4つ以上の回折線を用いることが好ましい。特に回折線間の重なりを考慮した結果、(311)、(222)、(400)、(331)、(511)、(440)、(531)及び(444)における回折線から選択することが好ましい。
【0028】
【実施例】
〈試験1〉
〔試料の調製〕
リチウム化合物(LiNO)とマンガン化合物(電解二酸化マンガン:MnO)との混合物(モル比で1:2)20〜25gを、アルミナるつぼ中、大気雰囲気下900℃で24時間焼成した。焼成の操作は別々の混合物で9回行い9種類のマンガン酸リチウム粉末(試料1〜9)を得た。焼成温度は最大で50℃程度ばらつくものと考えられた。各試料1〜9の粒径及び比表面積はほぼ同じであった。
【0029】
〔結晶子サイズの測定〕
試料1〜9について、X線回折法に基づき回折線を測定した。測定条件としては、X線源としてCuKα線を用い、X線管電圧が50kV、X線管電流が300mAを選択した。解析に用いた回折線としては(311)、(222)、(400)、(331)、(511)、(440)、(531)及び(444)の8本の回折線を用いた。
【0030】
結晶子サイズはこれら測定データに基づき、Wilson法にて算出した。具体的には各回折線についてその回折線のピーク位置θ(rad)と、積分幅β(rad)とから、X軸にβ/(tanθ・sinθ)をY軸にβ/tanθをそれぞれの回折線についてプロットした(◆:図1)。積分幅は測定値からX線回折測定装置の光学的拡がりを差し引いて求めた。X線回折測定装置の光学的拡がりは使用したX線回折測定装置において使用したX線源を用い、標準試料Siを測定して求めた。8本の回折線についてプロットした点について直線で近似し(□:図1)、その直線の傾きを前述の式(1)に代入して各試料のマンガン酸リチウムの結晶子サイズを算出した。
【0031】
〔試験電池の作成〕
本試験例のリチウム二次電池は、組成式LiMnで表されるマンガン酸リチウムを正極活物質として用い、グラファイトを負極活物質として用いたリチウム二次電池である。
【0032】
(正極)
各試料1〜9のマンガン酸リチウム粉末と、結着剤としてのポリフッ化ビニリデン(PVDF)と導電化材としてのグラファイト粉末とを質量比で90:5:5(質量比)となるように、N−メチルピロリドン中に分散させてペーストを調製した。このペーストをアルミニウム製の箔状の集電体表面にドクターブレードにて塗布乾燥することで活物質層が集電体表面に形成されたシート状正極を得た。
【0033】
(負極)
平均粒径50nmのグラファイト粉末とPVDFとを質量比で95:5となるように、N−メチルピロリドン中に分散させペーストを調製した。このペーストをCu製の箔状の集電体表面にドクターブレードにて塗布乾燥することで活物質層が集電体表面に形成されたシート状負極を得た。
【0034】
(電池の組み立て)
上記正極および負極をそれぞれ所定の大きさに裁断し、裁断した正極と負極とを、その間に厚さ25μmのポリエチレン製セパレータを挟装して捲回し、ロール状の電極体を形成した。このときに、正極1枚に対して、負極が2枚となるようにした。負極を正極よりも過剰とすることで電池容量を正極容量規制にすることができるので、普通に電池容量を測定することで正極容量を測定できる。
【0035】
これらの電極体に集電用リードを付設し、18650型電池ケースに挿設し、その後その電池ケース内に非水電解液を注入した。非水電解液には、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを体積比で3:7に混合した混合溶媒にLiPFを1mol/Lの濃度で溶解させたものを用いた。最後に電池ケースを密閉して、各試験例のリチウム二次電池(1000mAh)を完成させた。
【0036】
(評価)
各試験電池を0.1mA/cmの電流密度で3.0〜4.2V間で充放電することによってコンディショニングを行った。その後、各試験電池について、充放電を行った時の放電容量(1000mAhに対する百分率)を測定した。結果を表1及び図2に示す。なお、ここで測定した電池容量は正極容量である。
【0037】
【表1】

Figure 2004349211
【0038】
図2及び表1から明らかなように、Wilson法により算出されたマンガン酸リチウム結晶子サイズと、正極容量とは高い相関性をもつことが分かった。つまり、実際に電池を製造しなくても、マンガン酸リチウムについて結晶子サイズを測定すれば、そのマンガン酸リチウムを正極に用いた電池の電池容量を評価することができることが分かった。
【0039】
〈試験2〉
試験1における試料1及び2のマンガン酸リチウムを用いた電池について、それぞれ3.0〜4.2V間で充放電を行うことで劣化させて電池容量を0mAhとした。その電池を分解して正極を取り出してエタノールで洗浄した後に試験1と同様の方法(X線回折法及びWilson法)で結晶子サイズを測定した。
【0040】
その結果、それぞれの結晶子サイズは12.0nm及び10.0nmであり、図1に当てはめると、実際の電池容量(0mAh)が推測できた。つまり、一度電池(正極合材)の状態にしたマンガン酸リチウムであっても本評価方法を適用することで電池容量(言い換えると、劣化状態)を評価することができることが分かった。
【0041】
【発明の効果】
本発明のリチウム二次電池用正極活物質の評価方法は、結晶子サイズを測定することによって、そのリチウム二次電池用正極活物質を電池に適用した場合の電池容量を評価することが可能となるという効果を有する。
【図面の簡単な説明】
【図1】実施例における回折線をWilson法に基づいてプロットしたグラフである。
【図2】実施例における電池容量(正極容量)と結晶子サイズとの関係を示したグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for evaluating a positive electrode active material for a lithium secondary battery containing lithium manganate as a main component, and particularly estimates a positive electrode capacity when applied to a lithium secondary battery with high accuracy without assembling an actual battery. The present invention relates to a method for evaluating a positive electrode active material for a rechargeable lithium battery.
[0002]
[Prior art]
With the downsizing of personal computers, video cameras, mobile phones, and the like, lithium secondary batteries with a high energy density have been put into practical use and widespread as power sources used in the fields of these information-related devices and communication devices. On the other hand, in the field of automobiles, development of electric vehicles is urgent due to environmental problems and resource problems, and lithium secondary batteries are being studied as power sources for electric vehicles.
[0003]
As a lithium secondary battery, a 4V-class operating voltage can be obtained, and LiMn 2 O 4 having a spinel structure, LiCoO 2 and LiNiO 2 having a layered rock salt structure, and a lithium transition obtained by substituting some of these elements with another element are provided. A positive electrode active material composed of a metal composite oxide is well known. Among these lithium transition metal composite oxides, LiMn 2 O 4 has advantages such as abundant manganese resources and high stability in a charged state.
[0004]
By the way, these positive electrode active materials composed of a lithium transition metal composite oxide such as LiMn 2 O 4 are subject to subtle variations in synthesis conditions, for example, composition of raw materials, heat treatment temperature, atmosphere (oxygen concentration, dew point, CO 2 content, etc.). Amount), time, etc., the crystal structure changes. Even when the positive electrode active materials having the changed crystal structure have the same composition ratio, the manner of occlusion and desorption of lithium is greatly different, and the performance when applied to a battery is greatly different. In particular, the battery capacity is a fundamental one of the battery performances, and it is naturally required that the manufactured battery has a battery capacity as designed.
[0005]
Therefore, before constructing a battery using the produced positive electrode active material, it is necessary to evaluate for each production lot whether or not it has appropriate characteristics when used in a battery.
[0006]
As a conventional method for evaluating a positive electrode active material, an actual battery such as a test battery was manufactured and an electrode performance test was performed.
[0007]
[Patent Document 1] Japanese Patent Application Laid-Open No. 2001-332261
[Problems to be solved by the invention]
However, although the electrode performance test performed after the battery is manufactured is a reliable test method, it involves considerable complexity since the battery is actually manufactured and performed. In order to evaluate various characteristics, it is necessary to perform a long-term test. In other words, it is difficult to apply to applications such as lot inspection.
[0009]
In view of the above problems, the present invention provides a method for quickly and simply evaluating the battery capacity (positive electrode capacity) when a positive electrode active material mainly containing lithium manganate is applied to a lithium secondary battery. Is a problem to be solved.
[0010]
[Means for Solving the Problems]
The inventor of the present invention has made intensive studies to solve the above problems, and has completed the following invention. That is, the method for evaluating a positive electrode active material for a lithium secondary battery of the present invention is a method for evaluating a positive electrode active material for a lithium secondary battery comprising a lithium transition metal composite oxide containing manganese as a main component as a transition metal,
A crystallite size measuring step of measuring a crystallite size of the positive electrode active material for a lithium secondary battery based on an X-ray diffraction method, and an estimating step of estimating a positive electrode capacity from the crystallite size. (Claim 1).
[0011]
In other words, the present inventors have found a correlation between the crystallite size and the positive electrode capacity of lithium manganate, and obtained the knowledge that the crystallite size of lithium manganate can be measured with high precision by the X-ray diffraction method. Completed the invention. Patent Literature 1 discloses the relationship between the crystallite size and the durability of a lithium secondary battery using a lithium transition metal composite oxide (mainly lithium nickelate) as a positive electrode active material.
[0012]
Preferably, the crystallite size obtained in the crystallite size measurement step has a lattice distortion component separated therefrom (claim 2). When the crystallite size is measured by the X-ray diffraction method, the influence of the lattice distortion component appears on the crystallite size, but it is estimated that the lattice distortion component does not significantly affect the performance of the positive electrode. preferable. Here, since lithium manganate has an isotropic crystal structure, it is relatively easy to separate a lattice distortion component.
[0013]
For example, the crystallite size measuring step is a step of calculating a crystallite size by the Wilson method based on a plurality of diffraction lines measured by X-ray diffraction, thereby easily measuring a crystallite size from which a lattice distortion component is separated. (Claim 3). It is preferable that the Wilson method is a method of calculating the crystallite size using four or more diffraction lines in order to improve the measurement accuracy (claim 4).
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
The positive electrode active material to which the method for evaluating a positive electrode active material for a lithium secondary battery of the present invention can be applied comprises a lithium transition metal composite oxide containing manganese as a main transition metal. For example, addition of pure lithium manganate (LiMn 2 O 4), lithium-manganese composite oxide partially substituted with another element manganese (LiMn 2-x Me x O 4, 0 ≦ x ≦ 2, Me is Ti, Cr, Fe, Co, Ni, Cu, Zn, etc.).
[0015]
The positive electrode active material is synthesized from a compound of Mn, a compound of lithium, and a compound of an element to be contained. The synthesis of the positive electrode active material is generally carried out by a solid phase method of firing a powder obtained by mixing raw materials containing constituent elements. In addition to the solid phase method, a melt impregnation method, a hydrothermal synthesis method, an ion exchange method, a liquid phase method and the like can be mentioned.
[0016]
The melt impregnation method is a method in which a lithium salt such as LiNO 3 is melted and impregnated in a manganese oxide such as MnOOH, followed by heat treatment. The hydrothermal synthesis method is a method of reacting an aqueous solution of a raw material composed of γ-MnOOH, LiOH, and the like under a relatively low temperature under pressure.
[0017]
The ion exchange method is a method in which lithium is introduced into a manganese composite oxide synthesized in advance by ion exchange and calcined. The liquid phase method is an ultrasonic thermal decomposition, a sol-gel method or the like.
[0018]
The starting material for the synthesis is appropriately selected from the viewpoints of price, quality stability, handleability, impurity content, supply stability, reactivity and the like. Examples of the compound of Mn include electrolytic manganese dioxide and chemical manganese dioxide, and examples of the compound of lithium include Li 2 CO 3 and LiNO 3 . In the solid phase method, these materials are fired in the air.
