JP2004347406A - Powder sample molding jig for surface analysis, and powder sample molding method for surface analysis - Google Patents

Powder sample molding jig for surface analysis, and powder sample molding method for surface analysis Download PDF

Info

Publication number
JP2004347406A
JP2004347406A JP2003143313A JP2003143313A JP2004347406A JP 2004347406 A JP2004347406 A JP 2004347406A JP 2003143313 A JP2003143313 A JP 2003143313A JP 2003143313 A JP2003143313 A JP 2003143313A JP 2004347406 A JP2004347406 A JP 2004347406A
Authority
JP
Japan
Prior art keywords
powder
sample
holder
analysis
powder sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003143313A
Other languages
Japanese (ja)
Inventor
Yoichi Terai
洋一 寺井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003143313A priority Critical patent/JP2004347406A/en
Publication of JP2004347406A publication Critical patent/JP2004347406A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a powder sample molding jig for surface analysis and to provide a molding method of power sample molding using the jig for simplifying a sample creation procedure, improving a sample density, improving a detection sensitivity, reducing a sample formation time, reducing a decrease in the degree of vacuum (preventing the mixture of impurity substances), improving the reclamation properties of the jig, eliminating contamination, improving sample retaining properties, reducing costs, improving handling properties, and the like. <P>SOLUTION: The power sample molding jig for surface analysis has a holder having a hole for filling powder, a lower plate for sealing the lower end of the power filling hole, and a holder having a punch section for sealing and pressing the powder from the other end of the power filing hole, and the power sample pressure forming method uses the jig. Instead of the lower plate, the combination of the lower plate having a deaeration hole and a fine hole mesh sheet may be used. The diameter of the holder having a hole for filling power may be reduced toward the side of the analysis surface. A shaker may be provided. Pressurization is performed by two-stage press under pressure-reduced conditions, or in a vibration state. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、粉末試料をXPS(X線光電子分光分析)、EPMA(電子プローブマイクロアナライザ)、XRF(蛍光X線分析)等で表面分析する際に用いる粉末試料成形治具および粉末試料の成形方法に関する。
【0002】
【従来の技術】
従来、粉末試料をXPS(X線光電子分光分析)、EPMA(電子プローブマイクロアナライザ)、XRF(蛍光X線分析)等で分析する際、(1)粉末試料を分析用粉末保持用ホルダーの穴部に詰める方法、(2)カップに試料を入れてプレス成形する方法、(3)インジウム等の軟質金属に埋める方法、(4)カーボンテープ等に貼り付ける方法等により試料が準備されてきた。
【0003】
上記方法の内、(1)の方法では、粉末を穴に詰めるに当って、試料を数回詰める必要があり、手順が煩雑で時間がかかる。また、十分な圧力を加えることができないため、試料密度が不十分であり、検出感度が低いという問題点がある。
さらに、分析後、試料を取り出すとき、試料をほじり出す必要があり、ここでも手順が煩雑で時間がかかる。
【0004】
上記(2)の方法では、プレス後のカップをホルダーに取り付けるときカーボンテープ等で貼り付けなければならないため時間がかかると同時に、テープのような揮発性成分は、分析時の真空度を低下させて、分析精度を低下させる原因となる。また、カップは、再利用できないので、コストがかかる。
【0005】
上記(3)の方法では、埋設に利用する軟質金属元素が検出される可能性がある。さらに、その軟質金属は、再利用できないので、コストがかかる。
【0006】
上記(4)の方法では、カーボンテープは、揮発することにより分析器内の真空度を低下させ、汚染を増大させる。
【0007】
特に、低融点合金の粉末をプレス成形により固形化して乾燥機器分析の試料とする方法において、粉末を加熱下にプレス加工する分析方法(粉末プレス成形方法)が知られている(例えば、特許文献1参照)。しかしながら、この方法においても、プレス成形後の固形化試料をプレス加圧機から形枠と共に取り出す等の煩雑な作業が伴い、また時間を要する。さらに、その後の分析に当っては、前記(2)に記載したのと同様の欠点がある。
【0008】
【特許文献1】
特開平1−163639号公報
【0009】
【発明が解決しようとする課題】
本発明は、上記のとおりの従来技術が有する各問題点を解消し、また長所(試料作成手順の簡素化、試料密度の改善、検出感度の向上、試料作成時間の短縮、真空度低下の防止(不純物質の混入防止)、治具の再利用性の改善、汚染解消、試料保持性の改善、コスト低減、取扱い性の改善等)を提供できる表面分析用粉末試料成形治具、およびその治具を用いた粉末試料のプレス成形方法を提供することにある。
【0010】
【課題を解決するための手段】
上記問題点を解決するために1番目の発明によれば、粉末充填穴付きホルダー、粉末充填穴の下端を封止する下部板、および充填された粉末を粉末充填穴の他端からプレス、封止するパンチ部付きホルダー、を有する表面分析用の粉末試料成形治具が提供される。
【0011】
2番目の発明によれば、1番目の発明において、さらに加振器が備えられる。
【0012】
3番目の発明によれば、1番目又は2番目の発明において、下部板を脱気穴付き下部板とし、その脱気穴付き下部板と粉末充填穴付きホルダーとの間に粉末保持用微細孔メッシュシートを介在させている。
【0013】
4番目の発明によれば、1〜3番目の発明において、粉末充填穴付きホルダーの充填穴の径を少なくとも下部板に接する側面近傍で分析表面に向けて順次縮径させている。
【0014】
5番目の発明によれば、下部板の上部に粉末充填穴付きホルダーを載置する工程、試料となる粉末を粉末充填穴に充填する工程、パンチ部付きホルダーのパンチ部を粉末充填穴に挿入して粉末を封止、プレスする工程を含む、表面分析用粉末試料成形方法が提供される。
【0015】
6番目の発明によれば、5番目の発明の表面分析用粉末試料成形方法において、2番目の発明の加振器付き粉末試料成形治具を用いて振動を与えつつプレス成形する方法が提供される。
【0016】
7番目の発明によれば、5番目又は6番目の発明の表面分析用粉末試料成形方法において、さらに、3番目の発明の脱気穴付き下部板と粉末保持用微細孔メッシュシートを介在させた表面分析用粉末試料成形治具を利用して、充填穴内を減圧状態に保ちながらプレス成形する方法が提供される。
【0017】
8番目の発明によれば、5〜7番目の発明の表面分析用粉末試料成形方法において、4番目の発明の粉末充填穴付きホルダーの充填穴の径を少なくとも下部板に接する側面近傍で分析表面に向けて順次縮径させた粉末試料成形治具を用いて、プレス成形する方法が提供される。
【0018】
9番目の発明によれば、6〜8番目の発明の表面分析用粉末試料成形方法において、減圧状態でのプレス加工をするに当って、減圧脱気により真空度が10Pa〜10−3Paの範囲となった状態で、1〜8MPaの範囲の第1圧で第1段のプレスをし、次いで加圧して、5〜20MPaの範囲の第2圧で第2段プレスする2段プレス工程を行う、表面分析用粉末試料成形方法が提供される。
【0019】
10番目の発明によれば、6〜9番目の発明の表面分析用粉末試料成形方法において、振動数1000〜5000Hzで加振する、表面分析用粉末試料成形方法が提供される。
【0020】
11番目の発明によれば、5〜10番目の発明の表面分析用粉末試料成形方法において、さらに、成形した表面分析用の粉末試料を試料成形治具に保持したまま、下部板を取り除き、その下部板に接していた面を表面分析に供する、表面分析用粉末試料成形方法が提供される。
【0021】
【発明の実施の形態】
本発明は、様々な粉末に対して、金属(例えば、Al,Ni,Cu,Mg)、合金粉末(例えば、SUS)、酸化金属粉末(例えば、CuO,NiO,Fe)、セラミックス粉末(例えば、ZrO,CeO,Al)、等に利用可能であるが、特にセラミック粉末(例えば、ZrO,Al)、合金粉末(例えば、CuO,NiO)の表面分析用の粉末試料を作成する際に有効に利用できる。これらの粉末の用途は様々であるが、例えば、触媒、焼結金属、ハンダ、合金、セラミックス、等が挙げられる。
【0022】
試料となる粉末の大きさは、各分析対象材料および分析方法により異なるが、好ましくは1〜10μm程度である。
【0023】
粉末充填穴付きホルダーの形状は、円板形、多角板形等適宜選定できるが、通常は円板形とする。粉末充填穴付きホルダーの寸法は、粉末充填穴の寸法、試料および分析装置等に応じて適宜選択できるが、通常は、径10mm〜50mm程度である。ホルダーの厚さは、2mm〜10mm程度である。ホルダーの材質は、粉末のプレス成形に耐え得る強度のものであればいかなるものでもよいが、通常は、金属、合金であり、SUSが、耐さび、すなわち酸化しにくい点で好ましい。
【0024】
穴の形状は、円筒形、多角筒形等適宜選定できるが、通常は試料の均質性を保持する上で円筒形とする。粉末充填穴の寸法は、試料および分析装置に応じて適宜選択できるが、通常は直径3mm〜30mm程度である。穴の深さは、2mm〜10mm程度である。勿論、プレス成形時の圧縮比(充填時の粉末高さとプレス成形後の加圧粉末高さの比)に応じても適宜選定できる。
【0025】
下部板は、粉末充填穴付きホルダーの充填穴内の粉末がパンチ部付きホルダーによりプレス成形される際、その充填穴の下部端を完全密閉し、加圧成形された粉末表面が粉末充填穴付きホルダーの表面と同一面となるように保持される必要がある。したがって、この下部板はプレス時の圧力に耐えて変形しない材料でなければならない。一般的に、その材料としては、分析試料に悪影響を与えず、試料平面を平滑にできる材料である必要がある。具体的には、SUSが好ましい。また、その厚さは、5mm〜10mm程度が適当である。
【0026】
パンチ部付きホルダーは、粉末充填穴に対応する形状・寸法のパンチ部を有している。そのパンチ部の長さは、充填穴内の粉末をプレス加工して、緻密な圧縮粉末試料が得られるように、圧縮比に応じて適宜決定される。圧縮比は、様々に変えられるが、一般に2〜5が好ましい。その材料は、上記の粉末充填穴付きホルダー及び下部板と同様なものであればよいが、同じ材質が、ホルダーが加熱される場合等において、成形治具の構成部材の熱影響が少ないので好ましい。
【0027】
ここで、本発明について、図面を参照して、より詳細に説明する。
図1は、本件発明の成形治具とそれを用いた表面分析用粉末試料のプレス成形方法並びにその試料の利用形態を概説する図面である。この図面に基づいて、本発明の成形治具とその治具による加圧プレス粉末試料の成形方法を説明すると、第1工程(A)では、まず下部板2の上面に密着して、粉末充填穴5付きホルダー1を載置する。その粉末充填穴5に分析すべき試料となる粉末4を充填する。
ここで、粉末充填穴付きホルダー1は、下部板2と一体化されたガイド6により下部板2に対して、移動しないように固定される。
【0028】
第2工程(B)では、パンチ部付きホルダー3が、そのパンチ部7が粉末充填穴5に挿入されて、その内の粉末試料4を封止しつつプレス加工する。この際、先のガイド6は、パンチ部付きホルダー3のパンチ部7が正確に粉末充填穴5に挿入されてその内の粉末試料4をプレスすべく、パンチ部付きホルダー3をガイドする役目も果たす。プレスの際の圧力は、粉末試料の種類および必要な密度により異なるが、通常、粉末試料に加えられる圧力が、1MPa〜20MPa程度となるように選定される。パンチ部付きホルダー3のストローク長は、加圧プレス粉末試料の寸法および粉末の圧縮比により選定される。以上により、プレスされた粉末試料4’が得られる。粉末試料4の圧縮比は、材質、分析条件によって変わりうるが、2〜5程度である。
【0029】
次いで、第3工程(C)では、加圧・成形された粉末試料4’は、粉末充填穴付きホルダー1内に保持され、パンチ部付きホルダー3に支持されたまま、反転し、その後、下部板2を加圧・成形さらた粉末試料4’の表面から取り除く。粉末試料4’の分析面が粉末充填穴付きホルダー1と同一面に表われる。その後、この状態のまま、分析装置に導入して、分析を完了する。粉末試料4’の分析面が粉末充填穴付きホルダー1と同一面であるので、分析が迅速、的確に実施できる。分析終了後、パンチ部付きホルダー3を粉末充填穴付きホルダー1から分離し、加圧粉末試料4’を充填穴5から、充填穴と同径または小径の押出し具により、押出して除去する。分析後の加圧粉末試料の除去も簡便にできる。
【0030】
上記の説明で明らかなように、本件発明の治具を用いて、加圧粉末試料を成形し、下部板のみを除去して、各ホルダーに保持したまま、加圧粉末試料の分析面を露出して、分析に供すると、手順も単純化され、確実に高圧でプレス加工できるので、高密度化された分析精度の向上した加圧粉末試料が時間をかけないで得られる。さらに、分析面は、下部板のみを除去することにより現れ、そのまま、テープ等の別途の保持手段を要することなく、簡便に粉末の表面分析に供することができるので、迅速かつ精度よく、また汚染の恐れなく効率よく分析が実施できる。分赤面が粉末充填穴付きホルダー面と同一面のため、ホルダーが検出信号を妨げることがない利点がある。さらに、分析実施後の試料の除去も簡便に実施できるので、分析サイクルに要する時間を短縮できる。
【0031】
図2は、本件発明の他の態様に係る成形治具とそれを用いた加圧プレス粉末試料の成形方法並びにその試料の利用形態を概説する図面である。この実施形態では、下部板を脱気穴付き下部板9として、その脱気穴付き下部板9と粉末充填穴付きホルダー1との間に粉末保持用微細孔メッシュシート8を介在させる。工程(D)において、試料粉末4は、微細孔メッシュシート8に下端面を支持された粉末充填穴5中に入れられる。微細孔メッシュシート8のメッシュの大きさは、粉末をパンチ部付きホルダー3による加圧の前後を通じて保持できる大きさである。さらに、下部板9と共にそのメッシュシート8を粉末充填穴付きホルダー1から除去する際、加圧された粉末と固着して支障を来たす寸法、形状または材質であってはいけない。分析粉末等との関連において選定されるものであるが、例示すれば、目開き0.5μm〜1μm程度である。次いで、真空脱気により、脱気孔付き下部板9の脱気孔および微細孔メッシュシート8の微細孔を介して脱気する。したがって、微細孔メッシュシート8は、分析試料用粉末4の保持と粉末充填穴5からの脱気を可能とさせる機能を有するものである。
【0032】
続く工程(E)では、真空脱気を継続しつつ、パンチ部付きホルダー3を粉末充填穴5内に進行させて、粉末試料4をプレス加工する。粉末試料4のプレス成形が完了すると、粉末試料成形治具を上下反転して、真空脱気状態を大気圧に戻して、脱気穴付き下部板9と微細孔メッシュシート8を粉末充填穴付きホルダー1の上面から除去する。そのホルダー1の上面と同一面に現れた加圧粉末試料4’の表面を、粉末充填穴付きホルダー1とパンチ部付きホルダー3とに一体に保持したまま分析器に導入する。
【0033】
ここで、プレス圧を減圧状態で実施すると、XPS感度が向上することが本発明者により発見された。その具体的説明は、実施例2において後述するが、真空度が大気圧の1/3になった時点で第1圧(1〜8MPa:最終圧の1/3程度)を加え、到達真空度において第2圧(5〜20MPa:最終圧)を加えて、2段プレスを実施した。その間の真空度とXPSによる分析感度の関係を図7に示す。図7に見られるとおり、真空度が10Pa〜10−3Paのとき、XPS分析感度が必要感度に向上していたことが判る。この感度は、白金をバックグランドから分離するため必要な感度である。この場合10−2Pa以下で感度が低下しはじめたのは、微細クラックが発生したためのであるが、10−3Paまでは分析に支障がないものであった。これらの条件は、特定の金属等、例えば白金を分析のバックグランドから分離するために求められる、特に好ましい条件であって、通常の分析条件では、必ずしも求められるものではない。
このように、第1圧の低い圧力でプレスすることにより、粒子間の間隙がつながって真空引きが効率よくなるため密度が上がり、さらに第2圧でプレスすることにより効率が上がる。その結果充填密度が向上する。また必要な感度はバックグランドからのピークのとり出し精度をよくするものである。
【0034】
以上のとおりであるので、先の発明の有する作用効果に加えて、粉末試料(特にその分析対象となる表面側)から真空脱気することにより、試料の主に分析面の充填効率が向上するために密度が高くなり分析感度が飛躍的に向上する。また、脱気に当って、試料粉末よりも微細な気孔を有するシートを介して真空脱気することで,脱気が均等にできて、より正確な分析が可能となる。特に、脱気時の真空度および加圧プロセスの最適化(2段プレス)により、充填効率がさらに向上することになる。
【0035】
図3は、本件発明の更に他の態様に係る成形治具による加圧プレス粉末試料の成形方法を概説する図面である。この実施形態では、粉末試料成形治具に加振器10を付加している。加振器10は、粉末試料形成治具のいずれの部位につけても良いが、通常は、その治具の下部に接して設ける。また、粉末充填穴5内の粉末試料4を振動させることにより、迅速に高密度となるようにするものであるから、その作用を達成するものであれば、どのようなタイプの振動器であっても利用可能である。
【0036】
ここで、プレス圧を加振状態(振動を与えながら)で実施すると、XPS感度が向上することが本発明者により発見された。その具体的説明は、実施例3において後述するが、当初は、無加圧状態で、初期振動を、振動数を第1振動数の1/3程度として約30秒間加え、次いで、第1振動数を第2振動数の1/3程度として、さらに約30秒間加えた。初期振動開始後1分経過後、第2振動数に増加して、プレス圧を数秒から10秒程度かけて5〜20MPaに上昇させて約50秒程度その加圧プレス状態を継続する。加圧プレス圧を上昇し始めてから(第2振動に切り替えてから)約1分間経過後、振動と加圧を停止して、粉末試料の振動加圧成形を終了した。この際の振動数とXPS分析感度との関係を図10に示す。図10から明らかなように、第2振動数が1000〜5000Hzのとき、XPS分析感度が必要感度にまで向上していることが判る。この感度は、白金をバックグランドから分離するため必要な感度である。なお、4500Hz以上では充填効率が上がらず感度の低下が見られた。これらの条件は、特定の金属等、例えば白金を分析のバックグランドから分離するために求められる、特に好ましい条件であって、通常の分析条件では、必ずしも求められるものではない。
【0037】
以上の構成により、成形治具を振動させることにより、特に2段階で振動を付与することにより、試料の充填効率が向上して密度が高くなり分析感度がより向上する。
【0038】
図4は、本件発明の更に他の態様に係る成形治具の異形粉末充填穴付きホルダー(分析面側の径を小さくした充填穴)を説明する図面(加圧成形後の粉末試料を含む)である。この実施形態においては、粉末充填穴付きホルダー1’において、充填穴の分析面側(下部板に接する側)の径を小さくしている。この径を小さくする部分は、少なくとも分析面側近傍の径が小さくなるのであれば、穴の全体が次第に小さくなくものであろうと、一部分(分析面側近傍)のみが小さくものであろうと、あるいは途中に同径部介在するものであろうと使用可能である。
この縮径の形状は、円錐漏斗状であるのが、加圧成形および分析終了後の加圧成形粉末の脱型にとって好ましい。1つの態様においては、異形粉末充填穴付きホルダー1’の充填穴の寸法は、D1の径が3〜30mmであり、分析面からみてホルダー1’の厚さ(2〜10mm)の約1/5〜1/2の位置から分析面に向いて漏斗状に次第に縮径して、分析面における穴径D2が2〜20mmとなるようにする。
【0039】
ここにおいて、本発明者は、異形粉末充填穴付きホルダーを用いて、振動条件下にプレス成形すると、異形粉末充填穴付きホルダーを用いることにより充填密度が向上し、振動条件下にプレスすると充填密度がさらに向上し、これらの相乗作用により、XPS感度が非常に向上することを発見した。その具体的態様は、実施例4の説明において説明するが、図4に示すような異形粉末充填穴付きホルダー(1’)を使用して、第2振動数1000〜5000Hzの振動を加えながら前記の実施例3と同じ条件でプレス加工すると、図11に示すように、実施例3に比べて、XPS感度がおよそ10%向上した。これらの条件は、特定の金属等、例えば白金を分析のバックグランドから分離するために求められる、特に好ましい条件であって、通常の分析条件では、必ずしも求められるものではない。
【0040】
以上のとおりの構成により、分析面の密度向上による分析感度が向上すると共に、成形後の試料の保持性が向上して、取扱いの効率化が図れる。さらに、分析終了後の加圧成形粉末の脱型を迅速に行うことができる。
【0041】
【実施例】
実施例1
本実施例においては、図1に示した本発明の表面分析用の粉末試料成形治具を採用して、図1に示す手順に従って、粉末試料を作成した。まず、本発明の表面分析用の粉末試料成形治具を構成する粉末充填穴付きホルダー1の粉末充填穴5の下端部を下部板2で封止した。次いで、その充填穴にアルミナに白金を5質量%担持した触媒粉末(粒径3μm)を充填した。そこで、パンチ部付きホルダー3を前記下部板2を移動しないように固定したガイド6に沿って加工させ、そのパンチ部7を前記装填穴5中に挿入して、圧力(10MPa)をかけた。この加圧成形された粉末を充填穴に保持した状態の成形治具を上下反転し、ガイド6と下部板2を取り除き、表面分析用の加圧された粉末試料を得た。得られた粉末試料の概容を図5に示す。
【0042】
加圧粉末試料4’の分析面は、粉末充填穴付きホルダー1の外表面と同一面を有していた。成形状態は良好で、粉落ち等はなかった。この状態ですでに試料がホルダーと一体になっているので、このままXPS等の分析室へ移動させて分析することができた。分析面の径は、5mmとした。また、粉末充填穴付きホルダー1の厚さxは、3mm、加圧粉末試料4’の厚さは、1mmであった。これを以下の条件においてXPSで分析した。
X線源
ターゲット:Mg
出力:400W
分析面積:800μmφ
真空度:8×10−8Pa
【0043】
その結果、図6に示すような、検出感度が良好なスペクトルが得られた。
【0044】
実施例2
本実施例においては、図2に示した本発明の表面分析用の粉末試料成形治具を採用して、図2に示す手順に従って、粉末試料を作成した。まず、図2に示した本発明の表面分析用の粉末試料成形治具を構成する粉末充填穴付きホルダー1の粉末充填穴5の下端部を微細孔メッシュシート8と脱気穴付き下部板9で封止した。次いで、脱気穴および微細孔メッシュシートの微細孔を介して粉末試料充填穴5から真空脱気しつつ、その充填穴5にアルミナに白金を0.1質量%担持した触媒粉末(粒径3μm)を充填し、次いでパンチ部付きホルダー3のパンチ部7により加圧成形した。その際の真空引きと加圧プレスのプロセスを図7に示す。真空度が大気圧の1/3になった時点で第1圧(5MPa:最終圧の1/3程度)を加え、到達真空度において第2圧(10MPa:最終圧)を加えて、2段プレスを実施した。その間の真空度とXPSによる分析感度の関係を図8に示す。図8に見られるとおり、真空度が10Pa〜10−3Paのとき、XPS分析感度が必要感度に向上していたことが判る。この感度は、白金をバックグランドから分離するため必要な感度である。この場合10−2Pa以下で感度が低下しはじめたのは、微細クラックが発生したためのであるが、10−3Paまでは分析に支障がないものであった。真空脱気する以外は、加圧の手段は実施例1に記載した方法と同様である。その後、図2(E)に示す粉末試料成形治具を上下反転させ、微細孔メッシュシート8、脱気穴付き下部板9およびガイド6を取り除いて、図2(F)に示す分析器にかけられる状態のホルダーと一体になった分析用加圧粉末試料を得た。加圧成形された分析面は、粉末充填穴付きホルダーの外表面と同一面を有していた。成形状態は良好で、粉落ち等はなかった。この状態ですでに試料がホルダーと一体になっているので、このままXPS等の分析室へ移動させて分析ができた。分析面の径は、5mmとした。また、粉末充填穴付きホルダーの厚さXは、3mm、加圧後の粉末試料厚さは、1mmであった。これをXPSで分析した結果、検出感度が良好なスペクトルが得られた。
【0045】
実施例3
本実施例においては、図3に示した本発明の表面分析用の粉末試料成形治具を採用して、図3に示す手順に従って、粉末試料を作成した。本実施例の粉末試料成形治具は、成形治具の下に加振器10を設置した他は、ホルダー等の基本構成および寸法等、実施例1のものと同じとした。図3に示した本発明の表面分析用の粉末試料成形治具を構成する粉末充填穴付きホルダー1の粉末充填穴5の下端部を下部板2で封止した。次いで、加振器10により振動を与えつつ、粉末試料充填穴5にアルミナに、白金を0.1質量%担持した触媒粉末4(粒径3μm)を充填し、次いでパンチ部付きホルダー3のパンチ部7により加圧成形した。その際の加振と加圧プレスのプロセスを図9に示す。当初は、無加圧状態で、第1振動数を第2振動数の1/3程度として約30秒間加え、第2振動数に増加して、プレス圧を数秒から10秒程度かけて10MPaに上昇させて約50秒程度その加圧プレス状態を継続する。加圧プレス圧を上昇し始めてから(第2振動に切り替えてから)約1分間経過後、振動と加圧を停止して、粉末試料の振動加圧成形を終了した。この際の振動数とXPS分析感度との関係を図10に示す。図10から明らかなように、第2振動数が1000〜5000Hzのとき、XPS分析感度がより大幅に向上していることが判る。この感度は、白金をバックグランドから分離するため必要な感度である。なお、4500Hz以上では充填効率が上がらず感度の低下が見られた。
【0046】
実施例4
本実施例においては、図3に示した本発明の表面分析用の粉末試料成形治具において、粉末充填穴付きホルダー1を図4に示す異形粉末充填穴付きホルダー1’に換えた他は、同じものを採用して、実施例3と同様の試料および方法に従って、プレス成形により粉末試料を作成した。図4に示すように、異形粉末充填穴付きホルダー1’の充填穴の寸法は、D1の径が8mmであり、分析面から見てホルダーの厚さ(10mm)の約1/5〜1/2の位置から、分析面に向いて漏斗状に次第に縮径して分析面における穴径D2が5mmとなるようにした。その表面分析用試料を用いて分析した場合の、第2振動条件とXPS感度との関係を、実施例3で得られた結果と共に図11に示す。図11から明らかなように、異形粉末充填穴付きホルダーを使用して、第2振動数1000〜5000Hzの振動を加えながら実施例3と同じ条件でプレス加工すると、実施例3に比べて、XPS感度がおよそ10%向上した。これは、異形粉末充填穴付きホルダーの穴の形状と、加振器による振動との相乗効果により充填効率がさらに向上して密度が増したためであると考えられる。このレベルの感度向上は、分析におけるバックグランドとの分離にかなり有効である。また、粒度が粗く、成形性が良くない粉末試料を用いた場合でも、ホルダーを傾けても試料の脱落が起こらず、保持性の向上が確認された。
【0047】
【発明の効果】
上記のとおり、本発明によれば、従来技術の有する各種問題点を解決し、試料作成手順の簡素化、試料密度の改善、検出感度の向上、試料作成時間の短縮、真空度低下の防止(不純物質の混入防止)、治具の再利用性の改善、汚染解消、試料保持性の改善、コスト低減、取扱い性の改善等の作用効果が奏せられる。
【図面の簡単な説明】
【図1】本件発明の粉末試料加圧成形治具とそれによる粉末試料の加圧プレス成形方法並びにその試料の利用形態を概説する図面である。
【図2】本件発明の微細孔メッシュシートと脱気穴付き下部板を用いた他の態様に係る粉末試料加圧成形治具とそれによる粉末試料の加圧プレス成形方法並びにその試料の利用形態を概説する図面である。
【図3】更に加振器を具備する本発明の他の態様に係る粉末試料加圧成形治具とそれによる粉末試料の加圧プレス成形方法を概説する図面である。
【図4】本件発明の更に他の態様に係る粉末試料加圧成形治具の異形粉末充填穴付きホルダー(分析面側の径を小さくした充填穴)を説明する図面である。
【図5】本件発明に係る成形治具により成形した加圧プレス粉末試料の表面から下部板を取り除いて、粉末試料の分析面を上側に向けた状態を説明する図面(図3の(C)に対応する)である。
【図6】実施例1におけるXPS分析結果のスペクトルを示すグラフである。
【図7】実施例2に対応する本件発明の加圧プレス粉末試料の成形方法(2段プレス)における、プレス圧と真空度脱気プロセスの関連を示す図である。
