JP2004346774A - Magnetic coupling pump - Google Patents

Magnetic coupling pump Download PDF

Info

Publication number
JP2004346774A
JP2004346774A JP2003142389A JP2003142389A JP2004346774A JP 2004346774 A JP2004346774 A JP 2004346774A JP 2003142389 A JP2003142389 A JP 2003142389A JP 2003142389 A JP2003142389 A JP 2003142389A JP 2004346774 A JP2004346774 A JP 2004346774A
Authority
JP
Japan
Prior art keywords
stator
rotor
inner peripheral
base
magnetic coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003142389A
Other languages
Japanese (ja)
Inventor
Makoto Hatano
真 羽田野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisan Industry Co Ltd
Original Assignee
Aisan Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisan Industry Co Ltd filed Critical Aisan Industry Co Ltd
Priority to JP2003142389A priority Critical patent/JP2004346774A/en
Priority to US10/838,197 priority patent/US20040234395A1/en
Publication of JP2004346774A publication Critical patent/JP2004346774A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0606Canned motor pumps
    • F04D13/064Details of the magnetic circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0673Units comprising pumps and their driving means the pump being electrically driven the motor being of the inside-out type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5806Cooling the drive system

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic coupling pump of an outer rotor type capable of preventing temperature rise on an inner peripheral side of a stator. <P>SOLUTION: In the magnetic coupling pump P1, a housing 1 has a pump chamber part 2 and a motor chamber part 6. The rotor 15 has: an impeller 17 projected on a surface 16a side of an approximately disc base part 16 and disposed on a pump chamber part 2 side; and an approximately cylindrical magnet part 18 projected form a back face 16b side of the base part 16 and disposed on a motor chamber part 6 side. The rotor 15 is disposed in cooling water W and is rotary-driven by the stator 10 on the motor chamber part 6 side disposed on an inner peripheral side of the magnet part 18 to make the cooling water W flow in an inlet part 3 and flow out from an outlet part 4. An inlet recess part 11 is formed on an inner peripheral side of the stator 10 to make the cooling water W flow therein so that the inlet recess part 11 communicates with an inner peripheral face 18a side of the magnet part 18 and the back face 16b side of the base part 16 of the rotor. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、車両の冷却水等の流体を送給する磁気結合ポンプに関し、特に、流体を送給させるためのインペラを有したロータの回転中心側に、ステータが配設されて、このステータの外周側に、ロータの略円筒状の磁石部が配設されるアウターロータタイプの磁気結合ポンプに関する。
【0002】
【従来の技術】
従来、車両の冷却水用のアウターロータタイプの磁気結合ポンプでは、冷却水の送給用のインペラを有したロータが、ハウジング内に配設されていた(例えば、特許文献1参照)。
【0003】
そして、この磁気結合ポンプでは、ハウジングが、冷却水の流入口部と流出口部とを有したポンプ室部と、モータ室部と、を備えていた。また、ロータは、略円板状の基部の表面側に突設されてポンプ室部側に配置されるインペラと、基部の裏面側から突設されてモータ室部側に配置される略円筒状の磁石部と、を備えて、冷却水中に配設される構成としていた。このロータは、磁石部の内周側に配置されるモータ室部側のステータによって発生する回転磁界により、回転駆動されて、冷却水を流入口部から流入させて流出口部から流出させていた。
【0004】
【特許文献1】
特開平10−311290号公報
【0005】
【発明が解決しようとする課題】
しかし、従来のアウタロータタイプの磁気結合ポンプでは、ステータの外周側は、磁石部との間に冷却水が介在されることから、その冷却水を利用して冷却可能であるものの、ステータの内周側は、冷却手段が無く、ステータのコイルが断線するような温度上昇が生じる虞れがあり、消費電力の高い高負荷運転に課題が生じていた。
【0006】
本発明は、上述の課題を解決するものであり、ステータの内周側の温度上昇を防止可能な磁気結合ポンプを提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明に係る磁気結合ポンプは、ハウジングが、流体の流入口部と流出口部とを有したポンプ室部と、モータ室部と、を備え、
ロータが、略円板状の基部の表面側に突設されてポンプ室部側に配置されるインペラと、基部の裏面側から突設されてモータ室部側に配置される略円筒状の磁石部と、を備えて、流体中に配設される構成とするとともに、磁石部の内周側に配置されるモータ室部側のステータによって発生する回転磁界により回転駆動されて、流体を流入口部から流入させて流出口部から流出させる磁気結合ポンプであって、
ステータの内周側に、ロータの磁石部の内周面側及び基部の裏面側と連通するように、流体の流入する流入凹部が、配設されていることを特徴とする。
【0008】
本発明に係る磁気結合ポンプでは、ステータの内周側に位置する流入凹部に、ロータの磁石部の内周面側や基部の裏面側から、流体が流入され、その流体により、ステータの内周側が冷却される。
【0009】
したがって、本発明に係る磁気結合ポンプでは、ステータの内周側の温度上昇を防止できて、ステータのコイルの断線を防止でき、消費電力の高い高負荷運転でも、耐久性を持って、長時間の運転が可能となる。
【0010】
そして、基部におけるステータの内周側付近に、表裏を貫通する複数の貫通孔が配設されていれば、流入凹部の流体が基部の貫通孔を経てポンプ室部側に流れることができる。すなわち、ステータの外周側から内周側に向かい、さらに、ステータの内周側からポンプ室部側に向かうように、流体によるステータの冷却流路が形成されることから、一層、ステータの内周側の温度上昇を防止することができて、さらに、ステータの外周側の温度上昇も的確に防止できる。そのため、ステータのコイルの断線やハウジングの熱変形を的確に防止できて、一層、消費電力の高い高負荷運転でも、耐久性を持って、長時間の運転が可能となる。
【0011】
また、ロータが、流入凹部内に突出する軸部を備えて、この軸部が、外周面に、流体を撹拌可能な撹拌用インペラを、突設させていてもよい。このような構成では、ロータの回転駆動時に、撹拌用インペラによって、流入凹部内の流体が撹拌されることから、ステータの内周側の全域の冷却を、迅速かつ的確に行なうことが可能となる。
【0012】
また、ロータが、流入凹部内に突出する軸部を備えて、軸部が、流入凹部側の流体を基部の表面側に送給可能に、内部に、流入凹部側と基部の表面側とに開口する連通路を備えるように構成してもよい。このような構成では、流入凹部内の流体を、軸部の連通路を経て、基部の表面側のポンプ室部側に流出させることができ、流入凹部の底部側の流体も、ポンプ室部側に流出させることが可能となって、ステータの内周側の冷却効果を、一層、高めることができる。
【0013】
そして、ロータが、基部側と流入凹部側との二箇所で、回動自在に支持されていれば、ロータの回転が安定して、ロータの回転モーメントの損失を極力低減させることができる。
【0014】
【発明の実施の形態】
以下、本発明の一実施形態を図面に基づいて説明すると、図1〜3に示す実施形態の磁気結合ポンプP1は、車両の冷却水Wを送給するものであり、合成樹脂製のハウジング1内に、冷却水Wの送給用の複数のインペラ17を有したロータ15が、配設されて構成されている。
【0015】
ハウジング1は、ロータ15のインペラ17側に配置されるポンプ室部2と、ポンプ室部2の下方に配置されるモータ室部6と、を備えて構成されている。ポンプ室部2は、天井壁2aを備えた略円筒状として、冷却水Wを流入させる略円筒状の流入口部3を天井壁2aから上方へ突出させるとともに、冷却水Wを流出させる略円筒状の流出口部4を周壁2bから外方へ突出させている。
【0016】
モータ室部6は、略円筒状の周壁部7と、周壁部7の内側下部から内方へ延びる底壁部8と、底壁部8から上方に突出するステータ部9と、を備えて構成されている。
【0017】