[0019]
The positive electrode active material greatly changes crystallite size, particle size, particle shape, specific surface area, and the like depending on the synthesis method, synthesis conditions, and starting materials, and greatly affects the positive electrode performance. In particular, the effect of the crystallite size on the positive electrode performance is very large. Note that in this specification, “crystallite” refers to a single crystal region included in a lithium transition metal composite oxide. The lattice is disordered between adjacent crystallites.
[0020]
[Evaluation method of positive electrode active material for lithium secondary battery]
The evaluation method of the present embodiment has a crystallite size measurement step and an estimation step. This evaluation method can be performed in a state where the positive electrode active material is manufactured, and can be applied even after the positive electrode is formed. Also, after assembling and using the battery, the positive electrode can be taken out and evaluated. The performance of the manufactured positive electrode active material can be evaluated by applying the present evaluation method in a state where the positive electrode active material is manufactured or in a state of the positive electrode. In addition, the deterioration state of the battery can be evaluated by evaluating the positive electrode taken out of the used battery.
[0021]
A general positive electrode is prepared by mixing the above-mentioned lithium transition metal composite oxide with additives such as a binder and a conductive material as necessary, adding an appropriate solvent as necessary, and forming a paste-like positive electrode mixture. This is applied to the surface of a current collector made of a metal foil such as aluminum and dried, and then formed by increasing the active material density by pressing. The binder plays a role of binding the active material particles and the conductive material particles, and it is possible to use a fluororesin such as polytetrafluoroethylene, polyvinylidene fluoride, or fluororubber, or a thermoplastic resin such as polypropylene or polyethylene. it can. An organic solvent such as N-methyl-2-pyrrolidone can be used as a solvent in which the active material, the conductive material, and the binder are dispersed.
[0022]
The crystallite size measuring step is a step of measuring the crystallite size of the positive electrode active material for a lithium secondary battery based on the X-ray diffraction method. In the X-ray diffraction method, the average value of the crystallite size can be measured. To achieve the purpose of the evaluation method of the present embodiment, it is sufficient that the average value of the crystallite size can be measured.
[0023]
The measurement conditions in the X-ray diffraction method are not particularly limited. For example, an X-ray that has a wavelength that satisfies the Bragg condition that can be measured in the target lithium transition metal composite oxide and an intensity that can be measured and that is easy to handle is selected. For example, CuKα rays or the like can be used at an arbitrary intensity.
[0024]
The method of calculating the crystallite size from the relationship between the diffraction angle measured by the X-ray diffraction method and the width of the diffraction line is not particularly limited, but it is preferable that the lattice distortion component is separated. The Wilson method can be cited as a method for calculating the crystallite size by separating the lattice distortion component.
[0025]
The Wilson method is a method of approximating the spread of diffraction lines due to crystallite size by a Cauchy function, and approximating the spread of diffraction lines due to lattice distortion components by a Gaussian function. In other words, this is a method of approximating the spread of the diffraction line by a linear combination of the Cauchy function and the Gaussian function. Specifically, β 2 / (tan θ · sin θ), which is derived from the peak position θ (Bragg angle: rad) of the diffraction line and the integral width β (rad) of the diffraction line, is represented by β 2 / the tan 2 theta is plotted respectively in the Y-axis.
[0026]
Here, the integral width refers to the width of the diffraction line at a height where the area becomes half when the diffraction line is divided into two in the vertical direction, and the width obtained by subtracting the optical spread of the X-ray diffraction measuring device from the measured value. It is. The points plotted for a plurality of diffraction lines are approximated by a straight line, the crystallite size is calculated from the gradient of the straight line (related to the Cauchy function parameter), and the lattice distortion component is calculated from the Y-axis intercept (related to the Gaussian function parameter). Can be calculated (crystallite size and lattice strain program instruction manual, Rigaku Corporation). Specifically, it is calculated by the formula (1): (crystallite size) = 1.05 × 1.54 / (gradient of approximate straight line) / 10 (nm).
[0027]
An approximate straight line can be obtained if the number of diffraction lines used in the Wilson method is two or more, but it is preferable to use four or more diffraction lines in order to improve measurement accuracy. In particular, as a result of considering the overlap between diffraction lines, it is possible to select from the diffraction lines in (311), (222), (400), (331), (511), (440), (531) and (444). preferable.
[0028]
【Example】
<Test 1>
(Preparation of sample)
20 to 25 g of a mixture (molar ratio 1: 2) of a lithium compound (LiNO 3 ) and a manganese compound (electrolytic manganese dioxide: MnO 2 ) was calcined in an alumina crucible at 900 ° C. for 24 hours in an air atmosphere. The firing operation was performed nine times with the separate mixtures to obtain nine kinds of lithium manganate powders (samples 1 to 9). The firing temperature was considered to vary by about 50 ° C. at the maximum. The particle size and specific surface area of each of the samples 1 to 9 were almost the same.
[0029]
(Measurement of crystallite size)
For Samples 1 to 9, the diffraction lines were measured based on the X-ray diffraction method. As measurement conditions, CuKα rays were used as an X-ray source, an X-ray tube voltage of 50 kV, and an X-ray tube current of 300 mA were selected. Eight diffraction lines (311), (222), (400), (331), (511), (440), (531) and (444) were used as the diffraction lines used for the analysis.
[0030]
The crystallite size was calculated by the Wilson method based on these measurement data. Specifically, for each diffraction line, β / (tan θ · sin θ) is plotted on the X axis and β 2 / tan 2 θ is plotted on the Y axis from the peak position θ (rad) of the diffraction line and the integration width β (rad). Each diffraction line was plotted (◆: FIG. 1). The integral width was determined by subtracting the optical spread of the X-ray diffraction measuring device from the measured value. The optical spread of the X-ray diffractometer was determined by measuring the standard sample Si using the X-ray source used in the X-ray diffractometer used. The points plotted for the eight diffraction lines were approximated by a straight line (□: FIG. 1), and the slope of the straight line was substituted into the above-described equation (1) to calculate the crystallite size of lithium manganate of each sample.
[0031]
[Preparation of test battery]
The lithium secondary battery of this test example is a lithium secondary battery using lithium manganate represented by the composition formula LiMn 2 O 4 as a positive electrode active material and graphite as a negative electrode active material.
[0032]
(Positive electrode)
The lithium manganate powder of each of the samples 1 to 9, the polyvinylidene fluoride (PVDF) as a binder, and the graphite powder as a conductive material had a mass ratio of 90: 5: 5 (mass ratio), A paste was prepared by dispersing in N-methylpyrrolidone. The paste was applied to the surface of an aluminum foil-shaped current collector with a doctor blade and dried to obtain a sheet-shaped positive electrode having an active material layer formed on the surface of the current collector.
[0033]
(Negative electrode)
A paste was prepared by dispersing graphite powder having an average particle size of 50 nm and PVDF in N-methylpyrrolidone so that the mass ratio was 95: 5. The paste was applied to the surface of a Cu foil-shaped current collector with a doctor blade and dried to obtain a sheet-shaped negative electrode having an active material layer formed on the current collector surface.
[0034]
(Battery assembly)
Each of the positive electrode and the negative electrode was cut into a predetermined size, and the cut positive electrode and negative electrode were wound with a polyethylene separator having a thickness of 25 μm interposed therebetween, thereby forming a roll-shaped electrode body. At this time, two negative electrodes were provided for one positive electrode. By setting the negative electrode in excess of the positive electrode, the battery capacity can be regulated to the positive electrode capacity. Therefore, the normal capacity of the battery can be measured to measure the positive electrode capacity.