【図8】図7の加工プロセスに対応して得られた到達真空度とXPS感度の関係を示す図である。
【図9】実施例3に対応する本件発明の加圧プレス粉末試料の成形方法(振動プレス)における、プレス圧と振動数の関連を示す図である。
【図10】図9の加工プロセスに対応して得られた第2振動数とXPS感度の関係を示す図である。
【図11】図4の異形粉末充填穴付きホルダーを採用した加工プロセスに対応して得られた第2振動数とXPS感度の関係を示す図である。
【符号の説明】
1…粉末充填穴付きホルダー
1’…異形粉末充填穴付きホルダー
2…下部板
3…パンチ部付きホルダー
4…粉末試料
5…粉末充填穴
6…ガイド
7…パンチ部
8…微細孔メッシュシート
9…脱気穴付き下部板
10…加振器
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a jig for forming a powder sample and a method for forming a powder sample, which is used when a powder sample is subjected to surface analysis by XPS (X-ray photoelectron spectroscopy), EPMA (electron probe microanalyzer), XRF (X-ray fluorescence analysis), or the like. About.
[0002]
[Prior art]
Conventionally, when a powder sample is analyzed by XPS (X-ray photoelectron spectroscopy), EPMA (electron probe microanalyzer), XRF (fluorescence X-ray analysis), etc., (1) the hole of the holder for holding the powder for analysis is used. Samples have been prepared by (2) placing a sample in a cup and press molding, (3) embedding in a soft metal such as indium, (4) attaching to a carbon tape or the like, and the like.
[0003]
Of the above methods, in the method (1), it is necessary to pack the sample several times when packing the powder into the hole, and the procedure is complicated and time-consuming. In addition, since sufficient pressure cannot be applied, there is a problem that the sample density is insufficient and the detection sensitivity is low.
Further, when removing the sample after the analysis, it is necessary to remove the sample, and the procedure is complicated and time-consuming also here.
[0004]
In the above method (2), when the cup after pressing is attached to the holder, it has to be attached with a carbon tape or the like, so that it takes time, and at the same time, volatile components such as tape reduce the degree of vacuum at the time of analysis. As a result, the accuracy of analysis may be reduced. Also, cups are costly because they cannot be reused.
[0005]
In the above method (3), there is a possibility that a soft metal element used for embedding is detected. Moreover, the soft metal is costly because it cannot be reused.
[0006]
In the above method (4), the carbon tape volatilizes, thereby lowering the degree of vacuum in the analyzer and increasing contamination.
[0007]
In particular, in a method of solidifying a powder of a low melting point alloy by press molding to prepare a sample for drying equipment analysis, an analysis method (powder press molding method) in which the powder is pressed under heating is known (for example, Patent Document 1). 1). However, this method also involves a complicated operation such as taking out a solidified sample after press molding together with a form from a press press machine, and also requires time. Further, the subsequent analysis has the same drawbacks as described in the above (2).
[0008]
[Patent Document 1]
JP-A-1-163639
[0009]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems of the prior art and has advantages (simplification of sample preparation procedure, improvement of sample density, improvement of detection sensitivity, reduction of sample preparation time, prevention of vacuum degree decrease). And a jig for molding a powder sample for surface analysis which can provide (prevention of contamination of impurities), improvement of reusability of jig, elimination of contamination, improvement of sample retention, cost reduction, improvement of handling, and the like. It is an object of the present invention to provide a method for press-molding a powder sample using a tool.
[0010]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a holder having a powder filling hole, a lower plate for sealing a lower end of the powder filling hole, and pressing and sealing the filled powder from the other end of the powder filling hole. A jig for forming a powder sample for surface analysis, comprising a holder with a punch portion for stopping.
[0011]
According to the second invention, in the first invention, a vibrator is further provided.
[0012]
According to a third invention, in the first or second invention, the lower plate is a lower plate with a degassing hole, and the fine holes for holding powder are provided between the lower plate with the degassing hole and the holder with a powder filling hole. A mesh sheet is interposed.
[0013]
According to a fourth aspect, in the first to third aspects, the diameter of the filling hole of the holder having the powder filling hole is sequentially reduced toward the analysis surface at least in the vicinity of the side surface in contact with the lower plate.
[0014]
According to the fifth invention, a step of placing a holder with a powder filling hole on the upper part of the lower plate, a step of filling a powder to be a sample into the powder filling hole, and inserting a punch portion of the holder with a punch into the powder filling hole And a method for molding a powder sample for surface analysis, comprising the steps of sealing and pressing the powder.
[0015]
According to a sixth aspect of the present invention, there is provided a method for press-molding while applying vibration using the powder sample molding jig with a vibrator according to the second aspect of the invention, in the powder sample molding method for surface analysis according to the fifth aspect of the invention. You.
[0016]
According to the seventh invention, in the method for forming a powder sample for surface analysis according to the fifth or sixth invention, the lower plate with deaerated holes according to the third invention and the fine pore mesh sheet for holding powder are further interposed. There is provided a method for press-molding while maintaining the inside of a filling hole under reduced pressure using a powder sample molding jig for surface analysis.
[0017]
According to an eighth invention, in the powder sample forming method for surface analysis according to the fifth invention to the seventh invention, the diameter of the filling hole of the holder having the powder filling hole according to the fourth invention is set at least in the vicinity of the side surface in contact with the lower plate. And a method for press-molding using a powder sample molding jig which is sequentially reduced in diameter.
[0018]
According to the ninth invention, in the method for molding a powder sample for surface analysis according to the sixth to eighth inventions, in performing the pressing under reduced pressure, the degree of vacuum is reduced to 10 Pa to 10 by degassing under reduced pressure. -3 In the state where the pressure is in the range of Pa, a first-stage press is performed at a first pressure in a range of 1 to 8 MPa, and then a press is performed, and a second-stage press is performed in a second pressure of 5 to 20 MPa. A method for forming a powder sample for surface analysis, which performs the steps, is provided.
[0019]
According to a tenth aspect of the present invention, there is provided the surface analysis powder sample molding method according to the sixth to ninth aspects of the invention, wherein the vibration is applied at a frequency of 1000 to 5000 Hz.
[0020]
According to the eleventh invention, in the method for molding a powder sample for surface analysis according to the fifth to tenth inventions, the lower plate is removed while the molded powder sample for surface analysis is held in a sample molding jig. Provided is a method for molding a powder sample for surface analysis, in which a surface in contact with a lower plate is subjected to surface analysis.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention provides various powders for metals (eg, Al, Ni, Cu, Mg), alloy powders (eg, SUS), metal oxide powders (eg, CuO, NiO, Fe). 2 O 3 ), Ceramic powder (for example, ZrO 2 , CeO 2 , Al 2 O 3 ), Etc., but especially ceramic powders (eg, ZrO 2 , Al 2 O 3 ), Alloy powders (eg, CuO, NiO) can be effectively used when preparing powder samples for surface analysis. The applications of these powders vary, but examples include catalysts, sintered metals, solders, alloys, and ceramics.
[0022]
The size of the powder to be a sample varies depending on each analysis target material and analysis method, but is preferably about 1 to 10 μm.
[0023]
The shape of the holder with the powder filling hole can be appropriately selected, such as a disk shape or a polygonal shape, but is usually a disk shape. The dimensions of the holder with a powder filling hole can be appropriately selected according to the dimensions of the powder filling hole, the sample, the analyzer, and the like, but usually have a diameter of about 10 mm to 50 mm. The thickness of the holder is about 2 mm to 10 mm. The material of the holder may be any material as long as it can withstand the pressing of the powder, but is usually a metal or an alloy, and SUS is preferable because it is rust-resistant, that is, hardly oxidized.
[0024]
The shape of the hole can be appropriately selected, such as a cylindrical shape or a polygonal cylindrical shape, but is usually a cylindrical shape in order to maintain the homogeneity of the sample. The size of the powder filling hole can be appropriately selected according to the sample and the analyzer, but is usually about 3 mm to 30 mm in diameter. The depth of the hole is about 2 mm to 10 mm. Of course, it can be appropriately selected according to the compression ratio at the time of press molding (the ratio of the powder height at the time of filling to the pressurized powder height after the press molding).
[0025]
When the powder in the filling hole of the holder with powder filling hole is press-molded by the holder with punch, the lower plate completely seals the lower end of the filling hole, and the surface of the powder formed by pressing is filled with the holder with powder filling hole. Must be held so as to be flush with the surface. Therefore, the lower plate must be made of a material that does not deform and withstand the pressure during pressing. Generally, the material must be a material that does not adversely affect the analysis sample and can smooth the sample plane. Specifically, SUS is preferable. The thickness is suitably about 5 mm to 10 mm.
[0026]
The holder with a punch portion has a punch portion having a shape and a size corresponding to the powder filling hole. The length of the punch portion is appropriately determined according to the compression ratio so as to obtain a dense compressed powder sample by pressing the powder in the filling hole. The compression ratio can be variously changed, but generally 2 to 5 is preferable. The material may be the same as the above-described holder with a powder filling hole and the lower plate, but the same material is preferable because the heat influence of the components of the molding jig is small when the holder is heated. .
[0027]
Here, the present invention will be described in more detail with reference to the drawings.
FIG. 1 is a diagram outlining a molding jig of the present invention, a method for press-molding a powder sample for surface analysis using the same, and a usage form of the sample. The molding jig of the present invention and the method of molding a press-pressed powder sample using the jig will be described with reference to this drawing. In the first step (A), first, the powder is filled in close contact with the upper surface of the lower plate 2 The holder 1 with the hole 5 is placed. The powder filling hole 5 is filled with the powder 4 to be analyzed.
Here, the holder 1 with the powder filling hole is fixed to the lower plate 2 by a guide 6 integrated with the lower plate 2 so as not to move.
[0028]
In the second step (B), the punch 3 is pressed while the punch 7 is inserted into the powder filling hole 5 to seal the powder sample 4 therein. At this time, the guide 6 also serves to guide the holder 3 with a punch so that the punch 7 of the holder 3 with a punch is accurately inserted into the powder filling hole 5 and the powder sample 4 therein is pressed. Fulfill. The pressure at the time of pressing varies depending on the type of powder sample and the required density, but is usually selected so that the pressure applied to the powder sample is about 1 MPa to 20 MPa. The stroke length of the holder 3 with a punch is selected according to the dimensions of the pressed powder sample and the compression ratio of the powder. Thus, a pressed powder sample 4 'is obtained. The compression ratio of the powder sample 4 can vary depending on the material and analysis conditions, but is about 2 to 5.
[0029]
Next, in the third step (C), the pressed and molded powder sample 4 ′ is held in the holder 1 with the powder filling hole, and is inverted while being supported by the holder 3 with the punch portion. The plate 2 is removed from the surface of the pressed and molded powder sample 4 '. The analysis surface of the powder sample 4 'appears on the same surface as the holder 1 with the powder filling hole. Then, in this state, it is introduced into the analyzer to complete the analysis. Since the analysis surface of the powder sample 4 'is the same as the holder 1 with the powder filling hole, the analysis can be performed quickly and accurately. After the analysis is completed, the holder 3 with the punch portion is separated from the holder 1 with the powder filling hole, and the pressurized powder sample 4 'is extruded and removed from the filling hole 5 with an extruder having the same diameter or a smaller diameter as the filling hole. Removal of the pressurized powder sample after analysis can also be simplified.
[0030]
As is clear from the above description, the pressurized powder sample is molded using the jig of the present invention, only the lower plate is removed, and the analytical surface of the pressurized powder sample is exposed while being held in each holder. Then, when subjected to the analysis, the procedure is also simplified, and the press working can be performed reliably at a high pressure, so that a pressurized powder sample having a high density and improved analysis accuracy can be obtained in a short time. Furthermore, the analysis surface appears by removing only the lower plate, and can be used for surface analysis of the powder without any additional means such as a tape as it is. The analysis can be performed efficiently without fear of the risk. Since the reddish surface is the same as the holder surface with the powder filling hole, there is an advantage that the holder does not interfere with the detection signal. Furthermore, the removal of the sample after the analysis can be easily performed, so that the time required for the analysis cycle can be reduced.
[0031]
FIG. 2 is a diagram outlining a molding jig according to another embodiment of the present invention, a method of molding a pressed powder sample using the same, and a use form of the sample. In this embodiment, the lower plate is a lower plate 9 having a deaeration hole, and a fine pore mesh sheet 8 for holding powder is interposed between the lower plate 9 having a deaeration hole and the holder 1 having a powder filling hole. In the step (D), the sample powder 4 is put into a powder filling hole 5 whose lower end face is supported by the microporous mesh sheet 8. The size of the mesh of the microporous mesh sheet 8 is such that the powder can be held before and after pressing by the holder 3 with a punch portion. Furthermore, when removing the mesh sheet 8 together with the lower plate 9 from the holder 1 with the powder filling hole, the mesh sheet 8 must not be of a size, shape or material that will stick to the pressurized powder and cause problems. It is selected in relation to an analysis powder or the like, and for example, the aperture is about 0.5 μm to 1 μm. Next, by vacuum degassing, the air is degassed through the degassing holes of the lower plate 9 with degassing holes and the fine holes of the microporous mesh sheet 8. Therefore, the microporous mesh sheet 8 has a function of enabling the holding of the analysis sample powder 4 and the degassing from the powder filling hole 5.
[0032]
In the subsequent step (E), the powder sample 4 is pressed by moving the holder 3 with the punch into the powder filling hole 5 while continuing the vacuum degassing. When the press forming of the powder sample 4 is completed, the powder sample forming jig is turned upside down, the vacuum degassing state is returned to the atmospheric pressure, and the lower plate 9 having the degassing holes and the microporous mesh sheet 8 are formed with the powder filling holes. It is removed from the upper surface of the holder 1. The surface of the pressurized powder sample 4 ′, which appears on the same plane as the upper surface of the holder 1, is introduced into the analyzer while being held integrally with the holder 1 with the powder filling hole and the holder 3 with the punch part.
[0033]
Here, it has been found by the present inventors that the XPS sensitivity is improved when the pressing pressure is reduced. The specific description will be described later in Example 2. When the degree of vacuum becomes 1/3 of the atmospheric pressure, the first pressure (1 to 8 MPa: about 1/3 of the final pressure) is applied, and the ultimate vacuum , A second pressure (5 to 20 MPa: final pressure) was applied to perform a two-stage press. FIG. 7 shows the relationship between the degree of vacuum and analysis sensitivity by XPS. As can be seen from FIG. -3 At Pa, it can be seen that the XPS analysis sensitivity was improved to the required sensitivity. This sensitivity is necessary to separate platinum from the background. In this case 10 -2 The reason why the sensitivity began to decrease below Pa was that fine cracks were generated. -3 Up to Pa, there was no problem in the analysis. These conditions are particularly preferable conditions required for separating a specific metal or the like, for example, platinum from the background of the analysis, and are not necessarily required under ordinary analysis conditions.
As described above, by pressing at a low pressure of the first pressure, the gap between the particles is connected to increase the efficiency of evacuation, thereby increasing the density. Further, by pressing at the second pressure, the efficiency is increased. As a result, the packing density is improved. The required sensitivity is to improve the accuracy of extracting peaks from the background.
[0034]
As described above, in addition to the functions and effects of the above-described invention, vacuum degassing from the powder sample (particularly, the surface side to be analyzed) improves the filling efficiency of the sample mainly on the analysis surface. Therefore, the density is increased, and the analysis sensitivity is dramatically improved. In addition, in degassing, by performing vacuum degassing through a sheet having finer pores than the sample powder, degassing can be performed evenly and more accurate analysis becomes possible. In particular, the efficiency of filling is further improved by optimizing the degree of vacuum and the pressurization process during degassing (two-stage press).
[0035]
FIG. 3 is a drawing outlining a method for molding a pressed pressed powder sample using a molding jig according to still another embodiment of the present invention. In this embodiment, a vibrator 10 is added to a powder sample molding jig. The vibrator 10 may be attached to any part of the powder sample forming jig, but is usually provided in contact with the lower part of the jig. In addition, since the powder sample 4 in the powder filling hole 5 is vibrated so as to rapidly increase the density, any type of vibrator can be used as long as it achieves the effect. Is also available.
[0036]
Here, it has been discovered by the present inventors that the XPS sensitivity is improved when the press pressure is applied in a vibrating state (while applying vibration). Although a specific description thereof will be given later in Example 3, initially, in an unpressurized state, an initial vibration is applied for about 30 seconds at a frequency of about 1/3 of the first frequency, and then the first vibration is applied. The number was reduced to about 1/3 of the second frequency and added for about 30 seconds. One minute after the start of the initial vibration, the frequency is increased to the second frequency, the press pressure is increased to 5 to 20 MPa from several seconds to about 10 seconds, and the press state is continued for about 50 seconds. After about one minute from the start of increasing the press pressure (after switching to the second vibration), the vibration and pressurization were stopped, and the vibration press molding of the powder sample was completed. FIG. 10 shows the relationship between the frequency and the XPS analysis sensitivity at this time. As is apparent from FIG. 10, when the second frequency is 1000 to 5000 Hz, the XPS analysis sensitivity is improved to the required sensitivity. This sensitivity is necessary to separate platinum from the background. At 4500 Hz or more, the filling efficiency did not increase and a decrease in sensitivity was observed. These conditions are particularly preferable conditions required for separating a specific metal or the like, for example, platinum from the background of the analysis, and are not necessarily required under ordinary analysis conditions.
[0037]
With the above configuration, by vibrating the molding jig, and particularly applying vibration in two stages, the filling efficiency of the sample is improved, the density is increased, and the analysis sensitivity is further improved.
[0038]
FIG. 4 is a view (including a powder sample after pressure molding) for explaining a holder having a modified powder filling hole (a filling hole with a reduced diameter on the analysis surface side) of a molding jig according to still another embodiment of the present invention. It is. In this embodiment, in the holder 1 'with the powder filling hole, the diameter of the filling hole on the analysis surface side (side in contact with the lower plate) is reduced. If the diameter at least in the vicinity of the analysis surface is small, the diameter of the portion where the diameter is reduced is small, whether the entire hole is not gradually small or only a part (near the analysis surface side) is small, or It can be used even if it has the same diameter part in the middle.
The shape of the reduced diameter is preferably a conical funnel shape for pressure molding and demolding of the pressure molded powder after completion of analysis. In one embodiment, the dimension of the filling hole of the holder 1 ′ with the irregular shaped powder filling hole is such that the diameter of D1 is 3 to 30 mm, and about 1 / th of the thickness (2 to 10 mm) of the holder 1 ′ as viewed from the analysis surface. The diameter is gradually reduced in a funnel shape from the position of 5 to 1/2 toward the analysis surface so that the hole diameter D2 on the analysis surface is 2 to 20 mm.
[0039]
Here, the present inventor uses a holder with a deformed powder filling hole and press-molds under vibration conditions, and the packing density is improved by using a holder with a deformed powder filling hole. Was further improved, and it was discovered that the XPS sensitivity was greatly improved by these synergistic effects. The specific mode will be described in the description of Example 4. The above-mentioned vibration is applied while applying a second frequency of 1000 to 5000 Hz using a holder (1 ') having a modified powder filling hole as shown in FIG. When the press working was performed under the same conditions as in Example 3, as shown in FIG. 11, the XPS sensitivity was improved by about 10% as compared with Example 3. These conditions are particularly preferable conditions required for separating a specific metal or the like, for example, platinum from the background of the analysis, and are not necessarily required under ordinary analysis conditions.
[0040]
With the configuration as described above, the analysis sensitivity is improved by improving the density of the analysis surface, and the holding property of the sample after molding is improved, so that the handling efficiency can be improved. Further, it is possible to quickly remove the press-molded powder after the analysis.
[0041]
【Example】
Example 1
In this example, a powder sample was prepared according to the procedure shown in FIG. 1 by using the powder sample forming jig for surface analysis of the present invention shown in FIG. First, the lower end of the powder filling hole 5 of the holder 1 with the powder filling hole constituting the powder sample forming jig for surface analysis of the present invention was sealed with the lower plate 2. Next, a catalyst powder (particle size: 3 μm) in which alumina was loaded with 5% by mass of platinum was filled in the filling hole. Therefore, the holder 3 with a punch was processed along the guide 6 fixed so as not to move the lower plate 2, and the punch 7 was inserted into the loading hole 5, and pressure (10 MPa) was applied. The pressing jig holding the pressed powder in the filling hole was turned upside down to remove the guide 6 and the lower plate 2 to obtain a pressed powder sample for surface analysis. FIG. 5 shows an outline of the obtained powder sample.
[0042]
The analysis surface of the pressurized powder sample 4 'had the same surface as the outer surface of the holder 1 with the powder filling hole. The molding state was good, and there was no powder dropping. In this state, since the sample was already integrated with the holder, the sample could be moved to an analysis room such as XPS for analysis. The diameter of the analysis surface was 5 mm. The thickness x of the holder 1 with the powder filling hole was 3 mm, and the thickness of the pressed powder sample 4 ′ was 1 mm. This was analyzed by XPS under the following conditions.
X-ray source
Target: Mg
Output: 400W
Analysis area: 800 μmφ
Vacuum degree: 8 × 10 -8 Pa
[0043]
As a result, a spectrum having good detection sensitivity as shown in FIG. 6 was obtained.
[0044]
Example 2
In this example, a powder sample was prepared according to the procedure shown in FIG. 2 by using the jig for forming a powder sample for surface analysis of the present invention shown in FIG. 2. First, the lower end of the powder filling hole 5 of the holder 1 having the powder filling hole constituting the powder sample forming jig for surface analysis of the present invention shown in FIG. And sealed. Next, a catalyst powder (having a particle diameter of 3 μm) in which 0.1% by mass of platinum was loaded on alumina in the filling hole 5 while vacuum degassing was carried out from the powder sample filling hole 5 through the deaeration hole and the fine hole of the fine hole mesh sheet. ) And then press-formed by the punch 7 of the holder 3 with punch. FIG. 7 shows the process of evacuation and pressure pressing at that time. When the degree of vacuum becomes 1/3 of the atmospheric pressure, the first pressure (5 MPa: about 1/3 of the final pressure) is applied, and at the ultimate degree of vacuum, the second pressure (10 MPa: final pressure) is applied, resulting in two stages. A press was performed. FIG. 8 shows the relationship between the degree of vacuum and the analysis sensitivity by XPS. As can be seen in FIG. -3 At Pa, it can be seen that the XPS analysis sensitivity was improved to the required sensitivity. This sensitivity is necessary to separate platinum from the background. In this case 10 -2 The reason why the sensitivity began to decrease below Pa was that fine cracks were generated. -3 Up to Pa, there was no problem in the analysis. Except for vacuum degassing, the means for pressurizing is the same as the method described in Example 1. Thereafter, the powder sample forming jig shown in FIG. 2E is turned upside down, and the microporous mesh sheet 8, the lower plate 9 having deaerated holes, and the guide 6 are removed, and the sample is set on the analyzer shown in FIG. 2F. A pressurized powder sample for analysis integrated with the holder in the state was obtained. The pressure-formed analytical surface had the same surface as the outer surface of the holder with the powder filling hole. The molding state was good, and there was no powder dropping. In this state, since the sample was already integrated with the holder, the sample was moved to an analysis room such as XPS for analysis. The diameter of the analysis surface was 5 mm. The thickness X of the holder with the powder filling hole was 3 mm, and the thickness of the powder sample after pressing was 1 mm. As a result of analyzing this by XPS, a spectrum having good detection sensitivity was obtained.
[0045]
Example 3
In this example, a powder sample was prepared according to the procedure shown in FIG. 3 by employing the powder sample forming jig for surface analysis of the present invention shown in FIG. The powder sample molding jig of the present embodiment was the same as that of the first embodiment, such as the basic configuration and dimensions of the holder and the like, except that the vibrator 10 was installed under the molding jig. The lower end of the powder filling hole 5 of the holder 1 having the powder filling hole constituting the powder sample forming jig for surface analysis of the present invention shown in FIG. Next, the catalyst sample 4 (particle size: 3 μm) containing 0.1% by mass of platinum is filled in alumina in the powder sample filling hole 5 while applying vibrations by the vibrator 10. The part 7 was press-formed. FIG. 9 shows the process of the vibration and the press at that time. Initially, in a non-pressurized state, the first frequency is increased to about 1/3 of the second frequency, applied for about 30 seconds, increased to the second frequency, and the press pressure is increased to 10 MPa from several seconds to about 10 seconds. The pressurizing state is continued for about 50 seconds by ascending. After about one minute from the start of increasing the press pressure (after switching to the second vibration), the vibration and pressurization were stopped, and the vibration press molding of the powder sample was completed. FIG. 10 shows the relationship between the frequency and the XPS analysis sensitivity at this time. As is clear from FIG. 10, when the second frequency is 1000 to 5000 Hz, the XPS analysis sensitivity is found to be much more improved. This sensitivity is necessary to separate platinum from the background. At 4500 Hz or more, the filling efficiency did not increase and a decrease in sensitivity was observed.
[0046]
Example 4
In the present embodiment, in the powder sample molding jig for surface analysis of the present invention shown in FIG. 3, except that the holder 1 with the powder filling hole is replaced with the holder 1 ′ with the irregular shaped powder filling hole shown in FIG. 4, A powder sample was prepared by press molding using the same sample and according to the same sample and method as in Example 3. As shown in FIG. 4, the dimension of the filling hole of the holder 1 ′ with the irregular shaped powder filling hole is such that the diameter of D1 is 8 mm, and about 1/5 to 1/1 / th of the thickness (10 mm) of the holder when viewed from the analysis surface. From position 2, the diameter was gradually reduced in a funnel shape toward the analysis surface so that the hole diameter D2 on the analysis surface was 5 mm. FIG. 11 shows the relationship between the second vibration condition and the XPS sensitivity when analyzed using the surface analysis sample, together with the results obtained in Example 3. As is apparent from FIG. 11, when the press working is performed under the same conditions as in Example 3 using the holder having the irregular shaped powder filling hole while applying the vibration of the second frequency of 1000 to 5000 Hz, the XPS Sensitivity improved by about 10%. It is considered that this is because the filling efficiency was further improved and the density was increased by the synergistic effect of the shape of the hole of the holder having the irregularly shaped powder filling hole and the vibration by the vibrator. This level of sensitivity enhancement is quite effective in separating from the background in the analysis. In addition, even when a powder sample having a coarse particle size and poor moldability was used, the sample did not fall off even when the holder was tilted, and it was confirmed that the retention was improved.
[0047]
【The invention's effect】
As described above, according to the present invention, it is possible to solve various problems of the prior art, simplify the sample preparation procedure, improve the sample density, improve the detection sensitivity, shorten the sample preparation time, and prevent the vacuum degree from decreasing ( Effects such as prevention of contamination of impurities), improvement of reusability of jigs, elimination of contamination, improvement of sample holding properties, cost reduction, and improvement of handling properties can be obtained.
[Brief description of the drawings]
FIG. 1 is a drawing outlining a powder sample press-molding jig of the present invention, a method of press-pressing a powder sample using the jig, and an application form of the sample.
FIG. 2 is a powder sample press-molding jig according to another embodiment using the microporous mesh sheet and the lower plate with deaeration holes of the present invention, a method of press-pressing the powder sample by using the jig, and a use form of the sample. FIG.
FIG. 3 is a drawing schematically illustrating a powder sample press-molding jig according to another embodiment of the present invention further including a vibrator and a method of press-pressing a powder sample using the jig.
FIG. 4 is a view illustrating a holder with a modified powder filling hole (a filling hole with a reduced diameter on the analysis surface side) of a powder sample pressing molding jig according to still another embodiment of the present invention.
FIG. 5 is a view for explaining a state in which the lower plate is removed from the surface of the press-pressed powder sample formed by the forming jig according to the present invention and the analysis surface of the powder sample is directed upward (FIG. 3C). ).
FIG. 6 is a graph showing a spectrum of an XPS analysis result in Example 1.
FIG. 7 is a diagram showing the relationship between the press pressure and the degree of vacuum deaeration process in the method (two-stage press) of forming a press-pressed powder sample of the present invention corresponding to Example 2.
8 is a diagram showing a relationship between ultimate vacuum and XPS sensitivity obtained corresponding to the processing process of FIG. 7;
FIG. 9 is a diagram showing the relationship between the press pressure and the frequency in the method (vibration press) for forming a press-pressed powder sample of the present invention corresponding to Example 3.
FIG. 10 is a diagram illustrating a relationship between a second frequency and XPS sensitivity obtained corresponding to the processing process of FIG. 9;
11 is a diagram showing a relationship between a second frequency and XPS sensitivity obtained corresponding to a processing process employing the holder having the irregularly shaped powder-filled hole of FIG. 4;
[Explanation of symbols]
1 ... Holder with powder filling hole
1 '... Holder with irregular shaped powder filling hole
2. Lower plate
3. Holder with punch
4: Powder sample
5. Powder filling hole
6. Guide
7 ... Punch
8 ... Microporous mesh sheet
9 ... Lower plate with deaeration hole
10. Exciter

Claims (11)

粉末充填穴付きホルダー、粉末充填穴の下端を封止する下部板、および充填された粉末を粉末充填穴の他端から封止、プレスするパンチ部付きホルダー、を有する表面分析用粉末試料成形治具。A powder sample molding jig for surface analysis having a holder with a powder filling hole, a lower plate for sealing the lower end of the powder filling hole, and a holder with a punch part for sealing and pressing the filled powder from the other end of the powder filling hole. Utensils. さらに加振器を有する、請求項1に記載の粉末試料成形治具。The powder sample molding jig according to claim 1, further comprising a vibrator. 下部板を脱気穴付き下部板とし、その脱気穴付き下部板と粉末充填穴付きホルダーとの間に粉末保持用微細孔メッシュシートを介在させる請求項1又は2に記載の粉末試料成形治具。The powder sample molding jig according to claim 1 or 2, wherein the lower plate is a lower plate with a degassing hole, and a fine pore mesh sheet for holding powder is interposed between the lower plate with the degassing hole and a holder with a powder filling hole. Utensils. 粉末充填穴付きホルダーの充填穴の径を少なくとも下部板に接する側面近傍で分析表面に向けて順次縮径した、請求項1〜3のいずれか1項に記載の粉末試料成形治具。The powder sample molding jig according to any one of claims 1 to 3, wherein the diameter of the filling hole of the holder having the powder filling hole is gradually reduced toward the analysis surface at least in the vicinity of the side surface in contact with the lower plate. 下部板の上面に粉末充填穴付きホルダーを載置する工程、試料となる粉末を粉末充填穴に充填する工程、パンチ部付きホルダーのパンチ部を粉末充填穴に挿入して粉末を封止、プレスする工程を含む、表面分析用粉末試料成形方法。A step of placing a holder with a powder filling hole on the upper surface of the lower plate, a step of filling a powder serving as a sample into the powder filling hole, inserting a punch portion of the holder with a punch into the powder filling hole, sealing the powder, and pressing. A method for molding a powder sample for surface analysis, comprising: 請求項2に記載の粉末試料成形治具を用いる、請求項5に記載の表面分析用粉末試料成形方法。The method for forming a powder sample for surface analysis according to claim 5, wherein the jig for forming a powder sample according to claim 2 is used. 請求項3に記載の粉末試料成形治具を用いる、請求項5又は6に記載の表面分析用粉末試料成形方法。The method for forming a powder sample for surface analysis according to claim 5, wherein the jig for forming a powder sample according to claim 3 is used. 請求項4に記載の粉末試料成形治具を用いる、請求項5〜7のいずれか1項に記載の表面分析用粉末試料成形方法。The method for forming a powder sample for surface analysis according to claim 5, wherein the jig for forming a powder sample according to claim 4 is used. 減圧脱気により真空度が10Pa〜10−3Paの範囲となった状態で、1〜8MPaの範囲の第1圧で第1段のプレスをし、次いで加圧して、5〜20MPaの範囲の第2圧で第2段プレスする2段プレス工程を有する、請求項6〜8のいずれか1項に記載の表面分析用粉末試料成形方法。In the state where the degree of vacuum was in the range of 10 Pa to 10 −3 Pa by degassing under reduced pressure, the first stage was pressed at the first pressure in the range of 1 to 8 MPa, and then pressurized, and the pressure was increased in the range of 5 to 20 MPa. The method for forming a powder sample for surface analysis according to any one of claims 6 to 8, further comprising a two-stage pressing step of performing a second-stage pressing with a second pressure. 振動数1000〜5000Hzで加振する、請求項6〜9のいずれか1項に記載の表面分析用粉末試料成形方法。The method for molding a powder sample for surface analysis according to any one of claims 6 to 9, wherein the vibration is applied at a frequency of 1000 to 5000 Hz. さらに、成形した表面分析用の粉末試料を試料成形治具に保持したまま、下部板を取り除き、その下部板に接していた面を表面分析に供する、請求項5〜10のいずれか1項に記載の表面分析用粉末試料成形方法。Further, while holding the molded powder sample for surface analysis in a sample molding jig, the lower plate is removed, and the surface in contact with the lower plate is subjected to surface analysis. The method for forming a powder sample for surface analysis according to the above.
JP2003143313A 2003-05-21 2003-05-21 Powder sample molding jig for surface analysis, and powder sample molding method for surface analysis Pending JP2004347406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003143313A JP2004347406A (en) 2003-05-21 2003-05-21 Powder sample molding jig for surface analysis, and powder sample molding method for surface analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003143313A JP2004347406A (en) 2003-05-21 2003-05-21 Powder sample molding jig for surface analysis, and powder sample molding method for surface analysis

Publications (1)

Publication Number Publication Date
JP2004347406A true JP2004347406A (en) 2004-12-09

Family

ID=33531132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003143313A Pending JP2004347406A (en) 2003-05-21 2003-05-21 Powder sample molding jig for surface analysis, and powder sample molding method for surface analysis

Country Status (1)

Country Link
JP (1) JP2004347406A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008286698A (en) * 2007-05-18 2008-11-27 Toyota Motor Corp Analytical method for trace amount of metal
CN106461428A (en) * 2014-04-25 2017-02-22 瑞沃拉公司 Silicon germanium thickness and composition determination using combined xps and xrf technologies
US10859502B2 (en) 2017-03-15 2020-12-08 Horiba, Ltd. Method and tool for producing sample containing object, method for performing glow discharge optical emission spectrometry, and glow discharge optical emission spectrometer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008286698A (en) * 2007-05-18 2008-11-27 Toyota Motor Corp Analytical method for trace amount of metal
CN106461428A (en) * 2014-04-25 2017-02-22 瑞沃拉公司 Silicon germanium thickness and composition determination using combined xps and xrf technologies
US10859502B2 (en) 2017-03-15 2020-12-08 Horiba, Ltd. Method and tool for producing sample containing object, method for performing glow discharge optical emission spectrometry, and glow discharge optical emission spectrometer

Similar Documents

Publication Publication Date Title
JP5243235B2 (en) Improved process for producing metal matrix composites
JP2005531689A (en) Method for producing a highly porous metal compact close to the final contour
JP2001140027A (en) Manufacturing method of metal matrix composite(mmc) component
JP4624183B2 (en) Powder molding method
MX2007011145A (en) Hair and/or scalp care compositions incorporating flavonoid compounds.
JPS6164801A (en) Molding method of powder of metal, ceramics or the like
JP2004347406A (en) Powder sample molding jig for surface analysis, and powder sample molding method for surface analysis
CN1745185A (en) Method for producing reinforced platinum material
JPH0762643B2 (en) Analytical powder sample holding container and analytical sample preparation device using the same
JP3252899B2 (en) Compact molding method and compacting apparatus
JP4600412B2 (en) Molding apparatus and magnet manufacturing method for molding magnetic particles
JPH09229835A (en) Adjustment of powder sample for analysis
JPH10180492A (en) Method and device for packing powder
JP2006249462A (en) Method for producing electrode, and electrode
KR101677921B1 (en) cemented carbide apparatus using press die and punch of manufacturing bottle cap and manufacturing method thereof
JP2003334700A (en) Powder compacting apparatus and powder compacting method
JP6853440B2 (en) Method for producing metallic copper and copper oxide-containing powder, metallic copper and copper oxide-containing powder, and method for producing sputtering target material and sputtering target material.
JP4081762B2 (en) Method for manufacturing sintered body
JPH0671625A (en) Cast molding method for ceramics
JP2000176693A (en) Compacting device and compacting method
RU2275274C1 (en) Powder material pressing method and apparatus for performing the same
JP4454004B2 (en) Forming method of thin plate compact
JPS63183102A (en) Production of electrode material
JPH09327813A (en) Compression powder molding method of magnetic material with arcuate cross-section
JP2022026414A (en) Discharge plasma sintering apparatus and discharge plasma sintering method