ステータ部9は、内周側に冷却水Wを流入可能な凹部11を備えた略円筒状としている。このステータ部9の内部には、通電時に回転磁界を発生させるようにコイル10aを巻いたステータ10が配設されている。なお、符号12に示す部材は、ステータ10を作動させるパワートランジスタや、ステータ10の回転角を検出するホール素子等を配設させた回転基板であり、符号13に示す部材は、回転基板12への電力供給用のターミナルである。
【0018】
ロータ15は、表面16a側の上方へインペラ17を突出させた略円板状の基部16と、基部16の外周縁付近から基部16の裏面16b側となる下方へ延びて、ステータ10の外周側と周壁部7の内周側との間に配設される円筒状の磁石部18と、を備えて構成されている。磁石部18は、ステータ10に発生する回転磁界により回転する。なお、磁石部18は、実施形態の場合、後述する支持軸20と軸受25とを除いたロータ15の部位を形成するポリアミド等の合成樹脂材料に、磁性体粉を混入させて形成されている。
【0019】
また、基部16には、ステータ10の内周側付近に、表裏となる上下に貫通する複数の貫通孔16cが配設されている
さらに、基部16の中央には、上下方向に沿って軸部19が配設され、軸部19は、支持軸20と摺動ボス部26とから構成されている。支持軸20は、金属パイプから形成されて、基部16を貫通して、下端20bをハウジング1のモータ室部6における底壁部8の中央に、固着させている。このパイプ状の支持軸20は、上端を開口させ、かつ、下端20a付近の冷却水W中に位置する部位に、すなわち、流入凹部11の底部11a付近に、内外周を貫通する複数の流入口22を開口させており、内部を連通路21として、流入口22から流入する冷却水Wを、支持軸20の上端面の開口である流出口23から、流出できるように、構成されている。
【0020】
摺動ボス部26は、基部16の中央で基部16と一体的に形成される円筒状としており、さらに、内周側の上下に、摩擦力を低減可能な樹脂または金属等からなる軸受25・25を固着させて、これら上下の軸受25により、摺動ボス部26は、支持軸20に、回動自在に支持されることとなる。また、支持軸20の上端20a付近には、摺動ボス部26の支持軸20からの抜け止めを図るEリング24が配設されている。
【0021】
なお、ロータ15は、回転時、流入口部3側の負圧によって、上方に浮き上がることから、Eリング24が必要となる。また、ロータ15は、ポンプP1の作動時、3000〜3800rpm程度の回転数で、回転する。
【0022】
さらに、このロータ15は、支持軸20におけるハウジング1側に固着される下端20bを除いて、冷却水W中に配置されており、ステータ部9の内周側の流入凹部11に配置される摺動ボス部26には、下部側の外周面に、流入凹部11内の冷却水Wを撹拌可能な複数の撹拌用インペラ27が、配設されている。
【0023】
この実施形態の磁気結合ポンプP1では、ステータ10の内周側に位置する流入凹部11に、ロータ15の磁石部18の内周面18a側や基部16の裏面16b側から、冷却水Wが流入され、その冷却水Wにより、ステータ10の内周側が冷却される。
【0024】
したがって、実施形態の磁気結合ポンプP1では、ステータ10の内周側の温度上昇を防止できて、ステータ10のコイル10aの断線を防止でき、消費電力の高い高負荷運転でも、耐久性を持って、長時間の運転が可能となる。
【0025】
そして、実施形態では、基部16におけるステータ10の内周側付近に、上下に貫通する複数の貫通孔16cが配設されており、ロータ15が回転するように作動されれば、流入口部3側に負圧が発生し、流入凹部11の冷却水Wが基部16の貫通孔16cを経てポンプ室部2側に流れる。すなわち、ステータ10の外周側から内周側に向かい、さらに、ステータ10の内周側からポンプ室部2側に向かうように、冷却水Wによるステータ10の冷却流路F0が形成されることから、一層、ステータ10の内周側の温度上昇を防止することができて、さらに、ステータ10の外周側の温度上昇も的確に防止できる。そのため、ステータ10のコイル10aの断線やハウジング1におけるステータ部9の熱変形を的確に防止できて、一層、消費電力の高い高負荷運転でも、耐久性を持って、長時間の運転が可能となる。
【0026】
また、実施形態では、ロータ15が、流入凹部11内に突出する軸部19を備えて、この軸部19の摺動ボス部26が、外周面に、冷却水Wを撹拌可能な撹拌用インペラ27を、突設させている。そのため、ロータ15の回転駆動時に、撹拌用インペラ27によって、流入凹部11内の冷却水Wを撹拌できることから、ステータ10の内周側の全域の冷却を、迅速かつ的確に行なうことができる。
【0027】
さらに、実施形態では、ロータ15が、流入凹部11内に突出する軸部19を備えて、軸部19の支持軸20が、流入凹部11の底部11a側の冷却水Wを基部16の表面16a側に送給可能に、内部に、流入凹部11の底部11a側と基部16の表面16a側とに開口する連通路21を備えている。そのため、ロータ15が回転するように作動されれば、流入口部3側に負圧が発生して、流入凹部11内の低部11a側の冷却水Wが、流入口22から支持軸20の連通路21内に流入し、さらに、連通路21を経て、支持軸20の上端20aの流出口23から、基部16の表面16a側のポンプ室部2側に流出される。すなわち、ステータ10の外周側から内周側に向かい、さらに、連通路21を経て、ステータ10の内周の底部側からポンプ室部2側に向かうように、冷却水Wによるステータ10の冷却流路F1が形成されることから、ステータ10の内周側の冷却効果を高めることができる。
【0028】
また、実施形態の磁気結合ポンプP1では、ロータ15の回転時の支持が、ロータ15の上下の両端付近となる基部16側と流入凹部11側との上下二箇所の軸受25・25により、行なわれており、作動時のロータ15の回転が安定して、ロータ15の回転モーメントの損失を極力低減させることができる。
【0029】
なお、実施形態では、ロータ15の軸部19が、撹拌用インペラ27を突設させた摺動ボス部26を備えたものを例示したが、インペラ27を備えない構造としてもよい。
【0030】
また、実施形態では、ロータ15の軸部19が、連通路21を有したパイプ状の支持軸20を備えて構成されるものを示したが、図4に示す磁気結合ポンプP2のように、軸部19Aが、撹拌用インペラ27を配設させた摺動ボス部26と、連通路21を有しない支持軸20Aと、から構成されるものでもよい。
【0031】
さらに、実施形態では、ロータ15の基部16に、表裏を貫通する複数の貫通孔16cを設けたものを示したが、ロータ15は、貫通孔16cを備えない構造としてもよい。
【図面の簡単な説明】
【図1】本発明の実施形態の磁気結合ポンプの縦断面図である。
【図2】実施形態のロータの縦断面図である。
【図3】実施形態のロータの横断面図であり、図2のIII−III部位を示す。
【図4】他の実施形態の磁気結合ポンプの縦断面図である。
【符号の説明】
1…ハウジング、
2…ポンプ室部、
3…流入口部、
4…流出口部、
6…モータ室部、
10…ステータ、
10a…コイル、
11…流入凹部、
15…ロータ、
16…基部、
16a…(基部の)表面、
16b…(基部の)裏面、
16c…貫通孔、
17…インペラ、
18…磁石部、
18a…内周面、
19…軸部、
21…連通路、
22…流入口、
23…流出口、
25…軸受、
27…撹拌用インペラ、
W…流体・冷却水、
P1・P2…磁気結合ポンプ。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a magnetic coupling pump for supplying a fluid such as cooling water for a vehicle, and in particular, a stator is provided on a rotation center side of a rotor having an impeller for supplying the fluid, and the stator is provided. The present invention relates to an outer rotor type magnetic coupling pump in which a substantially cylindrical magnet portion of a rotor is disposed on an outer peripheral side.
[0002]
[Prior art]
Conventionally, in a magnetic coupling pump of an outer rotor type for cooling water of a vehicle, a rotor having an impeller for supplying cooling water is disposed in a housing (for example, see Patent Document 1).
[0003]
In this magnetic coupling pump, the housing includes a pump chamber having an inlet and an outlet for cooling water, and a motor chamber. Further, the rotor has an impeller protruding from the surface side of the substantially disk-shaped base and disposed on the pump chamber side, and a substantially cylindrical shape protruding from the back side of the base and disposed on the motor chamber side. And a magnet unit of the type described above and disposed in the cooling water. The rotor was driven to rotate by a rotating magnetic field generated by a motor chamber-side stator disposed on the inner peripheral side of the magnet section, and allowed cooling water to flow in from the inflow port and flow out from the outflow port. .
[0004]
[Patent Document 1]
JP-A-10-31290 [0005]
[Problems to be solved by the invention]
However, in the conventional outer rotor type magnetic coupling pump, since cooling water is interposed between the outer peripheral side of the stator and the magnet portion, the outer peripheral side of the stator can be cooled using the cooling water, but the inner peripheral side of the stator can be cooled. On the side, there is no cooling means, and there is a possibility that a temperature rise such as disconnection of the coil of the stator may occur, and there has been a problem in high load operation with high power consumption.
[0006]
An object of the present invention is to solve the above-mentioned problem, and an object of the present invention is to provide a magnetic coupling pump capable of preventing a rise in temperature on the inner peripheral side of a stator.
[0007]
[Means for Solving the Problems]
The magnetic coupling pump according to the present invention, the housing includes a pump chamber having a fluid inlet and a fluid outlet, and a motor chamber,
An impeller having a rotor protruding from the surface of a substantially disk-shaped base and being disposed on the pump chamber side, and a substantially cylindrical magnet being protruding from the back of the base and being disposed on the motor chamber side. And a fluid inlet, which is driven by a rotating magnetic field generated by a motor chamber side stator disposed on the inner peripheral side of the magnet portion, and configured to be disposed in the fluid. A magnetic coupling pump that flows in from the section and flows out of the outlet section,
An inflow recess into which a fluid flows is provided on the inner peripheral side of the stator so as to communicate with the inner peripheral side of the magnet portion of the rotor and the back side of the base.
[0008]
In the magnetic coupling pump according to the present invention, the fluid flows into the inflow recess located on the inner peripheral side of the stator from the inner peripheral surface side of the magnet portion of the rotor or the back surface side of the base portion, and the fluid causes the inner peripheral surface of the stator to rotate. The side is cooled.
[0009]
Therefore, in the magnetic coupling pump according to the present invention, it is possible to prevent a rise in temperature on the inner peripheral side of the stator, prevent disconnection of the coils of the stator, and maintain a high durability even in high-load operation with high power consumption. Operation becomes possible.
[0010]
If a plurality of through-holes penetrating the front and back are provided near the inner peripheral side of the stator at the base, the fluid in the inflow recess can flow toward the pump chamber via the through-holes in the base. That is, since the cooling passage of the stator is formed by the fluid from the outer peripheral side of the stator toward the inner peripheral side and further from the inner peripheral side of the stator toward the pump chamber side, the inner periphery of the stator is further increased. The temperature rise on the outer peripheral side of the stator can be prevented accurately. Therefore, disconnection of the coil of the stator and thermal deformation of the housing can be properly prevented, and a long-time operation can be performed with high durability even in a high-load operation with higher power consumption.
[0011]
Further, the rotor may be provided with a shaft portion protruding into the inflow concave portion, and the shaft portion may have a stirring impeller capable of stirring the fluid protruding from the outer peripheral surface. In such a configuration, when the rotor is driven to rotate, the fluid in the inflow recess is stirred by the stirring impeller, so that the entire area on the inner circumferential side of the stator can be quickly and accurately cooled. .
[0012]
Further, the rotor includes a shaft portion protruding into the inflow concave portion, and the shaft portion can supply the fluid in the inflow concave portion to the surface side of the base portion. You may comprise so that it may have the communication path which opens. In such a configuration, the fluid in the inflow concave portion can be discharged to the pump chamber portion side on the front surface side of the base portion through the communication passage of the shaft portion, and the fluid on the bottom side of the inflow concave portion also flows in the pump chamber portion side. The cooling effect on the inner peripheral side of the stator can be further enhanced.
[0013]
If the rotor is rotatably supported at two locations, the base side and the inflow recess side, the rotation of the rotor is stabilized, and the loss of the rotational moment of the rotor can be reduced as much as possible.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described below with reference to the drawings. A magnetic coupling pump P1 of the embodiment shown in FIGS. 1 to 3 supplies cooling water W of a vehicle, and a housing 1 made of a synthetic resin. A rotor 15 having a plurality of impellers 17 for supplying the cooling water W is provided therein.
[0015]
The housing 1 includes a pump chamber 2 disposed on the impeller 17 side of the rotor 15 and a motor chamber 6 disposed below the pump chamber 2. The pump chamber 2 has a substantially cylindrical shape provided with a ceiling wall 2a, and a substantially cylindrical inflow portion 3 through which the cooling water W flows in projects upward from the ceiling wall 2a, and a substantially cylindrical shape through which the cooling water W flows out. The outflow portion 4 is formed to project outward from the peripheral wall 2b.
[0016]
The motor chamber section 6 includes a substantially cylindrical peripheral wall section 7, a bottom wall section 8 extending inward from an inner lower portion of the peripheral wall section 7, and a stator section 9 projecting upward from the bottom wall section 8. Have been.
[0017]
The stator portion 9 has a substantially cylindrical shape provided with a concave portion 11 into which the cooling water W can flow in on the inner peripheral side. Inside the stator portion 9, a stator 10 wound with a coil 10a is provided so as to generate a rotating magnetic field when energized. The member denoted by reference numeral 12 is a rotating substrate on which a power transistor for operating the stator 10 and a Hall element for detecting the rotation angle of the stator 10 are provided. The member denoted by reference numeral 13 is Power supply terminal.
[0018]
The rotor 15 has a substantially disk-shaped base 16 having an impeller 17 protruding upward on the front surface 16 a side, and extends downward from the vicinity of the outer peripheral edge of the base 16 to the rear surface 16 b side of the base 16 so as to extend toward the outer peripheral side of the stator 10. And a cylindrical magnet portion 18 disposed between the inner peripheral side of the peripheral wall portion 7. The magnet section 18 is rotated by a rotating magnetic field generated in the stator 10. In the case of the embodiment, the magnet portion 18 is formed by mixing a magnetic powder into a synthetic resin material such as polyamide which forms a portion of the rotor 15 excluding a support shaft 20 and a bearing 25 described later. .
[0019]
The base 16 is provided with a plurality of through holes 16c vertically penetrating the front and back sides near the inner peripheral side of the stator 10. Further, the center of the base 16 is provided with a shaft portion along the vertical direction. The shaft 19 includes a support shaft 20 and a sliding boss 26. The support shaft 20 is formed of a metal pipe, penetrates the base 16, and has a lower end 20 b fixed to the center of the bottom wall 8 in the motor chamber 6 of the housing 1. The pipe-shaped support shaft 20 has a plurality of inflow ports which open at the upper end and are located in the cooling water W near the lower end 20 a, that is, near the bottom 11 a of the inflow recess 11. The support shaft 20 is configured so that the cooling water W flowing from the inflow port 22 can flow out from the outflow port 23 which is an opening on the upper end surface of the support shaft 20.
[0020]
The sliding boss 26 has a cylindrical shape formed integrally with the base 16 at the center of the base 16, and furthermore, a bearing 25 made of a resin or metal or the like capable of reducing a frictional force on the upper and lower inner sides. With the upper and lower bearings 25 fixed, the sliding boss portion 26 is rotatably supported by the support shaft 20. An E-ring 24 is disposed near the upper end 20a of the support shaft 20 to prevent the sliding boss 26 from coming off the support shaft 20.
[0021]
During rotation, the rotor 15 floats upward due to the negative pressure on the inflow port 3 side, so that the E-ring 24 is required. Further, when the pump P1 operates, the rotor 15 rotates at a rotational speed of about 3000 to 3800 rpm.
[0022]
Further, the rotor 15 is disposed in the cooling water W except for a lower end 20 b fixed to the housing 1 side of the support shaft 20, and is disposed in the inflow recess 11 on the inner peripheral side of the stator 9. A plurality of agitating impellers 27 capable of agitating the cooling water W in the inflow concave portion 11 are provided on the outer peripheral surface on the lower side of the dynamic boss portion 26.
[0023]
In the magnetic coupling pump P1 of this embodiment, the cooling water W flows into the inflow recessed portion 11 located on the inner peripheral side of the stator 10 from the inner peripheral surface 18a of the magnet portion 18 of the rotor 15 and the back surface 16b of the base 16. Then, the inner circumferential side of the stator 10 is cooled by the cooling water W.
[0024]
Therefore, in the magnetic coupling pump P1 of the embodiment, it is possible to prevent the temperature rise on the inner peripheral side of the stator 10, prevent the disconnection of the coil 10a of the stator 10, and have the durability even in the high load operation with high power consumption. , Long-term operation becomes possible.
[0025]
In the embodiment, a plurality of through-holes 16 c penetrating vertically are provided near the inner peripheral side of the stator 10 in the base portion 16, and if the rotor 15 is operated to rotate, the inflow portion 3 is formed. A negative pressure is generated on the side, and the cooling water W in the inflow recess 11 flows through the through hole 16 c of the base 16 toward the pump chamber 2. That is, the cooling flow path F0 of the stator 10 by the cooling water W is formed from the outer peripheral side of the stator 10 toward the inner peripheral side, and further from the inner peripheral side of the stator 10 toward the pump chamber 2 side. In addition, the temperature rise on the inner peripheral side of the stator 10 can be further prevented, and the temperature rise on the outer peripheral side of the stator 10 can also be accurately prevented. For this reason, disconnection of the coil 10a of the stator 10 and thermal deformation of the stator portion 9 in the housing 1 can be accurately prevented, so that even a high-load operation with high power consumption can be operated for a long time with durability. Become.
[0026]
Further, in the embodiment, the rotor 15 includes the shaft portion 19 protruding into the inflow concave portion 11, and the sliding boss portion 26 of the shaft portion 19 has, on the outer peripheral surface thereof, a stirring impeller capable of stirring the cooling water W. 27 is protruded. Therefore, when the rotor 15 is driven to rotate, the cooling water W in the inflow recess 11 can be agitated by the agitating impeller 27, so that the entire area on the inner peripheral side of the stator 10 can be cooled quickly and accurately.
[0027]
Further, in the embodiment, the rotor 15 includes a shaft portion 19 protruding into the inflow concave portion 11, and the support shaft 20 of the shaft portion 19 uses the cooling water W on the bottom 11 a side of the inflow concave portion 11 to cover the surface 16 a of the base 16. A communication path 21 is provided in the inside so as to be able to be fed to the side, and opens inside on the bottom 11a side of the inflow recess 11 and on the surface 16a side of the base 16. Therefore, when the rotor 15 is operated to rotate, a negative pressure is generated on the inflow port 3 side, and the cooling water W on the lower portion 11 a side in the inflow recess 11 flows from the inflow port 22 to the support shaft 20. The fluid flows into the communication passage 21, and further flows through the communication passage 21 from the outlet 23 at the upper end 20 a of the support shaft 20 to the pump chamber 2 on the surface 16 a of the base 16. That is, the cooling flow of the stator 10 by the cooling water W is from the outer peripheral side of the stator 10 toward the inner peripheral side, and further from the bottom side of the inner peripheral side of the stator 10 to the pump chamber section 2 through the communication path 21. Since the path F1 is formed, the cooling effect on the inner peripheral side of the stator 10 can be enhanced.
[0028]
Further, in the magnetic coupling pump P1 of the embodiment, the rotor 15 is supported at the time of rotation by the upper and lower bearings 25 at the base 16 and the inflow recess 11 near the upper and lower ends of the rotor 15, respectively. Therefore, the rotation of the rotor 15 during operation is stabilized, and the loss of the rotational moment of the rotor 15 can be reduced as much as possible.
[0029]
In the embodiment, the shaft portion 19 of the rotor 15 is provided with the sliding boss portion 26 in which the stirring impeller 27 is protruded, but a structure without the impeller 27 may be adopted.
[0030]
In the embodiment, the shaft portion 19 of the rotor 15 is provided with the pipe-shaped support shaft 20 having the communication path 21. However, as in the magnetic coupling pump P2 shown in FIG. The shaft portion 19A may be composed of a sliding boss portion 26 on which the stirring impeller 27 is disposed and a support shaft 20A having no communication passage 21.
[0031]
Furthermore, in the embodiment, the rotor 15 is provided with a plurality of through holes 16c penetrating the base 16 of the rotor 15 from the front and back. However, the rotor 15 may have a structure without the through holes 16c.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a magnetic coupling pump according to an embodiment of the present invention.
FIG. 2 is a longitudinal sectional view of the rotor of the embodiment.
FIG. 3 is a cross-sectional view of the rotor according to the embodiment, and shows a portion III-III in FIG. 2;
FIG. 4 is a longitudinal sectional view of a magnetic coupling pump according to another embodiment.
[Explanation of symbols]
1 ... housing,
2. Pump room,
3 ... inlet,
4 ... outlet,
6 ... Motor room,
10 ... stator,
10a ... coil,
11 ... inflow recess,
15 ... rotor,
16 ... base,
16a ... (base) surface,
16b ... the back (of the base),
16c ... through-hole,
17 ... Impeller,
18 ... magnet part,
18a ... inner peripheral surface,
19 ... Shaft,
21 ... communicating passage,
22 ... inlet,
23 ... outlet,
25 ... Bearing,
27 ... impeller for stirring
W: Fluid / cooling water,
P1, P2: magnetic coupling pump.

Claims (5)

ハウジングが、流体の流入口部と流出口部とを有したポンプ室部と、モータ室部と、を備え、
ロータが、略円板状の基部の表面側に突設されて前記ポンプ室部側に配置されるインペラと、前記基部の裏面側から突設されて前記モータ室部側に配置される略円筒状の磁石部と、を備えて、前記流体中に配設される構成とするとともに、前記磁石部の内周側に配置される前記モータ室部側のステータによって発生する回転磁界により回転駆動されて、前記流体を前記流入口部から流入させて前記流出口部から流出させる磁気結合ポンプであって、
前記ステータの内周側に、前記ロータの磁石部の内周面側及び前記基部の裏面側と連通するように、前記流体の流入する流入凹部が、配設されていることを特徴とする磁気結合ポンプ。
The housing includes a pump chamber having a fluid inlet and a fluid outlet, and a motor chamber,
An impeller, which is provided on the pump chamber side by protruding from the front side of a substantially disk-shaped base, and a substantially cylindrical body, protruded from the back side of the base and disposed on the motor chamber side And a magnet portion, which is disposed in the fluid, and is rotationally driven by a rotating magnetic field generated by a motor chamber side stator disposed on the inner peripheral side of the magnet portion. A magnetic coupling pump that causes the fluid to flow in from the inflow port and flow out from the outflow port,
An inflow recess into which the fluid flows is provided on an inner peripheral side of the stator so as to communicate with an inner peripheral surface of a magnet portion of the rotor and a back surface of the base. Combined pump.
前記基部における前記ステータの内周側付近に、表裏を貫通する複数の貫通孔が配設されていることを特徴とする請求項1に記載の磁気結合ポンプ。2. The magnetic coupling pump according to claim 1, wherein a plurality of through-holes penetrating the front and back sides are provided near an inner peripheral side of the stator in the base portion. 3. 前記ロータが、前記流入凹部内に突出する軸部を備え、
該軸部の外周面に、前記流体を撹拌可能な撹拌用インペラが、突設されていることを特徴とする請求項1若しくは請求項2に記載の磁気結合ポンプ。
The rotor includes a shaft projecting into the inflow recess,
The magnetic coupling pump according to claim 1, wherein a stirring impeller capable of stirring the fluid is provided on an outer peripheral surface of the shaft portion.
前記ロータが、前記流入凹部内に突出する軸部を備え、
該軸部が、前記流入凹部側の流体を前記基部の表面側に送給可能に、内部に、前記流入凹部側と前記基部の表面側とに開口する連通路を有していることを特徴とする請求項1乃至請求項3のいずれかに記載の磁気結合ポンプ。
The rotor includes a shaft projecting into the inflow recess,
The shaft portion has a communication passage that opens inside the inflow recess side and the base surface side so that the fluid in the inflow recess side can be supplied to the surface side of the base portion. The magnetic coupling pump according to claim 1, wherein:
前記ロータが、前記基部側と前記流入凹部側との二箇所で、回動自在に支持されていることを特徴とする請求項1乃至請求項4のいずれかに記載の磁気結合ポンプ。The magnetic coupling pump according to any one of claims 1 to 4, wherein the rotor is rotatably supported at two positions, the base side and the inflow recess side.
JP2003142389A 2003-05-20 2003-05-20 Magnetic coupling pump Withdrawn JP2004346774A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003142389A JP2004346774A (en) 2003-05-20 2003-05-20 Magnetic coupling pump
US10/838,197 US20040234395A1 (en) 2003-05-20 2004-05-05 Magnetic coupling pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003142389A JP2004346774A (en) 2003-05-20 2003-05-20 Magnetic coupling pump

Publications (1)

Publication Number Publication Date
JP2004346774A true JP2004346774A (en) 2004-12-09

Family

ID=33447478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003142389A Withdrawn JP2004346774A (en) 2003-05-20 2003-05-20 Magnetic coupling pump

Country Status (2)

Country Link
US (1) US20040234395A1 (en)
JP (1) JP2004346774A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011247376A (en) * 2010-05-28 2011-12-08 Aisin Seiki Co Ltd Resin injection molded rotary member
JP2012527562A (en) * 2009-05-19 2012-11-08 カーエスベー・アクチエンゲゼルシャフト Pitot tube pump
KR101250969B1 (en) 2012-02-20 2013-04-05 캄텍주식회사 Water pump for vehicle
KR101456597B1 (en) * 2012-12-28 2014-11-04 주식회사 고아정공 Motor connecting structure of an electric water pump
JP2019143514A (en) * 2018-02-19 2019-08-29 株式会社久保田鉄工所 Electric pump

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI363141B (en) * 2006-01-11 2012-05-01 Delta Electronics Inc Water pump and bearing thereof
JP2007205190A (en) * 2006-01-31 2007-08-16 Aisan Ind Co Ltd Electric pump
JP2007218163A (en) * 2006-02-16 2007-08-30 Nidec Sankyo Corp Pump and pump system
US7535138B2 (en) * 2006-04-27 2009-05-19 Chi-Der Chin Reversible submerged motor
WO2008014556A1 (en) * 2006-08-03 2008-02-07 Richard David Davies Electric pump-motor design
US7535139B2 (en) * 2006-09-26 2009-05-19 Chi-Der Chen Bi-directional reversible submersible motor
US20080112824A1 (en) * 2006-11-09 2008-05-15 Nidec Shibaura Corporation Pump
DE102007055907A1 (en) * 2007-12-21 2009-06-25 Geräte- und Pumpenbau GmbH Merbelsrod Coolant pump
US8777596B2 (en) * 2008-05-06 2014-07-15 Fmc Technologies, Inc. Flushing system
EP2297466A1 (en) * 2008-05-06 2011-03-23 FMC Technologies, Inc. Flushing system
DE102008064162B4 (en) * 2008-12-19 2013-06-06 Bühler Motor GmbH Centrifugal pump with a fixed axis
JP5163958B2 (en) * 2008-12-22 2013-03-13 アイシン精機株式会社 Mold for insert molding of electric fluid pump and electric fluid pump casing
US8905729B2 (en) 2011-12-30 2014-12-09 Peopleflo Manufacturing, Inc. Rotodynamic pump with electro-magnet coupling inside the impeller
US8905728B2 (en) 2011-12-30 2014-12-09 Peopleflo Manufacturing, Inc. Rotodynamic pump with permanent magnet coupling inside the impeller
DE102013204323A1 (en) * 2013-03-13 2014-09-18 Bühler Motor GmbH rotary pump
CN103790835B (en) * 2014-01-14 2017-01-18 苏州泰格动力机器有限公司 Integrated water-jacketed permanent magnet motor water pump
US20180229825A1 (en) 2014-05-01 2018-08-16 Blue Robotics Inc. Submersible electric thruster
CN105090096A (en) * 2014-05-21 2015-11-25 上海佰诺泵阀有限公司 Magnetic force peripheral pump
CN104179693B (en) * 2014-07-16 2018-01-02 苏州泰格动力机器有限公司 A kind of magnetic drive pump
CN105370584B (en) * 2014-08-15 2019-05-21 广东德昌电机有限公司 Electrodynamic pump
AU2014240249B1 (en) * 2014-10-02 2015-04-23 Zenin, Vladimir Mr Magnet engine
EP3012457B1 (en) * 2014-10-21 2018-12-12 Pierburg Pump Technology GmbH Electric motor vehicle coolant pump
US10415597B2 (en) * 2014-10-27 2019-09-17 Coolit Systems, Inc. Fluid heat exchange systems
CN105782063B (en) * 2014-12-22 2019-04-16 浙江三花汽车零部件有限公司 Electric drive pump
CN106151055B (en) * 2015-03-26 2019-06-07 浙江三花汽车零部件有限公司 Electric drive pump
KR20160118612A (en) * 2015-04-02 2016-10-12 현대자동차주식회사 Electric water pump
CN113586512B (en) * 2015-09-30 2023-12-26 浙江三花汽车零部件有限公司 Rotor assembly and electrically driven pump
DE102016122784A1 (en) * 2016-11-25 2018-05-30 Pierburg Pump Technology Gmbh Electric vehicle coolant pump
IT201700018662A1 (en) * 2017-02-20 2018-08-20 Baruffaldi Spa RECIRCULATION PUMP OF A THERMAL MOTOR FLUID WITH ELECTRIC MOTOR CONTROL
DE102017120039A1 (en) * 2017-08-31 2019-02-28 Nidec Gpm Gmbh Coolant pump with application-optimized design
DE102017127574B3 (en) * 2017-11-22 2019-02-21 Nidec Gpm Gmbh Coolant pump with application-optimized design and improved heat balance
DE102018125031A1 (en) * 2018-10-10 2020-04-16 HELLA GmbH & Co. KGaA Pump, in particular for a liquid circuit in a vehicle
IT201900000615A1 (en) * 2019-01-15 2020-07-15 Baruffaldi Spa RECIRCULATION PUMP OF A COOLING FLUID OF THERMAL ENGINES WITH ELECTRIC MOTOR CONTROL
IT201900001481A1 (en) 2019-02-01 2020-08-01 Baruffaldi Spa RECIRCULATION PUMP OF A COOLING FLUID OF THERMAL ENGINES WITH ELECTRIC MOTOR CONTROL
IT201900002313A1 (en) 2019-02-18 2020-08-18 Baruffaldi Spa RECIRCULATION PUMP OF A COOLING FLUID OF THERMAL ENGINES WITH ELECTRIC MOTOR CONTROL
CN113494464B (en) * 2021-08-13 2023-02-10 宁德时代电机科技有限公司 High-efficiency water-cooling axial magnetic field permanent magnet intelligent water pump with integrated control device
KR20240011274A (en) * 2022-07-18 2024-01-26 현대자동차주식회사 Water pump with coolant flow path
DE102022131228A1 (en) * 2022-11-25 2024-05-29 Bühler Motor GmbH Liquid pump

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3220350A (en) * 1964-09-03 1965-11-30 Crane Co Motor driven pump
GB1496035A (en) * 1974-07-18 1977-12-21 Iwaki Co Ltd Magnetically driven centrifugal pump
JPS51111902A (en) * 1975-03-26 1976-10-02 Iwaki:Kk Magnet pump
JP3752594B2 (en) * 2000-04-25 2006-03-08 愛三工業株式会社 Magnetic coupling pump

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012527562A (en) * 2009-05-19 2012-11-08 カーエスベー・アクチエンゲゼルシャフト Pitot tube pump
JP2011247376A (en) * 2010-05-28 2011-12-08 Aisin Seiki Co Ltd Resin injection molded rotary member
KR101250969B1 (en) 2012-02-20 2013-04-05 캄텍주식회사 Water pump for vehicle
US9422936B2 (en) 2012-02-20 2016-08-23 Kamtec Inc. Water pump in vehicle
KR101456597B1 (en) * 2012-12-28 2014-11-04 주식회사 고아정공 Motor connecting structure of an electric water pump
JP2019143514A (en) * 2018-02-19 2019-08-29 株式会社久保田鉄工所 Electric pump
JP7004300B2 (en) 2018-02-19 2022-01-21 株式会社久保田鉄工所 Electric pump

Also Published As

Publication number Publication date
US20040234395A1 (en) 2004-11-25

Similar Documents

Publication Publication Date Title
JP2004346774A (en) Magnetic coupling pump
JP2007285217A (en) Pump and liquid supply device
JP2004346773A (en) Water pump
JP2002138990A (en) Motor pump
KR101826600B1 (en) Pump for Circulating Water
JP4858329B2 (en) Centrifugal pump and liquid supply apparatus provided with the same
JP2004204826A (en) Dynamic-pressure bearing type pump
KR100917901B1 (en) Rotation and revolving type impeller for mixer
KR101812033B1 (en) Pump for Circulating Water to prevent noise during transition state
KR20160097589A (en) Electric water pump with filter assembly
KR101827295B1 (en) Pump for Circulating Hot Water
JP2004073400A (en) Centrifugal blood pump
JP6825227B2 (en) Rotating machine
JP2008008185A (en) Pump
JP2020094496A (en) Centrifugal pump
JP2003219622A (en) Brushless motor
JPH11324985A (en) Axial flow fan
JP2003172287A (en) Fluid pump, cooling device and notebook-sized personal computer
JP2018031330A (en) Electric fluid pump
JP2014118949A (en) Self-priming centrifugal pump
JP2824243B2 (en) Bubble generator
JPH10213092A (en) Impeller for circulating pump
JP2009007959A (en) Centrifugal pump
JPH0861285A (en) Magnetic coupling pump
JP4770207B2 (en) Pump and liquid supply apparatus having the same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060801