[0035]
A current collecting lead was attached to these electrode bodies, inserted into a 18650 type battery case, and then a non-aqueous electrolyte was injected into the battery case. As the non-aqueous electrolyte, one obtained by dissolving LiPF 6 at a concentration of 1 mol / L in a mixed solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 3: 7 was used. Finally, the battery case was sealed to complete the lithium secondary battery (1000 mAh) of each test example.
[0036]
(Evaluation)
Conditioning was performed by charging and discharging each test battery between 3.0 and 4.2 V at a current density of 0.1 mA / cm 2 . Thereafter, for each test battery, the discharge capacity (percentage to 1000 mAh) at the time of charging and discharging was measured. The results are shown in Table 1 and FIG. The battery capacity measured here is the capacity of the positive electrode.
[0037]
[Table 1]
Figure 2004349211
[0038]
As is clear from FIG. 2 and Table 1, it was found that the lithium manganate crystallite size calculated by the Wilson method and the positive electrode capacity had a high correlation. That is, it was found that the battery capacity of a battery using the lithium manganate as the positive electrode could be evaluated by measuring the crystallite size of the lithium manganate without actually manufacturing the battery.
[0039]
<Test 2>
The batteries using lithium manganate of Samples 1 and 2 in Test 1 were deteriorated by charging and discharging between 3.0 and 4.2 V, respectively, to reduce the battery capacity to 0 mAh. The battery was disassembled, the positive electrode was taken out, washed with ethanol, and the crystallite size was measured by the same method as in Test 1 (X-ray diffraction method and Wilson method).
[0040]
As a result, the respective crystallite sizes were 12.0 nm and 10.0 nm, and when applied to FIG. 1, the actual battery capacity (0 mAh) could be estimated. In other words, it was found that the battery capacity (in other words, the deteriorated state) can be evaluated by applying the present evaluation method even for lithium manganate once in the state of a battery (positive electrode mixture).
[0041]
【The invention's effect】
The method for evaluating a positive electrode active material for a lithium secondary battery of the present invention is capable of evaluating the battery capacity when the positive electrode active material for a lithium secondary battery is applied to a battery by measuring the crystallite size. It has the effect of becoming.
[Brief description of the drawings]
FIG. 1 is a graph in which diffraction lines in Examples are plotted based on the Wilson method.
FIG. 2 is a graph showing a relationship between battery capacity (positive electrode capacity) and crystallite size in Examples.

Claims (4)

遷移金属としてマンガンを主成分とするリチウム遷移金属複合酸化物からなるリチウム二次電池用正極活物質の評価方法であって、
X線回折法に基づき該リチウム二次電池用正極活物質の結晶子サイズを測定する結晶子サイズ測定工程と、
該結晶子サイズから正極容量を推定する推定工程と、を有することを特徴とするリチウム二次電池用正極活物質の評価方法。
A method for evaluating a positive electrode active material for a lithium secondary battery comprising a lithium transition metal composite oxide containing manganese as a main component as a transition metal,
A crystallite size measurement step of measuring a crystallite size of the positive electrode active material for a lithium secondary battery based on an X-ray diffraction method,
An estimation step of estimating a cathode capacity from the crystallite size, the method for evaluating a cathode active material for a lithium secondary battery.
前記結晶子サイズ測定工程により求めた結晶子サイズは格子歪み成分が分離されている請求項1に記載のリチウム二次電池用正極活物質の評価方法。The method for evaluating a positive electrode active material for a lithium secondary battery according to claim 1, wherein a lattice distortion component is separated from the crystallite size obtained in the crystallite size measurement step. 前記結晶子サイズ測定工程はX線回折により測定した複数の回折線に基づき、Wilson法により結晶子サイズを算出する工程である請求項2に記載のリチウム二次電池用正極活物質の評価方法。3. The method for evaluating a positive electrode active material for a lithium secondary battery according to claim 2, wherein the crystallite size measuring step is a step of calculating a crystallite size by a Wilson method based on a plurality of diffraction lines measured by X-ray diffraction. 前記Wilson法は4つ以上の回折線を用いて結晶子サイズを算出する方法である請求項3に記載のリチウム二次電池用正極活物質の評価方法。The method for evaluating a positive electrode active material for a lithium secondary battery according to claim 3, wherein the Wilson method is a method of calculating a crystallite size using four or more diffraction lines.
JP2003147975A 2003-05-26 2003-05-26 Evaluation method of positive electrode active material for lithium secondary battery Expired - Fee Related JP4228287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003147975A JP4228287B2 (en) 2003-05-26 2003-05-26 Evaluation method of positive electrode active material for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003147975A JP4228287B2 (en) 2003-05-26 2003-05-26 Evaluation method of positive electrode active material for lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2004349211A true JP2004349211A (en) 2004-12-09
JP4228287B2 JP4228287B2 (en) 2009-02-25

Family

ID=33534349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003147975A Expired - Fee Related JP4228287B2 (en) 2003-05-26 2003-05-26 Evaluation method of positive electrode active material for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4228287B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012009231A (en) * 2010-06-23 2012-01-12 Toyota Motor Corp Positive electrode for lithium secondary battery and use thereof
WO2021241899A1 (en) * 2020-05-27 2021-12-02 주식회사 엘지에너지솔루션 Method for diagnosing cause of degradation of lithium secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012009231A (en) * 2010-06-23 2012-01-12 Toyota Motor Corp Positive electrode for lithium secondary battery and use thereof
WO2021241899A1 (en) * 2020-05-27 2021-12-02 주식회사 엘지에너지솔루션 Method for diagnosing cause of degradation of lithium secondary battery
US12013356B2 (en) 2020-05-27 2024-06-18 Lg Energy Solution, Ltd. Diagnosis of cause of degradation of lithium secondary battery

Also Published As

Publication number Publication date
JP4228287B2 (en) 2009-02-25

Similar Documents

Publication Publication Date Title
KR101102287B1 (en) Method for preparing positive electrode active material for non-aqueous secondary battery
US10008718B2 (en) Positive electrode active material for use in lithium ion secondary cell
JP6108141B2 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
CN102668218B (en) Non-aqueous secondary battery
JPWO2016060105A1 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP5727092B2 (en) Solid electrolyte material, solid electrolyte and battery
JP2000277116A (en) Lithium secondary battery
JPWO2019039566A1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery and its manufacturing method
JP7412264B2 (en) Positive electrode active material for lithium ion secondary battery and method for manufacturing the same
JP2017059301A (en) Active material for battery, nonaqueous electrolyte battery, and battery pack
CN114342119A (en) Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery
JP6195118B2 (en) Non-aqueous electrolyte secondary battery
JP2005158604A (en) Negative electrode active material, its manufacturing method and aqueous lithium secondary battery
WO2020171126A1 (en) Positive electrode active material for lithium ion secondary battery, method for producing same, and lithium ion secondary battery
JP4678457B2 (en) Lithium transition metal composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same
JP7106748B2 (en) Electrodes, batteries and battery packs
JP4228287B2 (en) Evaluation method of positive electrode active material for lithium secondary battery
JP2001302245A (en) Method of producing lithium manganese complex oxide
JP6360374B2 (en) Method for producing lithium-containing composite metal oxide
JP6503768B2 (en) Lithium ion secondary battery
JP4534559B2 (en) Lithium secondary battery and positive electrode material for lithium secondary battery
KR20220070486A (en) Sulfur-modified polyacrylonitrile
WO2019189679A1 (en) Positive electrode active material for nonaqueous electrolyte secondary battery
Kalaiselvi et al. Yttrium-substituted LiNi 0.3 Mn 0.3 Co 0.3 O 2 cathode material with enhanced cycling stability for rechargeable lithium-ion batteries
JP2017059399A (en) Active material for battery, nonaqueous electrolyte battery, and battery pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees