JP2004347464A - Looking-aside detection device - Google Patents

Looking-aside detection device Download PDF

Info

Publication number
JP2004347464A
JP2004347464A JP2003145047A JP2003145047A JP2004347464A JP 2004347464 A JP2004347464 A JP 2004347464A JP 2003145047 A JP2003145047 A JP 2003145047A JP 2003145047 A JP2003145047 A JP 2003145047A JP 2004347464 A JP2004347464 A JP 2004347464A
Authority
JP
Japan
Prior art keywords
eye
driver
inattentive
time
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003145047A
Other languages
Japanese (ja)
Other versions
JP4305057B2 (en
Inventor
Masayuki Kaneda
雅之 金田
Machiko Hiramatsu
真知子 平松
Haruo Matsuo
治夫 松尾
Kinya Iwamoto
欣也 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003145047A priority Critical patent/JP4305057B2/en
Publication of JP2004347464A publication Critical patent/JP2004347464A/en
Application granted granted Critical
Publication of JP4305057B2 publication Critical patent/JP4305057B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a looking-aside detection device capable of improving accuracy on detection of a looking-aside action of a driver. <P>SOLUTION: A tracking part 22 tracks the eye position of the driver based on an imaged image including the driver's face imaged by an imaging part 10. A learning part 23 determines the moving quantity and a residence time of the eye position outputted in time series from the tracking part 22, and learns the eye position on the imaged image when the driver looks at a room mirror or the like. An image region setting part 24 sets a prescribed number of image regions having different looking-aside allowable times based on the learned eye position on the imaged image. A looking-aside detection part 25 performs looking-aside detection based on the looking-aside allowable times allocated on each image region. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、脇見検出装置に関する。
【0002】
【従来の技術】
従来、運転者の顔向き角度に応じた脇見許容時間と、その顔向き角度を維持した時間とに基づいて、運転者の脇見行為を検出する脇見検出装置が知られている(例えば特許文献1,2)。
【0003】
この装置では、運転者の顔の向きに応じて脇見許容時間を変更し、脇見行為を判断している。例えば、運転者の顔向き角度が大きい場合には、運転者の視界に前方方向の景色等が入り難くなることから、脇見時間を短く設定して脇見行為を判断する。また、運転者の顔向き角度が小さい場合には、運転者の視界に前方方向の景色等が比較的入りやすいことから、脇見時間を長く設定して脇見行為を判断する。
【0004】
このように、脇見許容時間を変更することで好適に運転者の脇見行為を検出するようにしている。
【0005】
【特許文献1】
特開平3−167698号公報
【0006】
【特許文献2】
特開平7−57172号公報
【0007】
【発明が解決しようとする課題】
しかし、上記脇見検出装置では、運転者の視界を遮る左右のピラー部分等を考慮に入れていないため、脇見行為を適切に判断するには不充分である。例えば、顔向き角度が小さいような場合であっても、運転者の視認位置がピラー部等の近傍である場合には、運転者の視界が遮られることから、脇見許容時間を比較的短くするなどの必要がある。
【0008】
このように、従来の脇見検出装置では、未だ、運転者の脇見行為を適切に検出しているとはいえない。
【0009】
【課題を解決するための手段】
本発明によれば、撮影手段が車両の運転者の顔を撮影し、追跡手段が撮像手段により得られた運転者の顔を含む撮像画像に基づいて、運転者の眼の位置を追跡し、学習手段が追跡手段から時系列的に出力される眼の位置の移動量と滞留時間とを判定して、運転者が所定位置を見たときの撮像画像上の眼の位置を学習し、画像領域設定手段が学習手段によって学習された撮像画像上の眼の位置を基準として脇見許容時間が異なる所定個数の画像領域を設定し、脇見検出手段が画像領域設定手段により設定された画像領域に割り振られた脇見許容時間に基づいて、脇見検出を行う。
【0010】
【発明の効果】
本発明によれば、撮像画像上の眼の位置を基準として脇見許容時間が異なる所定個数の画像領域を設定している。通常、運転者は車両内部の構造物等のうち比較的多く視認するものがある。このため、撮像画像上の眼の位置を基準とすることで、車両内部の構造物等の位置に基づく、画像領域が設定できる。また、車両内部の構造物等の位置に基づくため、運転者の視界を遮る部分等を考慮に入れた脇見許容時間を所定個数の画像領域それぞれに割り振ることもできる。
【0011】
そして、各画像領域に割り振られた脇見許容時間と追跡される眼の位置とに基づいて脇見検出を行う。このため、各画像領域に割り振られた脇見許容時間に基づいて、車両内環境に適合した脇見検出が行うことができる。
【0012】
従って、運転者の脇見行為の検出につき、精度向上を図ることができる。
【0013】
【発明の実施の形態】
以下、本発明の好適な実施形態を図面に基づいて説明する。
【0014】
図1は、本発明の第1実施形態に係る脇見検出装置の構成図である。同図に示すように、本実施形態の脇見検出装置1は、車両の運転者の顔を撮影する撮像部(撮像手段)10を備えている。この撮像部10は、例えば可視光を撮像するためのCCDカメラなどであり、運転者の正面下方に設置される。
【0015】
また、上記脇見検出装置1は、撮像部10により撮像された撮像画像に基づき、運転者の脇見行為を検出する処理装置20と、処理装置20が運転者の脇見行為を検出した場合に、その旨を運転者に報知する報知器30とを備えている。
【0016】
次に、処理装置20の詳細構成を図2を参照して説明する。図2は、本発明の第1実施形態に係る脇見検出装置1の機能ブロック図である。
【0017】
上記処理装置20は、撮像部10からの撮像画像のデータに基づいて、運転者の眼の位置を検出する位置検出部21と、運転者の眼の位置を追跡する追跡部(追跡手段)22とを備えている。
【0018】
この位置検出部21は、撮像部10から入力した撮像画像の全体から眼の位置を検出するものである。また、追跡部22は、位置検出部21により検出された運転者の眼の位置を基準にして、眼の位置を含む追跡領域を画像上に定め、後の撮像された画像から眼の位置を検出する場合、追跡領域内から運転者の眼を検出するものである。
【0019】
また、上記処理装置20は、追跡部22から時系列的に出力される眼の位置の移動量と滞留時間とを判定する学習部(学習手段)23を有している。この学習部23は、判定した移動量及び滞留時間に基づいて、運転者が左右のドアミラーやルームミラー等を見たときにおける撮像画像上の眼の位置を学習するものである。
【0020】
また、上記処理装置20は、学習部23にて学習された撮像画像上の眼の位置を基準として画像領域を設定する画像領域設定部(画像領域設定手段)24を備えている。画像領域設定部24は、画像領域を所定個数だけ設定する。ここで、画像領域とは、脇見を検出するための脇見許容時間が割り振られた領域である。画像領域設定部24は、この所定個数の画像領域それぞれに異なる脇見許容時間を割り振る。
【0021】
上記処理装置20は、脇見検出を行う脇見検出部(脇見検出手段)25を具備している。この脇見検出部25は、上記脇見許容時間に基づいて脇見検出を行うものである。詳しくは、脇見検出部25は、追跡部22により追跡される眼の位置がどの画像領域に属するかを判断する。そして、追跡部22により追跡される眼の位置の滞留時間と、眼の位置が属する画像領域の脇見許容時間とに基づいて脇見検出を行う。
【0022】
次に、上記脇見検出装置1の動作の概略を説明する。まず、撮像部10は、運転者の顔を含む領域を撮像し、得られた撮像画像のデータを処理装置20に送出する。
【0023】
処理装置20の位置検出部21は、撮像画像データの入力し、運転者の眼の位置を検出する。眼の位置の検出は、例えば以下のように行う。図3は、位置検出部21が眼の位置の検出に際して行う初期処理の説明図である。なお、図3においては、縦480画素、横512画素の撮像画像を例に説明する。
【0024】
まず、位置検出部21は、画像縦方向にすべての画素について、濃度値のデータを取得する。すなわち、図3に示す座標(0,0)から(0、479)に向かって濃度値データを取得し、次に座標(1,0)から(1、479)に向かって濃度値データを取得する。そして、図3に示すXa及びXbを経て、最終的に座標(511,0)から(511、479)のラインについて濃度値データを取得する。その後、位置検出部21は、濃度値の変化が所定の条件を満たす画素を抽出して、図4に示すような画素群を得る。図4は、位置検出部21が所定の画素を抽出したとき様子を示す説明図である。同図に示すように、抽出された画素は、運転者の眉、眼、鼻及び口の位置に対応するものとなっている。詳細に説明すると、Xcラインについては、2つの画素A1,A2が抽出されている。また、xdラインについては、4つの画素A1〜A4が抽出されている。これらの画素A1〜A4は、例えば、それぞれ濃度値の変化量によって区別されている。そして、画素の抽出後、位置検出部21は、画像横方向に近接する画素をグループ化する。
【0025】
図5は、画像横方向に近接する画素をグループ化したときの様子を示す説明図である。同図に示すように、グループ化することにより、位置検出部21は、運転者の右眉、左眉、右眼、左眼、鼻及び口それぞれに対応した連続データG1〜G6を形成する。
【0026】
その後、位置検出部21は、ゾーン化の処理を行う。図6は、位置検出部21によるゾーン化後の様子を示す説明図である。位置検出部21は、連続データG1〜G6の存在位置について画像縦方向にゾーン化する。この際、位置検出部21は、3つのゾーン(ZONE:L、ZONE:C、ZONE:R)を形成する。そして、位置検出部21は、相対位置関係を判断して眼の位置を検出する。
【0027】
眼の位置の検出後、追跡部22は、検出された眼の位置の座標値を記憶し、この記憶した位置を基準にして、全体画像よりも小さい追跡領域を設定する。その後、追跡部22は、撮像画像が入力される毎に、追跡領域内において眼の位置を検出する。
【0028】
図7は、追跡部22による眼の位置の追跡の様子を示す説明図であり、(a)は初期の追跡領域を示しており、(b)は初期の追跡領域の設定後に、検出した眼の位置を示しており、(c)は検出した眼の位置に基づいて新たに設定する追跡領域を示しており、(d)は新たに設定した追跡領域内から検出した眼の位置を示している。なお、図7において、破線で示す眼は前回検出されたものとし、実線で示す眼は今回検出されたものとする。
【0029】
位置検出部21により眼の位置が検出された場合、追跡部22は、検出された眼の位置を中心として追跡領域を設定する(図7(a))。このときの眼の座標位置を(xk1,yk1)とする。その後、撮像画像が入力された場合、追跡部22は、(xk1,yk1)を中心とする追跡領域内から眼の位置を検出する(図7(b))。このとき検出された眼の座標位置を(xk2,yk2)とする。
【0030】
そして、追跡部22は、新たに検出された眼の座標位置(xk2,yk2)を中心とする追跡領域を設定する(図7(c))。その後、再度撮像画像が入力された場合、追跡部22は、(xk2,yk2)を中心とする追跡領域内から眼の位置を検出する。このときに検出された眼の座標位置を(xk3,yk3)とする。
【0031】
そして、追跡部22は、再度、新たな眼の座標位置(xk3,yk3)を中心とする追跡領域を設定する(図7(d))。その後、同様に、追跡部22は、追跡領域内から眼の位置を検出していく。
【0032】
追跡部22は、図7に示すように検出した眼の位置のデータを学習部23及び脇見検出部25に送出する。学習部23は、時系列的に入力される眼の位置のデータを学習する。通常、車両運転中の運転者は、確認動作を行うため、ルームミラーや左右のドアミラー等を視認する。このため、学習部23は、撮像画像上の眼の移動量等を判定することで、ルームミラーや左右のドアミラーの位置等を見たときの目の位置を知ることができる。
【0033】
図8は、運転者が前方、ルームミラー、左右のドアミラーを視認したときに様子を示す説明図であり、(a)は運転者が前方を視認しているときの運転者の眼の位置を示している。また、(b)はルームミラーを視認しているときの運転者の眼の位置を示しており、(c)は右ドアミラーを、(d)は左ドアミラーを視認しているときの運転者の眼の位置を示している。さらに、(e)は運転者の視認箇所に応じた眼の座標位置を示している。なお、図8においては、X方向に640画素、Y方向に480画素の画像を例に説明する。
【0034】
図8(a)〜(d)に示すように、運転者が前方、ルームミラー、左右のドアミラーを視認する場合、図8(e)に示すように、画像上から得られる眼の座標位置は、前方を注視している場合を除き、ほぼ一定である。具体的には、運転者が前方を視認している場合、眼の座標位置(x,y)は、(260,220)〜(285,240)において分散している。なお、ここでは両眼の中心位置を眼の座標位置としている。
【0035】
一方、運転者が右ドアミラーを視認している場合、(175,245)付近に集中し、左ドアミラーを視認している場合、(395,245)付近に集中する。また、運転者がルームミラーを視認している場合、(380,220)付近に集中する。
【0036】
このように、ミラー視認時の運転者の眼の位置が或る程度同じ箇所に集中することから、前方視認時とミラー視認時との眼の移動量は、予めデータを採取しておくことにより個人差を含んだ状態で取得しておくことができる。すなわち、所定方向に所定の移動量分だけ眼が移動した場合には、3つのミラーのうちいずれかを視認しようとしていると推測することに役立てることができる。
【0037】
ここで、ミラー視認時の運転者の眼の滞留時間は平均0.7秒とわかっている。図9は、ミラー視認時の運転者の眼の滞留時間と車速との関係を示す説明図である。
【0038】
同図に示すように、運転者の眼の滞留時間は、約0.7秒の箇所に集中していることがわかる。また、この時間は車速に影響を受けることがないこともわかる。従って、上記移動方向及び移動量と、眼の滞留時間に基づいて、どのミラーを視認したかを特定できることとなる。
【0039】
学習部23は、上記ように、眼の移動方向及び移動量と、眼の滞留時間に基づいて、運転者がミラーを見たときの撮像画像上の眼の位置を学習する。そして、学習部23は、学習した眼の位置のデータを画像領域設定部24に送出する。
【0040】
画像領域設定部24は、上記学習部23にて学習された眼の位置のデータに基づいて、脇見許容時間が異なる所定個数の画像領域を設定する。すなわち、左右ドアミラー、ルームミラーを視認しているときの眼の位置に基づいて、撮像画像上に画像領域を設定する。
【0041】
図10は、脇見許容時間が異なる所定個数の画像領域の例を示す説明図であり、(a)は所定個数の画像領域の例を示しており、(b)は画像領域毎の脇見許容時間の例を示している。なお、図10(a)に示す縦方向及び横方向の数値は、運転者の顔向き角度を示している。また、画像領域は、本来撮像画像上に設定されるものであるが、図10においては説明の便宜上、運転者の視界に基づいた画像領域を説明することとする。さらに、以下の説明において、運転者が運転中に最も多く視認する前方の領域を前方注視領域とする。
【0042】
画像領域設定部24は、図10(a)に示すように、例えば5つの画像領域A〜Eを設定する。まず、画像領域設定部24は、ルームミラー視認時の眼の位置に基づいて、画像領域Aの右端を決定する。また、画像領域設定部24は、右ドアミラー視認時の眼の位置に基づいて、画像領域Bの左端及び下端を決定し、左ドアミラー視認時の眼の位置に基づいて、画像領域Cの右端及び下端を決定する。また、画像領域Eについて、左右ドアミラー視認時の眼の位置に基づいて、上端を決定する。
【0043】
また、画像領域設定部24は、画像領域Dの左端を右方向の追跡限界位置に基づいて決定する。図11は、画像領域設定部24による画像領域Dの設定方法の説明図であり、(a)は運転者が左ドアミラーを見たときの顔の向きの様子を示しており、(b)は運転者が右ドアミラーを見たときの顔の向きの様子を示している。
【0044】
図11(a)に示すように、運転者が左ドアミラーを見た運転者の左眼の位置は、ほぼ追跡限界に達している。つまり、運転者が左ドアミラーを見ている状態から、これ以上顔を左に向けると、左眼が撮像されないようになってしまう。このように、左ドアミラー視認時においては、運転者の左眼を撮像できる限界に達している。
【0045】
また、図11(b)に示すように、運転者が右方を視認している場合に、右目が追跡限界に達することがある。例えば、運転者が交差点の確認等で右ドアミラーよりもさらに右方を視認している場合などである。この場合、運転者がこれ以上顔を右に向けると、右眼が撮像されないようになってしまう。この位置が右方向の追跡限界位置である。画像領域設定部24は、撮像画像内から右方向の限界位置を特定し、この追跡限界位置に基づいて画像領域Dの左端を決定し、画像領域Dを設定する。
【0046】
なお、右方向の追跡限界位置は、上記のように、撮像画像から求めるようにしてもよいが、他の方法によっても求めてもよい。すなわち、左ドアミラー視認時の追跡限界位置に基づいて、演算により右方向の追跡限界位置を求めるようにしてもよい。この場合、左方向の追跡限界位置と対象となる位置を求めるようにすれば、右方向の追跡限界の位置が求められることとなる。
【0047】
図12は、撮像画像上に設定された画像領域A〜Eの具体例の説明図である。図10(a)に示す画像領域を撮像画像上に置き換えると、図12に示すようになる。これら領域A〜Eは、上記したように、ルームミラーの視認時における眼の座標位置、及び左右ドアミラー視認時における眼の座標位置を基準として設定されている。また、左右の追跡限界位置も基準となっている。
【0048】
再度、図10を参照する。画像領域設定部24は、上記のようにして割り付けた画像領域A〜Eのそれぞれに異なる脇見許容時間を設定する。例えば、図10(b)に示すように、画像領域Dの脇見許容時間は、画像領域Bの脇見許容時間よりも小さい。これは、画像領域Dの方が画像領域Bよりも顔向き角度が大きくなるからである。また、同様に、画像領域Cの脇見許容時間は、画像領域Aの脇見許容時間よりも小さくなる。
【0049】
さらに、画像領域Bの脇見許容時間は、画像領域Aの脇見許容時間よりも小さくなる。両領域A,Bを視認した場合、運転者の顔向き角度はほぼ同じである。ところが、画像領域Bと前方注視領域の間にはピラーが設けられている。そして、このピラーにより運転者が画像領域Bを視認している場合には、前方注視領域が見えにくくなってしまう。このため、両領域A,Bの顔向き角度はほぼ同じであっても、画像領域Bの脇見許容時間は、画像領域Aの脇見許容時間よりも小さくなる。
【0050】
また、画像領域Dの脇見許容時間は、画像領域Cの脇見許容時間よりも小さくなる。これら両領域C,Dについても顔向き角度はほぼ同じである。そして、画像領域Bと前方注視領域の間には、画像領域Bを介してピラーが設置されている。同様に、画像領域Cと前方注視領域の間にもピラーが設置されている。ところが、左側のピラーは運転者に対して右側のピラーよりも遠い位置に設置されている。このため、運転者からの見かけ上のピラーの太さは、異なることとなる。そして、運転者にとっては、見かけ上のピラーの太さが太い方が、前方注視領域の視認の障害となる。故に、画像領域Dの脇見許容時間は、画像領域Cの脇見許容時間よりも小さくなる。
【0051】
さらに、画像領域Eの脇見許容時間は、画像領域Dの脇見許容時間とほぼ同じである。例えば運転者がオーディオ装置等の設置位置を視認する場合、瞼が下がるために前方注視領域が殆ど見えなくなってしまう。このため、画像領域Eは、脇見許容時間が短くなり、前述までに最も脇見許容時間が最も短かった画像領域Dとほぼ同等となってしまう。
【0052】
そして、脇見検出部25は、このように設定された画像領域A〜E及び脇見許容時間に基づいて、運転者の脇見行為を検出することとなる。すなわち、画像領域A〜E内のいずれかに眼の位置が納まったまま、脇見許容時間が経過した場合に、脇見検出部25は、運転者の脇見行為を検出することとなる。
【0053】
次に、本実施形態に係る脇見検出装置1の動作を詳細に説明する。まず、脇見検出装置1の撮像部10は、運転者の顔を含む領域を撮像し、得られた撮像画像のデータを処理装置20に送出する。
【0054】
そして、処理装置20は、図13に従う処理を実行する。図13は、図1に示した処理装置20の詳細動作を示すフローチャートである。
【0055】
同図に示すように、まず、位置検出部21は、撮像画像のデータを入力する(ST10)。その後、位置検出部21は、眼の追跡領域が設定されているか否かを判断する(ST11)。眼の追跡領域が設定されていると判断した場合(ST11:YES)、処理はステップST14に移行する。
【0056】
一方、眼の追跡領域が設定されていないと判断した場合(ST11:NO)、位置検出部21は、画像全体から眼の位置を検出する(ST12)。ここでは、図3〜図6を参照して説明したように、眼の位置を検出する。そして、位置検出部21は、眼の位置のデータを追跡部22に送出する。
【0057】
その後、追跡部22は、位置検出部21からの眼の位置のデータに基づいて、追跡領域を設定する(ST13)。そして、追跡部22は、新たに入力される撮像画像のデータに基づいて、追跡領域内から眼を検出する(ST14)。その後、追跡部22は、眼の追跡が正しく行われているか否かを判断する(ST15)。
【0058】
眼の追跡が正しく行われていないと判断した場合(ST15:NO)、追跡部22は、眼の追跡領域をクリアし(ST16)、処理はステップST10に戻る。この場合、再度追跡領域の設定が行われることとなる。
【0059】
一方、眼の追跡が正しく行われていると判断した場合(ST15:YES)、追跡部22は、目の追跡領域を更新する(ST17)。すなわち、図7を参照して説明したように、眼の位置に基づき追跡領域を更新することとなる。
【0060】
その後、学習部23は、所定位置視認時の眼の位置の学習は終了したか否かを判断する(ST18)。すなわち、ルームミラー、左右のドアミラー及び右方向の追跡限界位置のすべての学習が終了したか否かを判断している。所定位置視認時の眼の位置の学習は終了していないと判断した場合(ST18:NO)、学習部23は、眼の位置の学習処理を行う(ST19)。そして、処理はステップST10に戻ることとなる。
【0061】
そして、上記処理を繰り返し、眼の位置の学習が終了した場合、ステップST18にて「YES」と判断される。その後、画像領域設定部24は、画像領域が設定されているか否かを判断する(ST20)。画像領域が設定されていると判断した場合(ST20:YES)、処理はステップST22に移行する。
【0062】
一方、画像領域が設定されていないと判断した場合(ST20:NO)、画像領域設定部24は、所定個数の画像領域を設定すると共に、それら画像領域に異なる脇見許容時間を設定する(ST21)。
【0063】
その後、脇見検出部25は、追跡部22からの眼の位置のデータと、画像領域設定部24からの画像領域に関するデータに基づいて、脇見検出処理を行う(ST22)。
【0064】
この処理により脇見が検出されなかった場合、処理は、ステップST10に戻ることとなる。一方、脇見は検出された場合、脇見検出部25は、報知器30に脇見があった旨を示すデータを送出する。そして、報知器30は報知動作を行う(ST23)。その後、処理は終了する。
【0065】
このようにして、運転者の脇見行為の検出が行われる。上記したように、ステップST21において、脇見許容時間が異なる所定個数の画像領域が設定され、ステップST22において、脇見検出が行われる。この脇見許容時間は、図10を参照して説明したように、車両内の構造物等、例えばピラーの設置位置を考慮して定められたものであり、従来に比してより適切なものとなっている。そして、この適切な脇見許容時間に基づいて脇見検出を行うため、検出精度の高い装置が得られることとなる。
【0066】
次に、図13に示した学習処理(ST19)の詳細を図14〜図17を参照して説明する。図14は、図13に示した眼の位置の学習処理(ST19)の詳細を示すフローチャートであり、ルームミラーの視認時の学習処理を示している。
【0067】
同図に示すように、まず、学習部23は、眼の位置が右方向に所定量M1だけ移動したか否かを判断する(ST30)。眼の位置が右方向に所定量M1だけ移動していないと判断した場合(ST30:NO)、処理はステップST32に移行する。
【0068】
一方、眼の位置が右方向に所定量M1だけ移動したと判断した場合(ST30:YES)、学習部23は、眼の移動フラグFL1をオンし、図15〜図17にて説明する他の移動フラグFL2〜FL4をオフにする(ST31)。
【0069】
その後、学習部23は、眼の移動フラグFL1がオンで、且つ所定量M1だけ移動した位置に所定時間だけ眼の位置が滞留したか否かを判断する(ST32)。眼の移動フラグFL1がオンでなく、又は所定量M1だけ移動した位置に所定時間眼の位置が滞留しなかったと判断した場合(ST32:NO)、図14に示す処理は終了する。
【0070】
ここで、そもそも眼の位置が右方向に所定量M1だけ移動していなかった場合(ステップST30にて「NO」となった場合)、移動フラグFL1がオンとならないことから、図14に示す処理は終了することとなる。また、右方向に所定量M1だけ移動した場合であっても、滞留時間が短かった場合には、図14に示す処理は終了することとなる。なお、ステップST32における所定時間は、例えば「0.7秒」に設定される。
【0071】
このように、学習処理において、眼の位置のデータを学習すべきでないものを排除する処理を行い、後の処理にて不的確に画像領域を設定しないようにしている。
【0072】
ところで、眼の移動フラグFL1がオンで、且つ所定量M1だけ移動した位置に所定時間だけ眼の位置が滞留したと判断した場合(ST32:YES)、学習部23は、眼の移動フラグFL1をオフする(ST33)。そして、学習部23は、眼が滞留している位置に、矩形の小領域aが設定されているか否かを判断する。
【0073】
眼が滞留している位置に、矩形の小領域aが設定されていないと判断した場合(ST34:NO)、その滞留位置に矩形小領域aを設定し(ST35)、図14に示す処理は終了する。
【0074】
一方、矩形小領域aが設定されていると判断した場合(ST34:YES)、カウンタαの数値をカウントアップする(ST36)。ここで、矩形小領域aが設定されているものの、眼の滞留位置が矩形小領域a内でなかった場合、再度ステップST35にて小領域aを設定するか、図14に示す処理を終了させるなど行う(図示せず)。
【0075】
その後、学習部23は、カウンタαの数値が所定値に達したか否かを判断する(ST37)。カウンタαの数値が所定値に達していないと判断した場合(ST37:NO)、図14に示す処理は終了する。
【0076】
一方、カウンタαの数値が所定値に達したと判断した場合(ST37:YES)、学習部23は、例えば小領域aの位置をルームミラー視認時の眼の位置とする(ST38)。これにより、学習部23は、眼の位置の学習を完了する。その後、図14に示す処理は終了する。
【0077】
ところで、図14に示す処理が行われるのと並行して、図15〜図17に示す処理も実行される。図15〜図17は、図13に示した眼の位置の学習処理(ST19)の詳細を示すフローチャートである。なお、図15は左ドアミラーの視認時の、図16は右ドアミラー視認時の、図17は右後方視認時の学習処理を示している。
【0078】
図15に示すステップST40〜ステップST48は、図14に示したステップST30〜ステップST38と同様であるため、説明を省略する。また、図16に示すステップST50〜ステップST58、及び図17に示すステップST60〜ステップST68についても同様に省略する。なお、図15〜図17の処理では、それぞれステップST40,50,60において移動方向、及び移動量M2〜M4が異なり、また、図17については右後方確認時の所定時間が異なる。
【0079】
また、当然に小領域b〜d及びカウントアップを行うカウンタβ〜θ等も異なっている。
【0080】
次に、図13に示した脇見判定(ST22)について詳細に説明する。図18は、図13に示した脇見判定(ST22)の詳細なフローチャートである。なお、図18においては、画像領域A内に眼が存在する否かを判断する処理について説明する。また、図18では、画像領域Aに眼の位置が納まっている場合を示しているが、他の画像領域B〜Eについても同様である。
【0081】
まず、脇見検出部25は、画像領域A内に眼が存在するか否かを判断する(ST70)。眼が画像領域A内に存在すると判断した場合(ST70:YES)、脇見検出部25は、タイマーが作動中か否かを判断する(ST71)。
【0082】
タイマーが作動中であると判断した場合(ST71:YES)、処理はステップST73に移行する。一方、タイマーが作動中でないと判断した場合(ST71:NO)、脇見検出部25は、タイマーをスタートさせる(ST72)。
【0083】
その後、脇見検出部25は、タイマーにて計時される時間(即ち滞留時間)が、画像領域Aに設定される脇見許容時間を超えたか否かを判断する(ST73)。脇見許容時間を超えていないと判断した場合(ST73:NO)、図18に示す処理は終了する。
【0084】
一方、脇見許容時間を超えたと判断した場合(ST73:YES)、脇見検出部25は、警報出力を行うと共に、タイマーをリセットする(ST74)。そして、図18に示す処理は終了する。
【0085】
また、ステップST70において、眼が画像領域A内に存在しないと判断した場合(ST70:NO)、脇見検出部25は、警報出力をすることなく、タイマーをリセットし(ST75)、その後処理は終了する。
【0086】
ところで、本実施形態では、画像領域A〜Eの設定処理(ST21)は、ルームミラー、左右のドアミラー及び右方向の追跡限界位置(演算による算出を含む)のすべてについての学習が行われることで、実行されるようになっている。しかし、上記視認位置の学習が1つでも完了すれば、その位置を基準に画像領域のいずれかを設定し、脇見判定を開始するようにしてもよい。この場合、画像領域設定部24は、撮像画像上の眼の位置の学習が完了する毎に、順次画像領域を設定していくこととなる。
【0087】
図19は、段階的に画像領域を設定する場合の処理を示す説明図である。同図に示すように、まず、学習部23は、画像領域Aが未設定であり、且つルームミラー視認時の眼の位置の学習が終了したか否かを判断する(ST80)。画像領域Aが未設定、且つルームミラー視認時の眼の位置の学習が終了したと判断した場合(ST80:YES)、画像領域設定部24は、画像領域Fを設定し、さらにその領域Fの脇見許容時間を設定する(ST81)。そして、図19に示す処理は終了する。
【0088】
この画像領域Fは、例えば図20に示すようなものである。図20は、段階的に設定する画像領域の例を示す説明図である。画像領域Fは、画像領域A,Cと画像領域Eの一部を含む領域である。ステップST81にて画像領域Fを設定することとしたのは、ルームミラー視認時の眼の位置により、前方注視領域と画像領域Aとの境界を設定することができるからである。また、ルームミラー視認時の眼の位置だけでは、画像領域Aと画像領域Cとの境界が設定できないため、画像領域Aによりも顔向き角度が大きい側の領域を含むようにしている。さらに、ルームミラー視認時の眼の位置だけでは、領域の下端が設定できないため、画像領域Eの一部を含むようにしている。
【0089】
再度、図19を参照して説明する。画像領域Aが未設定であるか、又はルームミラー視認時の眼の位置の学習が終了しているかのいずれか一方でも満たさないと判断した場合(ST80:NO)、処理は、ステップST82に移行する。そして、学習部23は、画像領域Cが未設定であり、且つ左ドアミラー視認時の眼の位置の学習が終了したか否かを判断する(ST82)。
【0090】
そして、画像領域Cが未設定、且つ左ドアミラー視認時の眼の位置の学習が終了したと判断した場合(ST82:YES)、画像領域設定部24は、画像領域Cを設定し、さらにその領域Cの脇見許容時間を設定する(ST83)。
【0091】
ここでの画像領域Cは、図20に示すようなものであり、図12を参照して説明したものと同じである。左ドアミラー視認時の眼の位置が確定すると、前述のように画像領域Cの右端及び下端が決定するので、画像領域設定部24は、画像領域Cを決定し、さらに脇見許容時間を設定する。
【0092】
その後、画像領域設定部24は、画像領域Eが設定済みか否かを判断する(ST84)。画像領域Eが設定済みであると判断した場合(ST84:YES)、図19に示す処理は終了する。
【0093】
一方、画像領域Eが設定済みでないと判断した場合(ST84:NO)、画像領域設定部24は、画像領域E及び領域Eの脇見許容時間を設定する(ST85)。そして、図19に示す処理は終了する。
【0094】
ここでの画像領域Eは、図20に示すようなものであり、図12を参照して説明した者と同様である。左ドアミラー視認時の眼の位置が確定すると、前述のように画像領域Eの上端を決定することができる。このため、画像領域設定部24は、左ドアミラー視認時の眼の位置に基づいて、画像領域Gの上端を決定し、さらに領域Gの脇見許容時間を設定する。
【0095】
再度、図19を参照して説明する。画像領域Cが未設定であるか、又は左ドアミラー視認時の眼の位置の学習が終了しているかのいずれか一方でも満たさないと判断した場合(ST82:NO)、処理は、ステップST86に移行する。そして、学習部23は、画像領域Bが未設定であり、且つ右ドアミラー視認時の眼の位置の学習が終了したか否かを判断する(ST86)。
【0096】
そして、画像領域Bが未設定、且つ右ドアミラー視認時の眼の位置の学習が終了したと判断した場合(ST86:YES)、画像領域設定部24は、画像領域Gを設定し、さらにその領域Gの脇見許容時間を設定する(ST87)。
【0097】
ここでの画像領域Gは、図20に示すようなものであり、画像領域Bと画像領域Dとを加えた広さの領域である。ステップST87にて画像領域Gを設定することとしたのは、右ドアミラー視認時の眼の位置により、前方注視領域と画像領域Bとの境界を設定することができるからである。また、右ドアミラー視認時の眼の位置だけでは、画像領域Bと画像領域Dとの境界が設定できないためである。
【0098】
再度、図19を参照する。画像領域G及びその領域Gの脇見許容時間の設定後、処理はステップST84に移行する。そして、上記のように同様の処理を経て、図19に示す処理は終了する。
【0099】
また、画像領域Bが未設定であるか、又は右ドアミラー視認時の眼の位置の学習が終了しているかのいずれか一方でも満たさないと判断した場合(ST86:NO)、処理は、ステップST88に移行する。そして、学習部23は、画像領域Dが未設定であり、且つ右後方視認時の眼の位置の学習が終了したか否かを判断する(ST88)。
【0100】
そして、画像領域Dが未設定、且つ右後方視認時の眼の位置の学習が終了したと判断した場合(ST88:YES)、画像領域設定部24は、画像領域Dを設定し、さらにその領域Dの脇見許容時間を設定する(ST89)。
【0101】
ここでの画像領域Dは、図20に示すようなものであり、図12を参照して説明したものと同じである。右後方視認時の眼の位置が確定すると、前述のように画像領域Dと画像領域Bとの境界が決定するので、画像領域設定部24は、画像領域Dを決定し、さらに領域Dの脇見許容時間を設定する。そして、図19に示す処理は終了する。
【0102】
また、画像領域Dが未設定であるか、又は右後方視認時の眼の位置の学習が終了しているかのいずれか一方でも満たさないと判断した場合(ST88:NO)、図19に示す処理は終了する。
【0103】
このようにして、本実施形態に係る脇見検出装置1によれば、撮像画像上の眼の位置を基準として脇見許容時間が異なる所定個数の画像領域を設定している。通常、運転者はルームミラー等の比較的多く視認する。このため、撮像画像上の眼の位置を基準とすることで、ルームミラー等の位置に基づく、画像領域が設定できる。また、ルームミラー等の位置に基づくため、運転者の視界を遮るピラー等を考慮に入れた脇見許容時間を所定個数の画像領域それぞれに割り振ることもできる。
【0104】
そして、各画像領域に割り振られた脇見許容時間と追跡される眼の位置とに基づいて脇見検出を行う。このため、車両内環境に適合して各画像領域に割り振られた脇見許容時間に基づいて、脇見検出が行うことができる。
【0105】
従って、運転者の脇見行為の検出につき、精度向上を図ることができる。
【0106】
また、学習部23は、左右のドアミラー及びルームミラーの位置を見たときの撮像画像上の眼の位置を学習している。通常、運転中において運転者は、左右のドアミラー及びルームミラーの位置を多く視認する。このため、検出される眼の位置は、左右のドアミラー及びルームミラーを見たときの位置が多くなり、検出により得られるデータ量は他の車両内部の構造物を見ている場合に比して多くなる。故に、画像領域を決定するまでの時間が、他の車両内部の構造物を見ている場合に比して短くなる。従って、画像領域の設定までの時間を短縮することができる。
【0107】
また、学習部23は、運転者の眼が追跡限界位置に達したときの撮像画像上の眼の位置を学習している。通常、運転中において運転者は、比較的頻繁に右後方確認などを行う。このため、検出により得られるデータ量は他の車両内部の構造物を見ている場合に比して多くなる。故に、画像領域を決定するまでの時間が、他の車両内部の構造物を見ている場合に比して短くなる。従って、画像領域の設定までの時間を短縮することができる。
【0108】
また、学習部23は、運転者の眼が左右いずれか一方の追跡限界位置に達したときの撮像画像上の眼の位置を学習する。そして、学習した眼の位置に基づいて、運転者の眼が他方の追跡限界位置に達したときの撮像画像上の眼の位置を推定している。このため、他方の追跡限界位置に達したときの撮像画像上の眼の位置を検出していなくとも、推定により得られる位置に基づいて画像領域を設定することが可能となる。従って、画像領域の設定までの時間を短縮することができる。
【0109】
また、画像領域設定部24は、撮像画像上の眼の位置が学習される毎に、順次画像領域を設定していく。このため、すべての眼の位置の学習を待つことなく、画像領域は設定されていくので、脇見検出を行うまでの時間を短縮することができる。
【0110】
なお、上記実施形態において、図19に示した処理は、図12に示すステップST19,ST20,ST21に代えて、実行するようにすればよい。
【0111】
次に、本発明の第2実施形態を説明する。第2実施形態に係る脇見検出装置2は、第1実施形態のものと同様であるが、指示部(指示手段)40を備える点で、第1実施形態のものと異なっている。
【0112】
以下、第2実施形態に係る脇見検出装置2について説明する。図21は、本発明の第2実施形態に係る脇見検出装置2の構成図である。指示部40は、操作されることにより、学習部23に眼の位置の学習を行わせるものである。具体的に、指示部40は、車両の正面下方に設置されるスイッチ等から構成される。
【0113】
図22は、本発明の第2実施形態に係る脇見検出装置2の機能ブロック図である。同時に示すように、指示部40は、処理装置20内の学習部23に接続されている。この指示部40は、操作されることにより、所定の信号を学習部23に送出する。そして、これを受けた学習部23は、眼の位置の学習を開始する。
【0114】
図23は、図21に示した処理装置20の詳細動作を示すフローチャートである。なお、同図におけるステップST90〜ST96、及びステップST100〜T103は、図13に示したステップST10〜ST19、及びステップST20〜T23とそれぞれ同様であるため、説明を省略する。
【0115】
ステップST96において、学習部23は、眼の位置の学習処理を行う。このとき、運転者が指示部40を操作すると、所定の信号が送出される。
【0116】
学習部23は、ステップST97において、所定の信号が送出されたか否かを判断することで、指示部40が操作されたか否かを判断する。指示部40が操作されていないと判断した場合(ST97:NO)、処理はステップST90に戻る。
【0117】
一方、指示部40が操作されたと判断した場合(ST97:YES)、学習部23は、その指示に従って学習処理を開始する(ST98)。このとき行われる学習処理は、図14〜図17に示したものと同様であるが、ステップST96の処理と異なり、現在運転者が視認している位置を強制的に学習するものである。すなわち、運転者がルームミラーを視認している状態で、指示部40が操作されると、その位置を強制的に学習することとなる。
【0118】
そして、学習部23は、指示部40の操作を契機として行われた学習処理について、学習が完了したか否かを判断する(ST99)。学習が完了していないと判断した場合(ST99:NO)、処理はステップST90に戻る。一方、学習は完了したと判断した場合(ST99:YES)、画像領域設定部24は、画像領域が設定されているか否かを判断する(ST100)。そして、以後図13のステップST20〜T23と同様の処理が行われていく。
【0119】
このようにして、本実施形態に係る脇見検出装置2によれば、第1実施形態と同様に、運転者の脇見行為の検出につき、精度向上を図ることができ、画像領域の設定までの時間を短縮することができる。また、脇見検出を行うまでの時間を短縮することができる。
【0120】
また、操作されることにより、学習部23に眼の位置の学習を行わせる指示部40を備えている。このため、運転者が指示部40を操作するだけで、容易に眼の位置が学習され、画像領域の設定までの時間が短縮されることとなる。従って、運転開始時等から早期に脇見検出を行うことができる。
【0121】
次に、本発明の第3実施形態を説明する。第3実施形態に係る脇見検出装置3は、第1実施形態のものと同様であるが、走行状態検出部(走行状態検出手段)50及び許容時間変更部(許容時間変更手段)26を備える点で、第1実施形態のものと異なっている。
【0122】
以下、第3実施形態に係る脇見検出装置3について説明する。図24は、本発明の第3実施形態に係る脇見検出装置3の構成図である。走行状態検出部50は、車両の走行状態を検出するものであり、車速センサ51、車間距離センサ52(距離センサ)、及びナビゲーション装置53を含むものである。
【0123】
車速センサ51は、車両の車速を検出するものであり、例えば、自動変速機の出力側に設けられたセンサや、車輪の回転を検出するために設けられた車輪速センサ等から構成される。また、車間距離センサ52は、先行車両と自車両との距離を検出するものであり、例えばCCDカメラによる画像処理、赤外線カメラ、超音波センサ、ミリ波レーダ、レーザーレーダ等から構成される。
【0124】
また、ナビゲーション装置53は、自車位置、目的地、及び目的地までの経路等を運転者に提示することにより、車両を目的地まで案内するものである。また、ナビゲーション装置53は、地図上の道路の種別に関する情報を運転者に提示する機能を有している。
【0125】
図25は、本発明の第3実施形態に係る脇見検出装置3の機能ブロック図である。同時に示すように、第3実施形態に係る脇見検出装置3は、処理装置20内に許容時間変更部26を有している。
【0126】
許容時間変更部26は、走行状態検出部50からの出力信号に応じて、脇見許容時間を変更するものである。具体的に、許容時間変更部26は、車速センサ51からの車速信号に基づき、車両の速度が速くなるに従って脇見許容時間を短くする。また、許容時間変更部26は、車間距離センサ52からの距離信号に基づき、自車両が先行車両に近くなるに従って脇見許容時間を短くする。さらに、許容時間変更部26は、ナビゲーション装置53からの道路の種別に関する情報に基づき、自車両が自動車専用道路を走行しているときの脇見許容時間よりも、一般道路を走行しているときの脇見許容時間を短くする。
【0127】
次に、車速に基づいて脇見許容時間を変更する場合の動作を説明する。図26は、図24に示した処理装置20の詳細動作を示すフローチャートであり、車速に応じて脇見許容時間を変更する場合の例を示している。また、図26は、画像領域Aの脇見許容時間を変更する場合を説明する。
【0128】
まず、許容時間変更部26は、車速センサ51からの車速信号を入力し、車速を検出する(ST110)。そして、許容時間変更部26は、車速に応じた数値等を求める。また、許容時間変更部26は、画像領域設定部24にて設定された画像領域Aの脇見許容時間の情報を脇見検出部25から読み取る。そして、数値等の情報と、読み取った脇見許容時間の情報に基づいて、脇見許容時間の変更を行い、これを設定する(ST111)。
【0129】
この変更に際し、許容時間変更部26は、所定の演算式やマップデータ等を用いて、脇見許容時間の変更を行う。図27は、車速に応じた脇見許容時間の例を示す説明図である。具体的に、許容時間変更部26は、図27に示すように車速が速くなるに従って脇見許容時間を短くしている。なお、図27の領域A〜Eは、図12を参照して説明した画像領域A〜Eを指している。
【0130】
再度図26を参照する。脇見許容時間の変更後、処理は、ステップST112に移行し、ステップST112以降の処理を経て終了する。ステップST112〜ステップST117の処理は、図18に示したステップST70〜ステップST75の処理と同様であるため、説明を省略する。
【0131】
次に、車間距離に基づいて脇見許容時間を変更する場合の動作を説明する。図28は、図24に示した処理装置20の詳細動作を示すフローチャートであり、車間距離に応じて脇見許容時間を変更する場合の例を示している。また、図26は、画像領域Aの脇見許容時間を変更する場合を説明する。
【0132】
まず、許容時間変更部26は、車間距離センサ52からの距離信号を入力し、先行車までの距離を検出する(ST120)。そして、許容時間変更部26は、車間距離に応じた数値等を求める。また、許容時間変更部26は、画像領域設定部24にて設定された画像領域Aの脇見許容時間の情報を脇見検出部25から読み取る。そして、数値等の情報と、読み取った脇見許容時間の情報に基づいて、脇見許容時間の変更を行い、これを設定する(ST121)。
【0133】
この変更に際し、許容時間変更部26は、所定の演算式やマップデータ等を用いて、脇見許容時間の変更を行う。図29は、車速に応じた脇見許容時間の例を示す説明図である。具体的に、許容時間変更部26は、図29に示すように自車両が先行車両に近くなるに従って脇見許容時間を短くしている。なお、図27の領域A〜Eは、図12を参照して説明した画像領域A〜Eを指している。
【0134】
再度図28を参照する。脇見許容時間の変更後、処理は、ステップST122に移行し、ステップST122以降の処理を経て終了する。ステップST122〜ステップST127の処理は、図18に示したステップST70〜ステップST75の処理と同様であるため、説明を省略する。
【0135】
次に、道路の種別に関する情報に基づいて脇見許容時間を変更する場合の動作を説明する。図30は、図24に示した処理装置20の詳細動作を示すフローチャートであり、道路種別情報に基づいて脇見許容時間を変更する場合の例を示している。また、図30は、画像領域Aの脇見許容時間を変更する場合を説明する。
【0136】
まず、許容時間変更部26は、ナビゲーション装置53からの道路種別情報を入力し、自車両が一般道から自動車専用道路に入ったか否かを判断する(ST130)。
【0137】
自車両が一般道から自動車専用道路に入っていないと判断した場合(ST130:NO)、処理はステップST132に移行する。一方、自車両が一般道から自動車専用道路に入ったと判断した場合(ST130:YES)、許容時間変更部26は、画像領域設定部24にて設定された画像領域Aの脇見許容時間の情報を脇見検出部25から読み取る。そして、読み取った脇見許容時間を長く設定する。詳しくは、許容時間変更部26は、「脇見許容時間=脇見許容時間×1.2」とし、求められた新たな脇見許容時間を設定する(ST131)。
【0138】
その後、許容時間変更部26は、ナビゲーション装置53からの道路種別情報を入力し、自車両が自動車専用道路から一般道に入ったか否かを判断する(ST132)。
【0139】
自車両が自動車専用道路から一般道に入っていないと判断した場合(ST132:NO)、処理はステップST134に移行する。一方、自車両が自動車専用道路から一般道に入ったと判断した場合(ST132:YES)、許容時間変更部26は、画像領域設定部24にて設定された画像領域Aの脇見許容時間の情報を脇見検出部25から読み取る。そして、読み取った脇見許容時間を短く設定する。詳しくは、許容時間変更部26は、「脇見許容時間=脇見許容時間×0.83」とし、求められた新たな脇見許容時間を設定する(ST133)。
【0140】
脇見許容時間の変更後、処理は、ステップST134に移行し、ステップST134以降の処理を経て終了する。ステップST134〜ステップST139の処理は、図18に示したステップST70〜ステップST75の処理と同様であるため、説明を省略する。
【0141】
このようにして、本実施形態に係る脇見検出装置3によれば、第1実施形態と同様に、運転者の脇見行為の検出につき、精度向上を図ることができ、画像領域の設定までの時間を短縮することができる。また、脇見検出を行うまでの時間を短縮することができる。
【0142】
また、車両の走行状態を検出し、検出結果に応じて脇見許容時間を変更している。このため、車室内環境だけでなく、車両周囲の環境等をも考慮して脇見許容時間を変更できることなる。従って、運転者の脇見行為の検出につき、一層の精度向上を図ることができる。
【0143】
また、車速センサ51からの車速信号に基づき、車両の速度が速くなるに従って脇見許容時間を短くしている。このため、例えば、車両速度が速い場合には、運転者が前方注視領域近くを視認していたとしても脇見許容時間を短くすることができ、より適切に、脇見検出を行うことができる。
【0144】
また、車間距離センサ52からの距離信号に基づき、自車両が先行車両に近くなるに従って脇見許容時間を短くしている。このため、例えば、先行車両までの距離が短い場合には、運転者が前方注視領域近くを視認していたとしても脇見許容時間を短くすることができ、より適切に、脇見検出を行うことができる。
【0145】
また、通常、一般道は歩行者や信号等があり、自動車専用道路は歩行者や信号等がない。このように、一般道は自動車道路よりも車両の停止機会が多いのが実情である。また、自動車専用道路は路側帯も広めであることが多い。このため、自動車専用道路を走行時よりも一般道路を走行時の脇見許容時間を短くすることで、より適切に、脇見検出を行うことができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る脇見検出装置の構成図である。
【図2】本発明の第1実施形態に係る脇見検出装置の機能ブロック図である。
【図3】位置検出部が眼の位置の検出に際して行う初期処理の説明図である。
【図4】位置検出部が所定の画素を抽出したとき様子を示す説明図である。
【図5】画像横方向に近接する画素をグループ化したときの様子を示す説明図である。
【図6】位置検出部によるゾーン化後の様子を示す説明図である。
【図7】追跡部による眼の位置の追跡の様子を示す説明図であり、(a)は初期の追跡領域を示しており、(b)は初期の追跡領域の設定後に、検出した眼の位置を示しており、(c)は検出した眼の位置に基づいて設定する追跡領域を示しており、(d)は新たに設定した追跡領域内から検出した眼の位置を示している。
【図8】運転者が前方、ルームミラー、左右のドアミラーを視認したときに様子を示す説明図であり、(a)は運転者が前方を視認しているときの運転者の眼の位置を示し、(b)はルームミラーを視認しているときの運転者の眼の位置を示し、(c)は右ドアミラーを視認しているときの運転者の眼の位置を示し、(d)は左ドアミラーを視認しているときの運転者の眼の位置を示し、(e)は運転者の視認箇所に応じた眼の座標位置を示している。
【図9】ミラー視認時の運転者の眼の滞留時間と車速との関係を示す説明図である。
【図10】脇見許容時間が異なる所定個数の画像領域の例を示す説明図であり、(a)は所定個数の画像領域の例を示しており、(b)は画像領域毎の脇見許容時間の例を示している。
【図11】画像領域設定部による画像領域の設定方法の説明図であり、(a)は運転者が左ドアミラーを見たときの顔の向きの様子を示しており、(b)は運転者が右ドアミラーを見たときの顔の向きの様子を示している。
【図12】撮像画像上に設定された画像領域の具体例の説明図である。
【図13】図1に示した処理装置の詳細動作を示すフローチャートである。
【図14】図13に示した眼の位置の学習処理(ST19)の詳細を示すフローチャートであり、ルームミラーの視認時の学習処理を示している。
【図15】図13に示した眼の位置の学習処理(ST19)の詳細を示すフローチャートであり、左ドアミラーの視認時の学習処理を示している。
【図16】図13に示した眼の位置の学習処理(ST19)の詳細を示すフローチャートであり、右ドアミラー視認時の学習処理を示している。
【図17】図13に示した眼の位置の学習処理(ST19)の詳細を示すフローチャートであり、右後方視認時の学習処理を示している。
【図18】図13に示した脇見判定(ST22)の詳細なフローチャートである。
【図19】段階的に画像領域を設定する場合の処理を示す説明図である。
【図20】段階的に設定する画像領域の例を示す説明図である。
【図21】本発明の第2実施形態に係る脇見検出装置の構成図である。
【図22】本発明の第2実施形態に係る脇見検出装置の機能ブロック図である。
【図23】図21に示した処理装置の詳細動作を示すフローチャートである。
【図24】本発明の第3実施形態に係る脇見検出装置の構成図である。
【図25】本発明の第3実施形態に係る脇見検出装置の機能ブロック図である。
【図26】図24に示した処理装置の詳細動作を示すフローチャートであり、車速に応じて脇見許容時間を変更する場合の例を示している。
【図27】車速に応じた脇見許容時間の例を示す説明図である。
【図28】図24に示した処理装置の詳細動作を示すフローチャートであり、車間距離に応じて脇見許容時間を変更する場合の例を示している。
【図29】車速に応じた脇見許容時間の例を示す説明図である。
【図30】図24に示した処理装置の詳細動作を示すフローチャートであり、道路種別情報に基づいて脇見許容時間を変更する場合の例を示している。
【符号の説明】
1〜3…脇見検出装置
10…撮像部(撮像手段)
20…処理装置
21…位置検出部
22…追跡部(追跡手段)
23…学習部(学習手段)
24…画像領域設定部(画像領域設定手段)
25…脇見検出部(脇見検出手段)
26…許容時間変更部(許容時間変更手段)
30…報知器
40…指示部(指示手段)
50…走行状態検出部(走行状態検出手段)
51…車速センサ
52…車間距離センサ
53…ナビゲーション装置
A〜G…画像領域
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an inattentiveness detection device.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, an inattentiveness detection device that detects an inattentive behavior of a driver based on an allowable inattentive time according to a driver's face angle and a time during which the driver's face angle is maintained is known (for example, Patent Document 1). , 2).
[0003]
In this device, the act of looking aside is changed according to the direction of the driver's face to determine the act of looking aside. For example, when the driver's face angle is large, it is difficult for the driver to see the scenery in the forward direction, etc., so the inattentive act is determined by setting the inattentive time to be short. In addition, when the driver's face angle is small, the scenery in the forward direction is relatively easy to enter the driver's field of view.
[0004]
As described above, the driver's inattentive behavior is suitably detected by changing the inattentive time.
[0005]
[Patent Document 1]
JP-A-3-16798
[0006]
[Patent Document 2]
JP-A-7-57172
[0007]
[Problems to be solved by the invention]
However, the inattentiveness detection device does not take into account left and right pillars that obstruct the driver's field of view, and is therefore insufficient to appropriately determine inattentive behavior. For example, even when the face direction angle is small, if the driver's visual recognition position is near the pillar portion or the like, the driver's view is blocked, so the allowable inattentive time is relatively short. And so on.
[0008]
As described above, the conventional inattentiveness detection device has not yet been able to properly detect the inattentive behavior of the driver.
[0009]
[Means for Solving the Problems]
According to the present invention, the imaging unit captures the driver's face of the vehicle, and the tracking unit tracks the position of the driver's eyes based on the captured image including the driver's face obtained by the imaging unit, The learning unit determines the movement amount and the dwell time of the eye position output in time series from the tracking unit, and learns the position of the eye on the captured image when the driver looks at the predetermined position. The area setting means sets a predetermined number of image areas having different allowable inattentive times based on the positions of the eyes on the captured image learned by the learning means, and the inattentive detection means allocates the image areas to the image areas set by the image area setting means. An inattentive detection is performed based on the determined inattentive time.
[0010]
【The invention's effect】
According to the present invention, a predetermined number of image areas having different allowable inattentive times are set based on the position of the eye on the captured image. Usually, a driver visually recognizes a relatively large number of structures and the like inside the vehicle. Therefore, by using the position of the eye on the captured image as a reference, an image area can be set based on the position of a structure or the like inside the vehicle. In addition, since it is based on the position of the structure inside the vehicle, a permissible inattentive time taking into account a portion that blocks the driver's view can be allocated to each of the predetermined number of image areas.
[0011]
Then, inattention is detected based on the allowable inattentive time allocated to each image region and the position of the eye to be tracked. For this reason, inattentiveness detection suitable for the in-vehicle environment can be performed on the basis of the inattentive allowance time allocated to each image region.
[0012]
Therefore, it is possible to improve the accuracy of detecting the driver's inattentive behavior.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings.
[0014]
FIG. 1 is a configuration diagram of an inattentiveness detection device according to the first embodiment of the present invention. As shown in FIG. 1, the inattentiveness detection device 1 of the present embodiment includes an imaging unit (imaging unit) 10 for imaging the face of the driver of the vehicle. The imaging unit 10 is, for example, a CCD camera for imaging visible light, and is installed below the front of the driver.
[0015]
In addition, the inattentiveness detection device 1 is configured to detect a driver's inattentive act based on a captured image captured by the image capturing unit 10 and, when the processor 20 detects the driver's inattentive act, And an alarm 30 for notifying the driver of the fact.
[0016]
Next, a detailed configuration of the processing device 20 will be described with reference to FIG. FIG. 2 is a functional block diagram of the inattentive detection device 1 according to the first embodiment of the present invention.
[0017]
The processing device 20 includes a position detection unit 21 that detects the position of the driver's eye based on data of the captured image from the imaging unit 10 and a tracking unit (tracking unit) 22 that tracks the position of the driver's eye. And
[0018]
The position detection unit 21 detects the position of the eye from the entire captured image input from the imaging unit 10. In addition, the tracking unit 22 determines a tracking area including the position of the eye on the image with reference to the position of the driver's eye detected by the position detection unit 21, and determines the position of the eye from a later captured image. When detecting, the driver's eyes are detected from within the tracking area.
[0019]
Further, the processing device 20 includes a learning unit (learning unit) 23 that determines the movement amount of the eye position and the staying time that are output in time series from the tracking unit 22. The learning unit 23 learns the position of the eye on the captured image when the driver looks at the left and right door mirrors, the room mirror, and the like, based on the determined moving amount and the residence time.
[0020]
Further, the processing device 20 includes an image region setting unit (image region setting unit) 24 that sets an image region based on the position of the eye on the captured image learned by the learning unit 23. The image area setting unit 24 sets a predetermined number of image areas. Here, the image area is an area to which an inattentive allowable time for detecting inattentiveness is allocated. The image area setting unit 24 allocates different allowable inattentive times to each of the predetermined number of image areas.
[0021]
The processing device 20 includes an inattentiveness detection unit (inattentiveness detection means) 25 that performs inattentiveness detection. The inattentiveness detection section 25 performs inattentiveness detection based on the allowable inattentive time. Specifically, the inattentiveness detection unit 25 determines which image area the position of the eye tracked by the tracking unit 22 belongs to. Then, inattentiveness detection is performed based on the dwell time of the eye position tracked by the tracking unit 22 and the inattentive time of the image area to which the eye position belongs.
[0022]
Next, the outline of the operation of the inattentiveness detection device 1 will be described. First, the imaging unit 10 captures an image of a region including the driver's face, and sends data of the obtained captured image to the processing device 20.
[0023]
The position detection unit 21 of the processing device 20 receives the captured image data and detects the position of the driver's eye. The detection of the position of the eye is performed, for example, as follows. FIG. 3 is an explanatory diagram of the initial processing performed by the position detection unit 21 when detecting the position of the eye. In FIG. 3, a captured image of 480 pixels vertically and 512 pixels horizontally is described as an example.
[0024]
First, the position detection unit 21 acquires density value data for all pixels in the vertical direction of the image. That is, density value data is obtained from the coordinates (0, 0) to (0, 479) shown in FIG. 3, and then density value data is obtained from the coordinates (1, 0) to (1, 479). I do. Then, through Xa and Xb shown in FIG. 3, density value data is finally acquired for the line from coordinates (511, 0) to (511, 479). After that, the position detection unit 21 extracts pixels whose change in density value satisfies a predetermined condition, and obtains a pixel group as shown in FIG. FIG. 4 is an explanatory diagram illustrating a state when the position detection unit 21 extracts a predetermined pixel. As shown in the figure, the extracted pixels correspond to the positions of the driver's eyebrows, eyes, nose, and mouth. More specifically, two pixels A1 and A2 are extracted from the Xc line. As for the xd line, four pixels A1 to A4 are extracted. These pixels A1 to A4 are distinguished by, for example, the amount of change in density value. Then, after the extraction of the pixels, the position detection unit 21 groups the pixels adjacent in the horizontal direction of the image.
[0025]
FIG. 5 is an explanatory diagram illustrating a state in which pixels adjacent in the horizontal direction of the image are grouped. As shown in the drawing, by grouping, the position detection unit 21 forms continuous data G1 to G6 corresponding to the driver's right eyebrow, left eyebrow, right eye, left eye, nose, and mouth, respectively.
[0026]
After that, the position detection unit 21 performs a zoning process. FIG. 6 is an explanatory diagram illustrating a state after zoning by the position detection unit 21. The position detection unit 21 zones the existing positions of the continuous data G1 to G6 in the image vertical direction. At this time, the position detection unit 21 forms three zones (ZONE: L, ZONE: C, ZONE: R). Then, the position detection unit 21 detects the position of the eye by determining the relative positional relationship.
[0027]
After detecting the position of the eye, the tracking unit 22 stores the coordinate value of the detected position of the eye, and sets a tracking area smaller than the entire image based on the stored position. Thereafter, the tracking unit 22 detects the position of the eye in the tracking area every time a captured image is input.
[0028]
FIGS. 7A and 7B are explanatory diagrams illustrating how the tracking unit 22 tracks the position of the eye. FIG. 7A illustrates an initial tracking area, and FIG. 7B illustrates an eye detected after setting the initial tracking area. (C) shows the tracking area newly set based on the detected eye position, and (d) shows the eye position detected from within the newly set tracking area. I have. In FIG. 7, it is assumed that the eye indicated by the broken line has been detected last time, and the eye indicated by the solid line has been detected this time.
[0029]
When the position of the eye is detected by the position detection unit 21, the tracking unit 22 sets a tracking area around the detected position of the eye (FIG. 7A). The coordinate position of the eye at this time is (xk1, yk1). Thereafter, when a captured image is input, the tracking unit 22 detects the position of the eye from within the tracking area centered on (xk1, yk1) (FIG. 7B). The coordinate position of the eye detected at this time is defined as (xk2, yk2).
[0030]
Then, the tracking unit 22 sets a tracking area centered on the coordinate position (xk2, yk2) of the newly detected eye (FIG. 7C). Thereafter, when the captured image is input again, the tracking unit 22 detects the position of the eye from the tracking area centered on (xk2, yk2). Let the coordinate position of the eye detected at this time be (xk3, yk3).
[0031]
Then, the tracking unit 22 sets a tracking area centered on the new eye coordinate position (xk3, yk3) again (FIG. 7D). Thereafter, similarly, the tracking unit 22 detects the position of the eye from within the tracking area.
[0032]
The tracking unit 22 sends data of the detected eye position to the learning unit 23 and the inattentive detection unit 25 as shown in FIG. The learning unit 23 learns eye position data input in time series. Usually, a driver who is driving a vehicle visually checks a room mirror, left and right door mirrors, and the like in order to perform a confirmation operation. For this reason, the learning unit 23 can know the position of the eyes when looking at the positions of the room mirror and the left and right door mirrors by determining the amount of movement of the eyes and the like on the captured image.
[0033]
FIG. 8 is an explanatory diagram showing a state when the driver visually recognizes the front, the rear-view mirror, and the left and right door mirrors. FIG. 8A illustrates the position of the driver's eyes when the driver visually recognizes the front. Is shown. Also, (b) shows the position of the driver's eye when looking at the room mirror, (c) shows the right door mirror, and (d) shows the driver's eye while looking at the left door mirror. The eye position is shown. Further, (e) shows the coordinate position of the eye according to the visually recognized location of the driver. In FIG. 8, an image of 640 pixels in the X direction and 480 pixels in the Y direction will be described as an example.
[0034]
As shown in FIGS. 8A to 8D, when the driver visually recognizes the front, the rear-view mirror, and the left and right door mirrors, as shown in FIG. It is almost constant, except when the user is gazing forward. Specifically, when the driver is looking ahead, the coordinate positions (x, y) of the eyes are dispersed at (260, 220) to (285, 240). Here, the center position of both eyes is set as the coordinate position of the eye.
[0035]
On the other hand, when the driver is looking at the right door mirror, the driver concentrates on (175, 245). When the driver looks on the left door mirror, the driver concentrates on (395, 245). When the driver is looking at the rearview mirror, the driver concentrates on (380, 220).
[0036]
As described above, since the driver's eye position when viewing the mirror is concentrated to a certain extent in the same place, the amount of movement of the eye between the front view and the mirror view can be obtained by collecting data in advance. It can be acquired in a state that includes individual differences. That is, when the eye moves by a predetermined movement amount in a predetermined direction, it can be useful to estimate that one of the three mirrors is about to be visually recognized.
[0037]
Here, the residence time of the driver's eyes when viewing the mirror is known to be 0.7 seconds on average. FIG. 9 is an explanatory diagram showing the relationship between the dwell time of the driver's eyes and the vehicle speed when viewing the mirror.
[0038]
As shown in the figure, it can be seen that the residence time of the driver's eyes is concentrated at a location of about 0.7 seconds. It can also be seen that this time is not affected by vehicle speed. Therefore, it is possible to identify which mirror has been visually recognized based on the moving direction and the moving amount and the dwell time of the eye.
[0039]
As described above, the learning unit 23 learns the position of the eye on the captured image when the driver looks at the mirror based on the direction and amount of movement of the eye and the dwell time of the eye. Then, the learning unit 23 sends data of the learned eye position to the image area setting unit 24.
[0040]
The image area setting unit 24 sets a predetermined number of image areas having different allowable inattentive times based on the eye position data learned by the learning unit 23. That is, an image area is set on the captured image based on the positions of the eyes when viewing the left and right door mirrors and the room mirror.
[0041]
FIGS. 10A and 10B are explanatory diagrams illustrating examples of a predetermined number of image areas having different allowable inattentive times. FIG. 10A illustrates an example of a predetermined number of image areas, and FIG. 10B illustrates an allowable inattentive time of each image area. Is shown. The numerical values in the vertical and horizontal directions shown in FIG. 10A indicate the driver's face angle. The image area is originally set on the captured image, but in FIG. 10, an image area based on the driver's field of view will be described for convenience of description. Further, in the following description, a forward area that the driver most visually recognizes during driving is referred to as a forward gaze area.
[0042]
The image area setting unit 24 sets, for example, five image areas A to E, as shown in FIG. First, the image area setting unit 24 determines the right end of the image area A based on the position of the eye when viewing the room mirror. Further, the image area setting unit 24 determines the left end and the lower end of the image area B based on the position of the eye when viewing the right door mirror, and determines the right end and the lower end of the image area C based on the position of the eye when viewing the left door mirror. Determine the bottom edge. Further, the upper end of the image area E is determined based on the positions of the eyes when the left and right door mirrors are viewed.
[0043]
Further, the image area setting unit 24 determines the left end of the image area D based on the tracking limit position in the right direction. FIGS. 11A and 11B are explanatory diagrams of a setting method of the image area D by the image area setting unit 24. FIG. 11A illustrates a face orientation when the driver looks at the left door mirror, and FIG. The figure shows the face orientation when the driver looks at the right door mirror.
[0044]
As shown in FIG. 11A, the position of the driver's left eye when the driver looks at the left door mirror has almost reached the tracking limit. That is, if the driver turns his / her face to the left any more from the state where he / she is looking at the left door mirror, the left eye will not be imaged. As described above, when the left door mirror is viewed, the limit of capturing the left eye of the driver has been reached.
[0045]
In addition, as shown in FIG. 11B, when the driver is looking rightward, the right eye may reach the tracking limit. For example, there is a case where the driver is looking further to the right than the right door mirror for checking an intersection or the like. In this case, if the driver turns his face to the right any longer, the right eye will not be imaged. This position is the rightward tracking limit position. The image area setting unit 24 specifies a rightward limit position in the captured image, determines the left end of the image area D based on the tracking limit position, and sets the image area D.
[0046]
Note that the tracking limit position in the right direction may be obtained from the captured image as described above, but may be obtained by another method. That is, the tracking limit position in the right direction may be obtained by calculation based on the tracking limit position when the left door mirror is viewed. In this case, if the leftward tracking limit position and the target position are obtained, the rightward tracking limit position is obtained.
[0047]
FIG. 12 is an explanatory diagram of a specific example of the image areas A to E set on the captured image. When the image area shown in FIG. 10A is replaced on the captured image, the result is as shown in FIG. As described above, these areas A to E are set with reference to the coordinate positions of the eyes when viewing the room mirror and the coordinate positions of the eyes when viewing the left and right door mirrors. The left and right tracking limit positions are also used as references.
[0048]
FIG. 10 is referred to again. The image area setting unit 24 sets different allowable inattentive times for each of the image areas A to E allocated as described above. For example, as shown in FIG. 10B, the allowable inattentive time of the image area D is shorter than the allowable inattentive time of the image area B. This is because the face angle of the image area D is larger than that of the image area B. Similarly, the allowable inattentive time of the image area C is shorter than the allowable inattentive time of the image area A.
[0049]
Further, the allowable inattentive time of the image area B is shorter than the allowable inattentive time of the image area A. When both areas A and B are visually recognized, the driver's face angle is almost the same. However, a pillar is provided between the image area B and the front gaze area. When the driver visually recognizes the image area B with the pillar, the front gaze area becomes difficult to see. For this reason, even if the face orientation angles of the two regions A and B are almost the same, the allowable inattentive time of the image region B is shorter than the allowable inattentive time of the image region A.
[0050]
Further, the allowable inattentive time of the image area D is shorter than the allowable inattentive time of the image area C. The face orientation angles of these two regions C and D are almost the same. Further, a pillar is provided between the image area B and the front gaze area via the image area B. Similarly, a pillar is provided between the image area C and the front gaze area. However, the left pillar is located farther from the driver than the right pillar. For this reason, the apparent thickness of the pillar from the driver is different. Then, for the driver, the thicker the apparent pillar thickness becomes, the more obstructive the visibility of the forward gaze area is. Therefore, the allowable inattentive time of the image area D is shorter than the allowable inattentive time of the image area C.
[0051]
Further, the allowable inattentive time of the image area E is substantially the same as the allowable inattentive time of the image area D. For example, when the driver visually recognizes the installation position of the audio device or the like, the front gaze area becomes almost invisible because the eyelids are lowered. For this reason, the image area E has a shorter allowable inattentive time, which is almost equal to the image area D having the shortest allowable inattentive time.
[0052]
The inattentiveness detection unit 25 detects the driver's inattentive behavior based on the image areas A to E and the allowable inattentive time set as described above. In other words, if the inattentive viewing time has elapsed while the position of the eye is within any of the image areas A to E, the inattentiveness detection unit 25 detects the inattentive act of the driver.
[0053]
Next, the operation of the inattentive detection device 1 according to the present embodiment will be described in detail. First, the imaging unit 10 of the inattentiveness detection device 1 captures an image of a region including the driver's face, and sends data of the obtained captured image to the processing device 20.
[0054]
Then, the processing device 20 executes the processing according to FIG. FIG. 13 is a flowchart showing a detailed operation of the processing device 20 shown in FIG.
[0055]
As shown in the figure, first, the position detection unit 21 inputs data of a captured image (ST10). Thereafter, the position detection unit 21 determines whether or not an eye tracking area has been set (ST11). If it is determined that the eye tracking area has been set (ST11: YES), the process proceeds to step ST14.
[0056]
On the other hand, when it is determined that the eye tracking area has not been set (ST11: NO), the position detection unit 21 detects the position of the eye from the entire image (ST12). Here, the position of the eye is detected as described with reference to FIGS. Then, the position detection unit 21 sends data of the position of the eye to the tracking unit 22.
[0057]
After that, the tracking unit 22 sets a tracking area based on the eye position data from the position detection unit 21 (ST13). Then, the tracking unit 22 detects an eye from within the tracking area based on the newly input captured image data (ST14). Thereafter, the tracking unit 22 determines whether or not the eye has been correctly tracked (ST15).
[0058]
When it is determined that the eye tracking is not performed correctly (ST15: NO), the tracking unit 22 clears the eye tracking area (ST16), and the process returns to step ST10. In this case, the tracking area is set again.
[0059]
On the other hand, when it is determined that the eye tracking is correctly performed (ST15: YES), the tracking unit 22 updates the eye tracking area (ST17). That is, as described with reference to FIG. 7, the tracking area is updated based on the position of the eye.
[0060]
Thereafter, the learning unit 23 determines whether the learning of the eye position at the time of visually recognizing the predetermined position is completed (ST18). That is, it is determined whether or not learning of all of the room mirror, the left and right door mirrors, and the tracking limit position in the right direction has been completed. When it is determined that the learning of the eye position at the time of viewing the predetermined position has not been completed (ST18: NO), the learning unit 23 performs a learning process of the eye position (ST19). Then, the process returns to step ST10.
[0061]
Then, when the above process is repeated and the learning of the eye position is completed, “YES” is determined in step ST18. Thereafter, the image area setting unit 24 determines whether an image area has been set (ST20). If it is determined that an image area has been set (ST20: YES), the process proceeds to step ST22.
[0062]
On the other hand, when it is determined that no image area is set (ST20: NO), the image area setting unit 24 sets a predetermined number of image areas and sets different inattentive permissible times for those image areas (ST21). .
[0063]
Thereafter, the inattentiveness detection unit 25 performs an inattentiveness detection process based on the data of the position of the eye from the tracking unit 22 and the data on the image area from the image area setting unit 24 (ST22).
[0064]
If no inattentiveness is detected by this process, the process returns to step ST10. On the other hand, when an inattentiveness is detected, the inattentiveness detection unit 25 sends data indicating that the inattentiveness is present to the alarm 30. Then, the notifier 30 performs a notifying operation (ST23). Thereafter, the process ends.
[0065]
In this way, the driver's inattentive behavior is detected. As described above, in step ST21, a predetermined number of image areas having different allowable inattentive times are set, and in step ST22, inattentive detection is performed. As described with reference to FIG. 10, the inattentive-view allowable time is determined in consideration of the installation position of a pillar or the like, such as a structure in a vehicle, and is more appropriate than a conventional one. Has become. Since the inattentive-point detection is performed based on the appropriate inattentive-point allowable time, a device with high detection accuracy can be obtained.
[0066]
Next, the details of the learning process (ST19) shown in FIG. 13 will be described with reference to FIGS. FIG. 14 is a flowchart showing the details of the eye position learning process (ST19) shown in FIG. 13, and shows the learning process when the room mirror is viewed.
[0067]
As shown in the figure, first, the learning unit 23 determines whether or not the eye position has moved rightward by a predetermined amount M1 (ST30). If it is determined that the position of the eye has not moved rightward by the predetermined amount M1 (ST30: NO), the process proceeds to step ST32.
[0068]
On the other hand, when it is determined that the position of the eye has moved rightward by the predetermined amount M1 (ST30: YES), the learning unit 23 turns on the eye movement flag FL1 and performs another processing described with reference to FIGS. The movement flags FL2 to FL4 are turned off (ST31).
[0069]
Thereafter, the learning unit 23 determines whether or not the eye movement flag FL1 is on and the eye position remains at the position moved by the predetermined amount M1 for a predetermined time (ST32). When it is determined that the eye movement flag FL1 is not on or the eye position has not stayed at the position moved by the predetermined amount M1 for a predetermined time (ST32: NO), the processing illustrated in FIG. 14 ends.
[0070]
Here, if the position of the eye has not moved rightward by the predetermined amount M1 (“NO” in step ST30), the movement flag FL1 is not turned on, so the processing shown in FIG. Will end. Further, even if the vehicle has moved rightward by the predetermined amount M1, if the residence time is short, the processing shown in FIG. 14 ends. The predetermined time in step ST32 is set to, for example, "0.7 seconds".
[0071]
As described above, in the learning process, a process of excluding data for which the eye position data should not be learned is performed, and an image area is not set improperly in a subsequent process.
[0072]
By the way, when it is determined that the eye movement flag FL1 is on and the eye position has stayed at the position moved by the predetermined amount M1 for a predetermined time (ST32: YES), the learning unit 23 sets the eye movement flag FL1 to Turn off (ST33). Then, the learning unit 23 determines whether or not the rectangular small area a is set at the position where the eye is staying.
[0073]
When it is determined that the rectangular small area a is not set at the position where the eye is staying (ST34: NO), the rectangular small area a is set at the staying position (ST35), and the processing shown in FIG. finish.
[0074]
On the other hand, when it is determined that the rectangular small area a is set (ST34: YES), the numerical value of the counter α is counted up (ST36). Here, when the rectangular small area a is set but the eye retention position is not within the rectangular small area a, the small area a is set again in step ST35 or the processing shown in FIG. 14 is ended. (Not shown).
[0075]
Thereafter, the learning unit 23 determines whether or not the numerical value of the counter α has reached a predetermined value (ST37). If it is determined that the value of the counter α has not reached the predetermined value (ST37: NO), the processing shown in FIG. 14 ends.
[0076]
On the other hand, when determining that the numerical value of the counter α has reached the predetermined value (ST37: YES), the learning unit 23 sets, for example, the position of the small area a as the position of the eye when the room mirror is viewed (ST38). Thereby, the learning unit 23 completes the learning of the eye position. Thereafter, the process illustrated in FIG. 14 ends.
[0077]
By the way, in parallel with the execution of the processing shown in FIG. 14, the processing shown in FIGS. 15 to 17 is also executed. FIGS. 15 to 17 are flowcharts showing the details of the eye position learning process (ST19) shown in FIG. 15 shows a learning process when the left door mirror is viewed, FIG. 16 shows a learning process when the right door mirror is viewed, and FIG. 17 shows a learning process when the right rear mirror is viewed.
[0078]
Steps ST40 to ST48 shown in FIG. 15 are the same as steps ST30 to ST38 shown in FIG. Steps ST50 to ST58 shown in FIG. 16 and steps ST60 to ST68 shown in FIG. 17 are also omitted. In the processing of FIGS. 15 to 17, the moving directions and the moving amounts M2 to M4 are different in steps ST40, ST50, and ST60, respectively, and in FIG.
[0079]
Naturally, the small areas b to d and the counters β to θ for counting up are also different.
[0080]
Next, the inattentive judgment (ST22) shown in FIG. 13 will be described in detail. FIG. 18 is a detailed flowchart of the inattentive judgment (ST22) shown in FIG. Note that FIG. 18 illustrates a process of determining whether an eye exists in the image area A. Also, FIG. 18 shows a case where the position of the eye is within the image area A, but the same applies to the other image areas B to E.
[0081]
First, the inattentiveness detection unit 25 determines whether an eye is present in the image area A (ST70). When it is determined that the eyes are present in the image area A (ST70: YES), the inattentiveness detection unit 25 determines whether the timer is operating (ST71).
[0082]
If it is determined that the timer is operating (ST71: YES), the process proceeds to step ST73. On the other hand, if it is determined that the timer is not operating (ST71: NO), the inattentiveness detection unit 25 starts the timer (ST72).
[0083]
Thereafter, the inattentiveness detection section 25 determines whether or not the time measured by the timer (that is, the staying time) exceeds the allowable inattentive time set for the image area A (ST73). When it is determined that the inattentive time has not been exceeded (ST73: NO), the processing illustrated in FIG. 18 ends.
[0084]
On the other hand, when it is determined that the inattentive time has been exceeded (ST73: YES), the inattentiveness detection unit 25 outputs an alarm and resets the timer (ST74). Then, the process illustrated in FIG. 18 ends.
[0085]
If it is determined in step ST70 that the eye is not present in the image area A (ST70: NO), the inattentiveness detection unit 25 resets the timer without outputting an alarm (ST75), and the process ends thereafter. I do.
[0086]
By the way, in the present embodiment, the setting process (ST21) of the image areas A to E is performed by learning about all of the room mirror, the left and right door mirrors, and the rightward tracking limit position (including calculation by calculation). , Is to be executed. However, if at least one learning of the visual recognition position is completed, one of the image areas may be set based on the position and the inattentive judgment may be started. In this case, the image area setting unit 24 sequentially sets the image area each time learning of the position of the eye on the captured image is completed.
[0087]
FIG. 19 is an explanatory diagram showing a process when the image area is set stepwise. As shown in the figure, first, the learning unit 23 determines whether or not the image area A has not been set and the learning of the eye position when the room mirror is viewed is completed (ST80). When it is determined that the image area A has not been set and the learning of the eye position at the time of viewing the room mirror has been completed (ST80: YES), the image area setting unit 24 sets the image area F, and further sets the image area F An inattentive time is set (ST81). Then, the process illustrated in FIG. 19 ends.
[0088]
This image area F is, for example, as shown in FIG. FIG. 20 is an explanatory diagram illustrating an example of an image area set in a stepwise manner. The image area F is an area including the image areas A and C and a part of the image area E. The reason why the image area F is set in step ST81 is that the boundary between the front gaze area and the image area A can be set based on the position of the eye when the room mirror is viewed. Further, the boundary between the image area A and the image area C cannot be set only by the position of the eyes when the room mirror is viewed, so that the image area A includes an area on the side with a larger face direction angle than the image area A. Furthermore, since the lower end of the area cannot be set only by the position of the eyes when the room mirror is viewed, a part of the image area E is included.
[0089]
Description will be made again with reference to FIG. If it is determined that either the image area A has not been set or the learning of the eye position at the time of viewing the room mirror has been completed (ST80: NO), the process proceeds to step ST82. I do. Then, the learning unit 23 determines whether or not the image area C has not been set and the learning of the eye position when the left door mirror is viewed is completed (ST82).
[0090]
When it is determined that the image area C has not been set and the learning of the eye position when the left door mirror is viewed has been completed (ST82: YES), the image area setting unit 24 sets the image area C, and further sets the image area C. The inattentive time of C is set (ST83).
[0091]
The image area C here is as shown in FIG. 20, and is the same as that described with reference to FIG. When the position of the eye at the time of viewing the left door mirror is determined, the right end and the lower end of the image area C are determined as described above. Therefore, the image area setting unit 24 determines the image area C, and further sets the allowable inattentive time.
[0092]
Thereafter, the image area setting unit 24 determines whether or not the image area E has been set (ST84). When it is determined that the image area E has been set (ST84: YES), the processing illustrated in FIG. 19 ends.
[0093]
On the other hand, if it is determined that the image area E has not been set (ST84: NO), the image area setting unit 24 sets the image area E and the inattentive time of the area E (ST85). Then, the process illustrated in FIG. 19 ends.
[0094]
The image area E here is as shown in FIG. 20, and is the same as the person described with reference to FIG. When the position of the eye when viewing the left door mirror is determined, the upper end of the image area E can be determined as described above. For this reason, the image area setting unit 24 determines the upper end of the image area G based on the position of the eye when the left door mirror is viewed, and sets the inattentive time of the area G.
[0095]
Description will be made again with reference to FIG. If it is determined that either the image area C has not been set or the learning of the eye position when viewing the left door mirror has been completed (ST82: NO), the process proceeds to step ST86. I do. Then, the learning unit 23 determines whether or not the image area B has not been set and the learning of the eye position when the right door mirror is viewed has been completed (ST86).
[0096]
Then, when it is determined that the image area B has not been set and the learning of the eye position at the time of viewing the right door mirror has been completed (ST86: YES), the image area setting unit 24 sets the image area G, and further sets the image area G The inattentive time of G is set (ST87).
[0097]
The image area G here is as shown in FIG. 20 and is an area having a size obtained by adding the image area B and the image area D. The reason why the image area G is set in step ST87 is that the boundary between the front gaze area and the image area B can be set based on the position of the eye when the right door mirror is viewed. Also, the boundary between the image area B and the image area D cannot be set only by the position of the eye when the right door mirror is viewed.
[0098]
FIG. 19 is referred to again. After the setting of the image area G and the inattentive allowable time of the area G, the process proceeds to step ST84. Then, through the same processing as described above, the processing shown in FIG. 19 ends.
[0099]
If it is determined that either the image area B has not been set or the learning of the eye position at the time of viewing the right door mirror has been completed (ST86: NO), the process proceeds to step ST88. Move to Then, the learning unit 23 determines whether or not the image area D has not been set and the learning of the eye position at the time of the right rear view has been completed (ST88).
[0100]
Then, when it is determined that the image area D has not been set and the learning of the eye position at the time of the right rear view has been completed (ST88: YES), the image area setting unit 24 sets the image area D, and further sets the image area D The inattentive time of D is set (ST89).
[0101]
The image area D here is as shown in FIG. 20, and is the same as that described with reference to FIG. When the position of the eye at the time of the right rear view is determined, the boundary between the image area D and the image area B is determined as described above. Therefore, the image area setting unit 24 determines the image area D, and further looks aside at the area D. Set the allowable time. Then, the process illustrated in FIG. 19 ends.
[0102]
If it is determined that either the image area D has not been set or the learning of the eye position at the time of the right rear view has been completed is not satisfied (ST88: NO), the processing illustrated in FIG. 19 is performed. Ends.
[0103]
In this manner, according to the inattentiveness detection device 1 according to the present embodiment, a predetermined number of image areas having different inattentive allowable times based on the position of the eye on the captured image are set. Normally, the driver visually recognizes a relatively large amount of a rearview mirror or the like. Therefore, by using the position of the eye on the captured image as a reference, an image area can be set based on the position of a room mirror or the like. In addition, since it is based on the position of the rearview mirror or the like, a permissible inattentive time taking into account pillars or the like that block the driver's view can be allocated to each of the predetermined number of image areas.
[0104]
Then, inattention is detected based on the allowable inattentive time allocated to each image region and the position of the eye to be tracked. For this reason, inattentiveness detection can be performed based on the allowable inattentive time allocated to each image area in conformity with the in-vehicle environment.
[0105]
Therefore, it is possible to improve the accuracy of detecting the driver's inattentive behavior.
[0106]
The learning unit 23 learns the positions of the eyes on the captured image when viewing the positions of the left and right door mirrors and the room mirror. Usually, during driving, the driver visually recognizes many positions of the left and right door mirrors and the room mirror. For this reason, the positions of the detected eyes are large when looking at the left and right door mirrors and the room mirror, and the amount of data obtained by the detection is larger than when looking at other structures inside the vehicle. More. Therefore, the time required to determine the image area is shorter than when another structure inside the vehicle is viewed. Therefore, it is possible to shorten the time until the setting of the image area.
[0107]
Further, the learning section 23 learns the position of the eye on the captured image when the driver's eye reaches the tracking limit position. Usually, during driving, the driver checks the right rear relatively frequently. For this reason, the amount of data obtained by the detection is larger than when a structure inside another vehicle is viewed. Therefore, the time required to determine the image area is shorter than when another structure inside the vehicle is viewed. Therefore, it is possible to shorten the time until the setting of the image area.
[0108]
Further, the learning unit 23 learns the position of the eye on the captured image when the driver's eye reaches one of the left and right tracking limit positions. Then, based on the learned eye position, the position of the eye on the captured image when the driver's eye reaches the other tracking limit position is estimated. For this reason, even if the position of the eye on the captured image when the other tracking limit position is reached is not detected, the image area can be set based on the position obtained by estimation. Therefore, it is possible to shorten the time until the setting of the image area.
[0109]
Further, the image area setting unit 24 sequentially sets an image area every time the position of the eye on the captured image is learned. For this reason, the image area is set without waiting for the learning of the positions of all the eyes, so that it is possible to shorten the time until the inattentive detection is performed.
[0110]
In the above embodiment, the processing shown in FIG. 19 may be executed instead of steps ST19, ST20, and ST21 shown in FIG.
[0111]
Next, a second embodiment of the present invention will be described. The inattentiveness detection device 2 according to the second embodiment is similar to that of the first embodiment, but differs from that of the first embodiment in that an instructing unit (instruction means) 40 is provided.
[0112]
Hereinafter, an inattentiveness detection device 2 according to the second embodiment will be described. FIG. 21 is a configuration diagram of the inattentiveness detection device 2 according to the second embodiment of the present invention. The instructing unit 40 causes the learning unit 23 to learn the position of the eye when operated. Specifically, the instruction unit 40 is configured by a switch or the like installed below the front of the vehicle.
[0113]
FIG. 22 is a functional block diagram of the inattentiveness detection device 2 according to the second embodiment of the present invention. As shown at the same time, the instruction unit 40 is connected to the learning unit 23 in the processing device 20. The instruction section 40 sends a predetermined signal to the learning section 23 when operated. Then, the learning unit 23 receiving this starts learning the position of the eye.
[0114]
FIG. 23 is a flowchart showing a detailed operation of the processing device 20 shown in FIG. Steps ST90 to ST96 and steps ST100 to T103 in FIG. 13 are the same as steps ST10 to ST19 and steps ST20 to T23 shown in FIG.
[0115]
In step ST96, the learning section 23 performs a learning process of the position of the eye. At this time, when the driver operates the instruction unit 40, a predetermined signal is transmitted.
[0116]
The learning unit 23 determines whether or not the instruction unit 40 has been operated by determining whether or not a predetermined signal has been transmitted in step ST97. If it is determined that instruction unit 40 has not been operated (ST97: NO), the process returns to step ST90.
[0117]
On the other hand, when it is determined that the instruction unit 40 has been operated (ST97: YES), the learning unit 23 starts a learning process according to the instruction (ST98). The learning process performed at this time is the same as that shown in FIGS. 14 to 17, but differs from the process of step ST <b> 96 in that the position currently being visually recognized by the driver is forcibly learned. That is, if the instruction unit 40 is operated while the driver is viewing the rearview mirror, the position is forcibly learned.
[0118]
Then, the learning unit 23 determines whether or not learning has been completed for the learning process performed in response to the operation of the instruction unit 40 (ST99). If it is determined that learning has not been completed (ST99: NO), the process returns to step ST90. On the other hand, when it is determined that the learning has been completed (ST99: YES), image region setting section 24 determines whether or not an image region has been set (ST100). Thereafter, the same processing as in steps ST20 to T23 in FIG. 13 is performed.
[0119]
In this manner, according to the inattentiveness detection device 2 according to the present embodiment, similarly to the first embodiment, it is possible to improve the accuracy of the detection of the driver's inattentive act, and the time required to set the image area is improved. Can be shortened. Further, it is possible to shorten the time until the inattentive detection is performed.
[0120]
An instruction unit 40 is provided which causes the learning unit 23 to learn the position of the eye when operated. Therefore, the driver can easily learn the position of the eye only by operating the instruction unit 40, and the time until the setting of the image area is reduced. Therefore, it is possible to perform inattentiveness detection early from the start of operation or the like.
[0121]
Next, a third embodiment of the present invention will be described. The inattentiveness detecting device 3 according to the third embodiment is the same as that of the first embodiment, but includes a running state detecting unit (running state detecting unit) 50 and an allowable time changing unit (allowable time changing unit) 26. And is different from that of the first embodiment.
[0122]
Hereinafter, an inattentiveness detection device 3 according to the third embodiment will be described. FIG. 24 is a configuration diagram of the inattentiveness detection device 3 according to the third embodiment of the present invention. The traveling state detection unit 50 detects the traveling state of the vehicle, and includes a vehicle speed sensor 51, an inter-vehicle distance sensor 52 (distance sensor), and a navigation device 53.
[0123]
The vehicle speed sensor 51 detects a vehicle speed of the vehicle, and includes, for example, a sensor provided on an output side of the automatic transmission, a wheel speed sensor provided for detecting rotation of a wheel, and the like. The inter-vehicle distance sensor 52 detects the distance between the preceding vehicle and the host vehicle, and includes, for example, image processing using a CCD camera, an infrared camera, an ultrasonic sensor, a millimeter wave radar, a laser radar, and the like.
[0124]
The navigation device 53 guides the vehicle to the destination by presenting the driver with the vehicle position, the destination, the route to the destination, and the like. Further, the navigation device 53 has a function of presenting information on the type of road on the map to the driver.
[0125]
FIG. 25 is a functional block diagram of the inattentiveness detection device 3 according to the third embodiment of the present invention. As shown at the same time, the inattentiveness detecting device 3 according to the third embodiment has an allowable time changing unit 26 in the processing device 20.
[0126]
The permissible time changing unit 26 changes the inattentive permissible time according to an output signal from the traveling state detecting unit 50. Specifically, based on the vehicle speed signal from the vehicle speed sensor 51, the allowable time change unit 26 shortens the inattentive time as the speed of the vehicle increases. Further, the allowable time changing unit 26 shortens the inattentive time as the own vehicle approaches the preceding vehicle based on the distance signal from the following distance sensor 52. Further, the permissible time changing unit 26 determines, based on the information about the type of the road from the navigation device 53, the time when the vehicle is traveling on a general road, rather than the inattentive permissible time when the vehicle is traveling on the car dedicated road. Reduce inattention time.
[0127]
Next, an operation in a case where the inattentive-view allowable time is changed based on the vehicle speed will be described. FIG. 26 is a flowchart showing the detailed operation of the processing device 20 shown in FIG. 24, and shows an example in which the inattentive time is changed according to the vehicle speed. FIG. 26 illustrates a case where the allowable inattentive time of the image area A is changed.
[0128]
First, allowable time changing section 26 receives the vehicle speed signal from vehicle speed sensor 51 and detects the vehicle speed (ST110). Then, the allowable time changing unit 26 calculates a numerical value or the like corresponding to the vehicle speed. The allowable time changing unit 26 reads from the inattentive detection unit 25 information on the inattentive allowable time of the image area A set by the image area setting unit 24. Then, based on the information such as numerical values and the read information on the allowable inattentive time, the allowable inattentive time is changed and set (ST111).
[0129]
At the time of this change, the permissible time changing unit 26 changes the permissible inattentive time using a predetermined arithmetic expression, map data, or the like. FIG. 27 is an explanatory diagram illustrating an example of the inattentive viewing allowable time according to the vehicle speed. Specifically, the permissible time changing unit 26 shortens the inattentive permissible time as the vehicle speed increases, as shown in FIG. Note that the regions A to E in FIG. 27 indicate the image regions A to E described with reference to FIG.
[0130]
FIG. 26 is referred to again. After changing the inattentive-view allowable time, the process proceeds to step ST112, and ends after the process of step ST112 and thereafter. The processing of steps ST112 to ST117 is the same as the processing of steps ST70 to ST75 shown in FIG.
[0131]
Next, an operation in the case of changing the inattentive-view allowable time based on the inter-vehicle distance will be described. FIG. 28 is a flowchart showing the detailed operation of the processing device 20 shown in FIG. 24, and shows an example in which the inattentive viewing allowable time is changed according to the following distance. FIG. 26 illustrates a case where the allowable inattentive time of the image area A is changed.
[0132]
First, allowable time changing section 26 receives a distance signal from inter-vehicle distance sensor 52 and detects the distance to the preceding vehicle (ST120). Then, the allowable time changing unit 26 obtains a numerical value or the like corresponding to the inter-vehicle distance. The allowable time changing unit 26 reads from the inattentive detection unit 25 information on the inattentive allowable time of the image area A set by the image area setting unit 24. Then, based on the information such as the numerical values and the read information on the allowable inattentive time, the allowable inattentive time is changed and set (ST121).
[0133]
At the time of this change, the permissible time changing unit 26 changes the permissible inattentive time using a predetermined arithmetic expression, map data, or the like. FIG. 29 is an explanatory diagram showing an example of the inattentive viewing time according to the vehicle speed. Specifically, as shown in FIG. 29, the permissible time change unit 26 shortens the permissible inattentive time as the host vehicle approaches the preceding vehicle. Note that the regions A to E in FIG. 27 indicate the image regions A to E described with reference to FIG.
[0134]
FIG. 28 is referred to again. After the change of the inattentive-view allowable time, the process proceeds to step ST122, and ends after the process of step ST122 and thereafter. The processing of steps ST122 to ST127 is the same as the processing of steps ST70 to ST75 shown in FIG.
[0135]
Next, an operation in the case of changing the allowable inattentive time based on the information on the type of road will be described. FIG. 30 is a flowchart showing the detailed operation of the processing device 20 shown in FIG. 24, and shows an example in which the inattentive time is changed based on the road type information. FIG. 30 illustrates a case where the allowable inattentive time of the image area A is changed.
[0136]
First, the allowable time changing unit 26 inputs the road type information from the navigation device 53, and determines whether or not the own vehicle has entered the automobile exclusive road from the general road (ST130).
[0137]
When it is determined that the own vehicle is not on the automobile exclusive road from the general road (ST130: NO), the process proceeds to step ST132. On the other hand, when it is determined that the own vehicle has entered the automobile exclusive road from the general road (ST130: YES), the allowable time changing unit 26 sets the information of the inattentive time of the image area A set by the image area setting unit 24 as information. Read from the inattentiveness detection unit 25. Then, the read inattentive allowable time is set long. More specifically, the permissible time changing unit 26 sets “permissible inattentive time = permissible inattentive time × 1.2” and sets the new permissible inattentive time obtained (ST131).
[0138]
After that, the allowable time changing unit 26 inputs the road type information from the navigation device 53, and determines whether or not the own vehicle has entered the general road from the motorway (ST132).
[0139]
If it is determined that the vehicle is not on a general road from the motorway (ST132: NO), the process proceeds to step ST134. On the other hand, when it is determined that the own vehicle has entered the general road from the motorway (ST132: YES), the allowable time changing unit 26 sets the information of the inattentive time of the image area A set by the image area setting unit 24 as the information. Read from the inattentiveness detection unit 25. Then, the read inattentive time is set to be short. More specifically, the permissible time changing unit 26 sets “acceptable inattentive time = permissible inattentive time × 0.83”, and sets the obtained new permissible inattentive time (ST133).
[0140]
After the change of the inattentive-view allowable time, the process proceeds to step ST134, and ends after the process of step ST134 and thereafter. The processing of steps ST134 to ST139 is the same as the processing of steps ST70 to ST75 shown in FIG.
[0141]
In this way, according to the inattentiveness detection device 3 according to the present embodiment, similarly to the first embodiment, it is possible to improve the accuracy of the detection of the driver's inattentive act, and to reduce the time required for setting the image area. Can be shortened. Further, it is possible to shorten the time until the inattentive detection is performed.
[0142]
In addition, the traveling state of the vehicle is detected, and the allowable inattentive time is changed according to the detection result. For this reason, the permissible inattentive time can be changed in consideration of not only the vehicle interior environment but also the environment around the vehicle. Therefore, it is possible to further improve the accuracy of detecting the driver's inattentive behavior.
[0143]
In addition, based on the vehicle speed signal from the vehicle speed sensor 51, the allowable inattentive time is shortened as the speed of the vehicle increases. For this reason, for example, when the vehicle speed is high, even if the driver is visually recognizing the vicinity of the front gaze area, the allowable inattentive time can be shortened, and the inattentive detection can be performed more appropriately.
[0144]
Further, based on the distance signal from the inter-vehicle distance sensor 52, the inattention time is reduced as the host vehicle approaches the preceding vehicle. For this reason, for example, when the distance to the preceding vehicle is short, the inattentive allowable time can be shortened even if the driver is visually recognizing the vicinity of the forward gaze area, and the inattentive detection can be performed more appropriately. it can.
[0145]
Generally, ordinary roads have pedestrians, traffic lights, and the like, and motorways do not have pedestrians, traffic lights, and the like. As described above, it is a fact that general roads have more opportunities to stop vehicles than motorways. In addition, roads for motorways are often wider. For this reason, the inattentiveness detection can be performed more appropriately by shortening the allowable inattentive time when traveling on a general road than when traveling on a motorway.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an inattentiveness detection device according to a first embodiment of the present invention.
FIG. 2 is a functional block diagram of the inattentiveness detection device according to the first embodiment of the present invention.
FIG. 3 is an explanatory diagram of an initial process performed when a position detection unit detects a position of an eye.
FIG. 4 is an explanatory diagram illustrating a state when a position detection unit extracts a predetermined pixel.
FIG. 5 is an explanatory diagram illustrating a state in which pixels adjacent in the horizontal direction of an image are grouped.
FIG. 6 is an explanatory diagram illustrating a state after zoning by a position detection unit.
FIGS. 7A and 7B are explanatory diagrams showing how an eye position is tracked by a tracking unit. FIG. 7A shows an initial tracking area, and FIG. 7B shows a state of an eye detected after setting the initial tracking area. (C) shows the tracking area set based on the detected eye position, and (d) shows the eye position detected from the newly set tracking area.
FIG. 8 is an explanatory diagram showing a state when the driver visually recognizes the front, the rear-view mirror, and the left and right door mirrors, and FIG. 8A illustrates the position of the driver's eyes when the driver is visually recognizing the front; (B) shows the position of the driver's eye when looking at the rearview mirror, (c) shows the driver's eye position when looking at the right door mirror, and (d) shows It shows the position of the driver's eye when looking at the left door mirror, and (e) shows the coordinate position of the eye according to the driver's view point.
FIG. 9 is an explanatory diagram illustrating a relationship between a dwell time of a driver's eye and a vehicle speed when a mirror is viewed.
FIGS. 10A and 10B are explanatory diagrams illustrating examples of a predetermined number of image areas having different allowable inattentive times, in which FIG. 10A illustrates an example of a predetermined number of image areas, and FIG. Is shown.
11A and 11B are explanatory diagrams of a method of setting an image area by an image area setting unit, wherein FIG. 11A illustrates a state of a face direction when a driver looks at a left door mirror, and FIG. Shows the face orientation when looking at the right door mirror.
FIG. 12 is an explanatory diagram of a specific example of an image area set on a captured image.
FIG. 13 is a flowchart showing a detailed operation of the processing device shown in FIG. 1;
FIG. 14 is a flowchart showing details of the eye position learning process (ST19) shown in FIG. 13, and shows a learning process when the room mirror is visually recognized.
15 is a flowchart showing details of an eye position learning process (ST19) shown in FIG. 13 and shows a learning process when the left door mirror is visually recognized.
FIG. 16 is a flowchart showing details of an eye position learning process (ST19) shown in FIG. 13, and shows a learning process when the right door mirror is viewed.
FIG. 17 is a flowchart showing details of an eye position learning process (ST19) shown in FIG. 13, and shows a learning process at the time of right rearward visual recognition.
FIG. 18 is a detailed flowchart of an inattentive judgment (ST22) shown in FIG.
FIG. 19 is an explanatory diagram illustrating a process in a case where an image area is set in stages.
FIG. 20 is an explanatory diagram illustrating an example of an image area set in a stepwise manner.
FIG. 21 is a configuration diagram of an inattentiveness detection device according to a second embodiment of the present invention.
FIG. 22 is a functional block diagram of an inattentiveness detection device according to a second embodiment of the present invention.
23 is a flowchart showing a detailed operation of the processing device shown in FIG. 21.
FIG. 24 is a configuration diagram of an inattentiveness detection device according to a third embodiment of the present invention.
FIG. 25 is a functional block diagram of an inattentiveness detection device according to a third embodiment of the present invention.
26 is a flowchart showing a detailed operation of the processing device shown in FIG. 24, and shows an example in a case where an inattentive viewing time is changed according to a vehicle speed.
FIG. 27 is an explanatory diagram showing an example of an inattentive viewing allowable time according to a vehicle speed.
FIG. 28 is a flowchart showing a detailed operation of the processing device shown in FIG. 24, and shows an example of a case where an allowable inattentive time is changed according to an inter-vehicle distance.
FIG. 29 is an explanatory diagram showing an example of an inattentive viewing time according to a vehicle speed.
FIG. 30 is a flowchart showing a detailed operation of the processing device shown in FIG. 24, and shows an example in a case where an allowable inattentive time is changed based on road type information.
[Explanation of symbols]
1-3 ... inattentive detection device
10 ... Imaging unit (imaging means)
20 Processing unit
21 ... Position detector
22: tracking unit (tracking means)
23 Learning unit (learning means)
24. Image area setting unit (image area setting means)
25 ... inattentiveness detection unit (inattentiveness detection means)
26 ... Allowable time changing unit (Allowable time changing means)
30 ... Buzzer
40 ... instruction unit (instruction means)
50: running state detecting section (running state detecting means)
51… Vehicle speed sensor
52: Inter-vehicle distance sensor
53 ... Navigation device
AG: Image area

Claims (11)

車両の運転者の顔を撮影する撮影手段と、
前記撮像手段により得られた運転者の顔を含む撮像画像に基づいて、運転者の眼の位置を追跡する追跡手段と、
前記追跡手段から時系列的に出力される眼の位置の移動量と滞留時間とを判定して、運転者が所定位置を見たときの撮像画像上の眼の位置を学習する学習手段と、
前記学習手段によって学習された撮像画像上の眼の位置を基準として脇見許容時間が異なる所定個数の画像領域を設定する画像領域設定手段と、
前記画像領域設定手段により設定された画像領域に割り振られた脇見許容時間に基づいて、脇見検出を行う脇見検出手段と、
を備えることを特徴とする脇見検出装置。
Photographing means for photographing the face of the driver of the vehicle;
A tracking unit that tracks the position of the driver's eyes based on a captured image including the driver's face obtained by the imaging unit;
Learning means for determining the movement amount and the dwell time of the eye position output in time series from the tracking means, and learning the position of the eye on the captured image when the driver looks at the predetermined position,
Image area setting means for setting a predetermined number of image areas having different inattentive viewing times based on the position of the eye on the captured image learned by the learning means,
An inattentiveness detection unit that performs inattentiveness detection based on the inattentive allowance time allocated to the image area set by the image area setting unit,
An inattentiveness detection device comprising:
操作されることにより、前記学習手段に眼の位置の学習を行わせる指示手段をさらに備えることを特徴とする請求項1に記載の脇見検出装置。The inattentiveness detection apparatus according to claim 1, further comprising an instruction unit that, when operated, causes the learning unit to learn an eye position. 車両の走行状態を検出する走行状態検出手段と、
前記走行状態検出手段からの出力信号に応じて、脇見許容時間を変更する許容時間変更手段と、
をさらに備えることを特徴とする請求項1又は請求項2のいずれかに記載の脇見検出装置。
Traveling state detection means for detecting the traveling state of the vehicle,
According to an output signal from the traveling state detecting means, an allowable time changing means for changing an inattentive allowable time,
The inattentiveness detection apparatus according to claim 1, further comprising:
前記走行状態検出手段は、車両の車速を検出する車速センサを含み、
前記許容時間変更手段は、車速センサからの車速信号に基づき、車両の速度が速くなるに従って脇見許容時間を短くする
ことを特徴とする請求項3に記載の脇見検出装置。
The traveling state detecting means includes a vehicle speed sensor that detects a vehicle speed of the vehicle,
The inattentiveness detection device according to claim 3, wherein the allowable time change unit decreases the inattentive allowable time as the vehicle speed increases based on a vehicle speed signal from a vehicle speed sensor.
前記走行状態検出手段は、先行車両と自車両との距離を検出する距離センサを含み、
前記許容時間変更手段は、距離センサからの距離信号に基づき、自車両が先行車両に近くなるに従って脇見許容時間を短くする
ことを特徴とする請求項3又は請求項4のいずれかに記載の脇見検出装置。
The running state detecting means includes a distance sensor that detects a distance between the preceding vehicle and the own vehicle,
5. The inattentive side according to claim 3, wherein the allowable time changing unit shortens the inattentive side allowable time as the host vehicle approaches the preceding vehicle based on a distance signal from a distance sensor. 6. Detection device.
前記走行状態検出手段は、地図上の道路の種別に関する情報を運転者に提示するナビゲーション装置を含み、
前記許容時間変更手段は、ナビゲーション装置からの道路の種別に関する情報に基づき、自車両が自動車専用道路を走行しているときの脇見許容時間よりも、一般道路を走行しているときの脇見許容時間を短くする
ことを特徴とする請求項3〜請求項5のいずれか1項に記載の脇見検出装置。
The driving state detection unit includes a navigation device that presents information about a type of a road on a map to a driver,
The permissible time changing means is based on the information on the type of the road from the navigation device, and the permissible time when the vehicle is traveling on a general road, rather than the permissible time when the vehicle is traveling on a dedicated road. The inattentiveness detection apparatus according to any one of claims 3 to 5, wherein the distance is shortened.
前記学習手段は、前記所定位置として、左右のドアミラー及びルームミラーのうち少なくとも1つの位置を見たときの撮像画像上の眼の位置を学習することを特徴とする請求項1〜請求項6のいずれか1項に記載の脇見検出装置。7. The learning device according to claim 1, wherein the learning unit learns, as the predetermined position, an eye position on a captured image when viewing at least one of a left and right door mirror and a room mirror. 8. An inattentiveness detection device according to any one of the preceding claims. 前記学習手段は、運転者が前記所定位置を見たときとして、運転者の眼が追跡限界位置に達したときの撮像画像上の眼の位置を学習することを特徴とする請求項1〜請求項7のいずれか1項に記載の脇見検出装置。The said learning means learns the position of the eye on the captured image when the driver's eye reaches the tracking limit position, assuming that the driver looks at the predetermined position. Item 7. The inattentiveness detection device according to any one of items 7. 前記学習手段は、運転者が前記所定位置を見たときとして、運転者の眼が左右いずれか一方の追跡限界位置に達したときの撮像画像上の眼の位置を学習し、学習した眼の位置に基づいて、運転者の眼が他方の追跡限界位置に達したときの撮像画像上の眼の位置を推定することを特徴とする請求項1〜請求項8のいずれか1項に記載の脇見検出装置。The learning means learns the position of the eye on the captured image when the driver's eye reaches one of the left and right tracking limit positions, assuming that the driver looks at the predetermined position, and The method according to claim 1, further comprising: estimating a position of the eye on the captured image when the driver's eye reaches the other tracking limit position based on the position. Inattentive detector. 前記画像領域設定手段は、撮像画像上の眼の位置が学習される毎に、順次画像領域を設定していくことを特徴とする請求項1〜請求項9のいずれか1項に記載の脇見検出装置。The inattentive look according to any one of claims 1 to 9, wherein the image area setting unit sequentially sets an image area each time a position of an eye on a captured image is learned. Detection device. 車両運転者の顔を撮影して得られた運転者の顔を含む撮像画像に基づいて、運転者の眼の位置を追跡し、追跡により特定される運転者の眼の位置の移動量と滞留時間とを判定して、運転者が所定位置を見たときの撮像画像上の眼の位置を学習し、この学習した撮像画像上の眼の位置を基準として脇見許容時間が異なる所定個数の画像領域を設定し、この画像領域の脇見許容時間に基づいて、脇見検出を行うことを特徴とする脇見検出装置。The position of the driver's eye is tracked based on the captured image including the driver's face obtained by photographing the face of the vehicle driver, and the movement amount and the stay of the driver's eye position specified by the tracking are tracked. The time is determined, the position of the eye on the captured image when the driver looks at the predetermined position is learned, and a predetermined number of images having different inattentive times with respect to the eye position on the learned captured image are determined. An inattentiveness detection device that sets an area and performs inattentiveness detection based on the allowable inattentive time of the image area.
JP2003145047A 2003-05-22 2003-05-22 Armpit detector Expired - Fee Related JP4305057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003145047A JP4305057B2 (en) 2003-05-22 2003-05-22 Armpit detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003145047A JP4305057B2 (en) 2003-05-22 2003-05-22 Armpit detector

Publications (2)

Publication Number Publication Date
JP2004347464A true JP2004347464A (en) 2004-12-09
JP4305057B2 JP4305057B2 (en) 2009-07-29

Family

ID=33532340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003145047A Expired - Fee Related JP4305057B2 (en) 2003-05-22 2003-05-22 Armpit detector

Country Status (1)

Country Link
JP (1) JP4305057B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007072629A (en) * 2005-09-05 2007-03-22 Toyota Motor Corp Onboard warning device
JP2007213164A (en) * 2006-02-07 2007-08-23 Toyota Motor Corp Device for preventing looking aside while driving
DE112016003438T5 (en) 2015-07-30 2018-05-03 Aisin Seiki Kabushiki Kaisha DRIVING ASSISTANCE DEVICE
CN109774598A (en) * 2017-11-15 2019-05-21 欧姆龙株式会社 Divert one's attention decision maker, divert one's attention determination method and recording medium
CN109774469A (en) * 2017-11-15 2019-05-21 欧姆龙株式会社 Side view decision maker, other view determination method and storage medium
JP2020501227A (en) * 2016-11-07 2020-01-16 ナウト, インコーポレイテッドNauto, Inc. System and method for driver distraction determination

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007072629A (en) * 2005-09-05 2007-03-22 Toyota Motor Corp Onboard warning device
JP2007213164A (en) * 2006-02-07 2007-08-23 Toyota Motor Corp Device for preventing looking aside while driving
DE112016003438T5 (en) 2015-07-30 2018-05-03 Aisin Seiki Kabushiki Kaisha DRIVING ASSISTANCE DEVICE
US10347126B2 (en) 2015-07-30 2019-07-09 Aisin Seiki Kabushiki Kaisha Driving assistance device
JP2020501227A (en) * 2016-11-07 2020-01-16 ナウト, インコーポレイテッドNauto, Inc. System and method for driver distraction determination
JP7290567B2 (en) 2016-11-07 2023-06-13 ナウト,インコーポレイテッド Systems and methods for driver distraction determination
CN109774598A (en) * 2017-11-15 2019-05-21 欧姆龙株式会社 Divert one's attention decision maker, divert one's attention determination method and recording medium
CN109774469A (en) * 2017-11-15 2019-05-21 欧姆龙株式会社 Side view decision maker, other view determination method and storage medium
JP2019091267A (en) * 2017-11-15 2019-06-13 オムロン株式会社 Inattentive driving determination device, inattentive driving determination method, and program

Also Published As

Publication number Publication date
JP4305057B2 (en) 2009-07-29

Similar Documents

Publication Publication Date Title
CN112965502B (en) Visual tracking confirmation method, device, equipment and storage medium
JP6350145B2 (en) Face orientation detection device and vehicle warning system
EP2535224B1 (en) Driving support equipment for vehicles
JP4412380B2 (en) Driving support device, driving support method, and computer program
JP4981808B2 (en) Vehicle start control method and driver support system based on sensor
JP2002240659A (en) Device for judging peripheral condition of vehicle
JP7099037B2 (en) Data processing equipment, monitoring system, awakening system, data processing method, and data processing program
JP2018005793A (en) Pedestrian detection device and pedestrian detection method
JP2003123196A (en) Device and program for monitoring circumference of vehicle
JP3941770B2 (en) Collision possibility judgment device
WO2019116832A1 (en) Self-driving assistance device
JP2002314989A (en) Peripheral monitor for vehicle
JP4992891B2 (en) Arousal level judgment device
JPH0796768A (en) Forward watching degree detector
JP2005202787A (en) Display device for vehicle
JPH11348696A (en) Traveling path shape estimating device and running supporting device using it
JP4305057B2 (en) Armpit detector
JP4277678B2 (en) Vehicle driving support device
JP3864715B2 (en) Vehicle display device
KR20230004634A (en) Reactivity Calculation Method
JP5013175B2 (en) TRAVEL CONTROL DEVICE AND METHOD, PROGRAM, AND RECORDING MEDIUM
JP2009246808A (en) Surrounding monitoring device for vehicle
JP2004051006A (en) Intersection accident prevention device and program
JP4754305B2 (en) Operating state estimation device
JP2003187228A (en) Device and method for recognizing vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090420

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees