JP2004345446A - Traveling control device for vehicle - Google Patents

Traveling control device for vehicle Download PDF

Info

Publication number
JP2004345446A
JP2004345446A JP2003143391A JP2003143391A JP2004345446A JP 2004345446 A JP2004345446 A JP 2004345446A JP 2003143391 A JP2003143391 A JP 2003143391A JP 2003143391 A JP2003143391 A JP 2003143391A JP 2004345446 A JP2004345446 A JP 2004345446A
Authority
JP
Japan
Prior art keywords
axle
vehicle
air
detecting
vehicle height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003143391A
Other languages
Japanese (ja)
Other versions
JP4334277B2 (en
Inventor
Tsutomu Sasaki
勉 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UD Trucks Corp
Original Assignee
UD Trucks Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UD Trucks Corp filed Critical UD Trucks Corp
Priority to JP2003143391A priority Critical patent/JP4334277B2/en
Publication of JP2004345446A publication Critical patent/JP2004345446A/en
Application granted granted Critical
Publication of JP4334277B2 publication Critical patent/JP4334277B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a traveling control device for a vehicle that ensures a good start even in case of a single-axle rear-wheel-drive vehicle. <P>SOLUTION: This traveling control device comprises vehicle height detecting means 31a and 31b for detecting the vehicle height level at a front axle 20 side and a rear axle 22 side, axle load detecting means 32a and 32b for detecting the axle load of the front axle 20 and the rear axle 22, slip detecting means 35 and 36 for detecting the slip state of a driving wheel 34, and a start control means 30 that controls valve means 26a and 26b for extending or contracting air suspensions 23a and 23b so as to apply a dynamic load to the driving wheel 34 based on the vehicle height level at the front axle 20 side and the rear axle 22 side and the axle load of the front axle 20 and the rear axle 22 in case that a slip state of the driving wheel 34 is occurred at the starting, and controls the valve means 26a and 26b for bringing back to the original vehicle height level after starting. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、車両の走行制御装置に関する。
【0002】
【従来の技術】
従来、車両のサスペンションに乗り心地を向上するためにエアサスペンションを用いるものがある。
【0003】
大型車両のように、後輪2軸のうち、一方(例えば後前軸)を駆動軸、もう一方(例えば後後軸)を従動軸としたものは、駆動軸の荷重(軸重)が小さすぎる場合、走行に影響するため、駆動軸のエアサスペンションの空気圧を相対的に高くして、駆動軸の荷重分担を大きくするようにしている。
【0004】
したがって、積載量等が少なく、滑りやすい路面(低摩擦係数路面)や登坂路面にて発進するとき等、駆動力が低下することなく、またスリップを抑えて、発進できるようになっている(特許文献1〜3)。
【0005】
【特許文献1】
特開平9−109645号
【特許文献2】
特開平9−202123号
【特許文献3】
特開2001−213130
【0006】
【発明が解決しようとする課題】
このような軸重配分は、後輪2軸車にあっては行えるが、前輪1軸、後輪1軸の車両には適用できない。
【0007】
後輪1軸車の場合にも、積載量等が少なく、滑りやすい路面や登坂路面にて発進する際は、駆動力が低下したり、スリップが発生して、良好な発進を得にくいことがあるが、駆動軸のエアサスペンションの空気圧を相対的に高くしても、荷重分担は変わるわけではない。
【0008】
この発明は、このような課題に注目してなされたものであり、駆動輪に動的荷重を付与して、後輪1軸車でも良好な発進を確保し得る車両の走行制御装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
第1の発明は、前車軸ならびに後車軸に備えるエアサスペンションに対して、エアタンクからエアサスペンションへの所定圧のエアの供給とエアサスペンションのエアの排出とを行う弁手段を備える車両において、前車軸側および後車軸側の車高レベルを検出する車高検出手段と、前車軸および後車軸の軸重を検出する軸重検出手段と、駆動輪のスリップ状態を検出するスリップ検出手段とを備え、発進時に、前車軸側および後車軸側の車高レベルと、前車軸および後車軸の軸重とに基づき、駆動輪のスリップ状態を生じた場合、駆動輪に動的荷重を付与するべく駆動車軸のエアサスペンションを伸動もしくは縮動するよう弁手段を制御すると共に、発進後は、元の車高レベルに戻すように弁手段を制御する発進制御手段を備える。
【0010】
第2の発明は、前車軸ならびに後車軸に備えるエアサスペンションに対して、エアタンクからエアサスペンションへの所定圧のエアの供給とエアサスペンションのエアの排出とを行う弁手段を備える車両において、前車軸側および後車軸側の車高レベルを検出する車高検出手段と、前車軸および後車軸の軸重を検出する軸重検出手段と、登坂路を検出する登坂路検出手段とを備え、登坂路の発進時に、前車軸側および後車軸側の車高レベルと、前車軸および後車軸の軸重とに基づき、駆動輪に動的荷重を付与するべく駆動車軸のエアサスペンションを伸動もしくは縮動するよう弁手段を制御すると共に、発進後は、元の車高レベルに戻すように弁手段を制御する発進制御手段を備える。
【0011】
第3の発明は、第1、第2の発明において、前記発進制御手段は、駆動車軸以外のエアサスペンションを駆動車軸のエアサスペンションと反対方向に動作するように弁手段を制御する。
【0012】
第4の発明は、第1〜第3の発明において、エンジンならびに回転電機によって走行可能な車両にあって、前記発進制御手段の制御は、回転電機の出力のみによる発進時およびエンジンの出力と回転電機の出力を併用しての発進時に実行する。
【0013】
【発明の効果】
第1の発明においては、発進時に駆動輪のスリップ状態を生じた場合、前車軸側および後車軸側の車高レベルと、前車軸および後車軸の軸重とに基づき、駆動輪に動的荷重が付与され、接地圧が瞬時的に高まって、発進が行われる。したがって、滑りやすい路面にて発進する場合、スリップによる駆動力の低下を抑えて、積載量に合った発進を行え、良好な発進を得ることができる。
【0014】
第2の発明においては、登坂路の発進時に、前車軸側および後車軸側の車高レベルと、前車軸および後車軸の軸重とに基づき、駆動輪に動的荷重が付与され、発進が行われる。したがって、登坂路にて発進する場合、スリップによる駆動力の低下を抑えて、積載量に合った発進を行え、良好な発進を得ることができる。
【0015】
第3の発明においては、駆動輪の動的動作をアシストできる。
【0016】
第4の発明においては、ハイブリッド車両において回転電機の出力の変化によるスリップを抑制して発進を行える。
【0017】
【発明の実施の形態】
図1は、前輪1軸(前車軸:遊動輪)、後輪1軸(後車軸:駆動輪)のハイブリッド車両におけるシステム構成図を示す。
【0018】
図1において、1はエンジン、2はインバータ3を備える回転電機(モータジェネレータ)であり、エンジン1ならびに回転電機2はそれぞれクラッチ4、5を介して変速機6に連結され、変速機6の出力は後車軸22の駆動輪34に伝達される。
【0019】
エンジン1は、ディーゼルエンジン(または圧縮天然ガスを燃料とするCNGエンジン)が採用される。回転電機2は、高効率および小形軽量化の面から、永久磁石型同期電動機(IPM同期モータ)が使用される。
【0020】
エンジン1、回転電機2、クラッチ4、5、変速機6は、車両コントロールユニット10によって、アクセルペダルの踏み量(アクセル操作量:アクセル開度)、エンジン1の回転速度、回転電機2の回転速度、車速、ブレーキペダル11の踏み量、蓄電装置12のSOC(state of chage)等に基づいて制御される。
【0021】
蓄電装置12には、ブレーキエネルギを短時間で無駄なく高効率に回生するため、車両の電池許容質量に対して必要な出力密度を確保しやすい、電気二重層キャパシタが使用される。
【0022】
車両コントロールユニット10は、蓄電装置12のSOCをパラメータに、所定の制御マップに回転電機2の出力とエンジン1の出力との分担比を設定してあり、その制御マップから蓄電装置12のSOCに応じた出力分担比を求め、この分担比と要求駆動力(アクセル操作量)に基づいて、回転電機2の出力およびエンジン1の出力を制御する。
【0023】
回転電機2の出力分担比=1(エンジン1の出力分担比=0)の場合、クラッチ4を切断した状態(クラッチ5は接続)において、アクセル操作量に相当する出力が回転電機2から得られるようにインバータ3を制御する。回転電機2の出力分担比<1(エンジン1の出力分担比>0)の場合、クラッチ4を接続した状態において、蓄電装置12のSOCの低下に連れて回転電機2の分担出力が小さくなり、それに応じてエンジン1の分担出力が大きくなるようにエンジン1の出力およびインバータ3を制御する。エンジン1の出力分担比=1(回転電機2の出力分担比=0)の場合、アクセル操作量に相当する出力がエンジン1から得られるようにエンジン1の出力を制御する。
【0024】
また、アクセルを解放する減速時に、蓄電装置12への充電が可能な限り、クラッチ4を切断した状態において、回転電機2の発電(回生発電)を行うようにインバータ3を制御する。サービスブレーキ時は、ブレーキペダル11の踏み量(要求制動力)に基づいて、蓄電装置12への充電が可能な限り、クラッチ4を切断した状態において、回転電機2の発電(回生発電)を行うようにインバータ3を制御する。
【0025】
車両の発進に際しては、キースイッチがST(スタート)に入ると、エンジン1が始動され、クラッチ4が断かつエンジン1がアイドル運転の停車状態において、蓄電装置12のSOC等を基に発進モードが選択される。
【0026】
回転電機2の単独発進の場合、クラッチ5が接続された状態(変速機6は発進段にシフト)で、アクセルペダルの踏み込みにしたがって、回転電機2が要求駆動力を発生するように制御され、車両は走り始めることになる。
【0027】
エンジン1の出力と回転電機2の出力との併用発進の場合、クラッチ5が接続された状態(変速機6は発進段にシフト)で、アクセルペダルの踏み込みにしたがって、クラッチ4が接続されると共にエンジン1および回転電機2がそれぞれの分担出力を発生するように制御され、車両は走り始めることになる。
【0028】
エンジン1の単独発進の場合、クラッチ5が切断された状態(変速機6は発進段にシフト)で、アクセルペダルの踏み込みにしたがって、クラッチ4が接続されると共にエンジン1が要求駆動力を発生するように制御され、車両は走り始めることになる。
【0029】
一方、車両の前車軸20と車体との間にエアサスペンション21a、21bが、後車軸(駆動軸)22と車体との間にエアサスペンション23a、23bが設けられる。
【0030】
エアサスペンション21a、21b、23a、23bのベローズ(エアスプリング)に対して、それぞれエアリザーバタンク24からベローズへの所定圧のエアの供給とベローズのエアの排出とを行うソレノイドバルブ25a、25b、26a、26bが設けられる。
【0031】
ソレノイドバルブ25a、25b、26a、26bは、エアサスコントロールユニット30によって、前車軸20側、後車軸(駆動軸)22側の車高レベルを検出する車高センサ31a、31bの検出信号、エアサスペンション21a、21b、23a、23bのベローズの内圧(前車軸20、後車軸22の軸重)を検出する内圧センサ32a、32bの検出信号、車両コントロールユニット10の情報(停車、発進、走行等)、ブレーキペダル11の踏み込み、各車輪(前輪33、後輪34)の回転速度を検出する車輪速センサ35、36の検出信号、登坂路を検出する傾斜センサ37の検出信号、車高レベル操作スイッチ(図示しない)の信号等に基づいて制御される。
【0032】
エアサスコントロールユニット30は、車高レベル操作スイッチによる要求レベルに前車軸20側、後車軸(駆動軸)22側の車高レベルを設定するようにソレノイドバルブ25a、25b、26a、26bを制御する。
【0033】
車両の発進時には、駆動輪(後輪34)のスリップ状態を生じた場合あるいは登坂路の場合、前車軸20側、後車軸(駆動軸)22側の車高レベル、エアサスペンション21a、21b、23a、23bのベローズの内圧(前車軸20、後車軸22の軸重)等に基づいて、駆動輪(後輪34)にエアサスペンション23a、23bの伸び方向あるいは縮方向に動的荷重を付与するようにソレノイドバルブ26a、26b等を制御する。
【0034】
図2は、発進時の制御機能のブロック構成(駆動輪のスリップに対して)を表すものであり、要求駆動トルク算出手段40、回転電機2の回転加速度を算出する手段41、回転電機2の駆動軸の慣性トルクを算出する手段42、駆動輪のスリップ状態を判定する手段43、回転電機2のトルク値を補正して出力する手段44、前車軸20側、後車軸(駆動軸)22側の車高レベルを判定する手段45、エアサスペンション21a、21b、23a、23bのベローズの内圧より前車軸20、後車軸22の軸重(配分)を判定する手段46、動的荷重を選択する手段47が備えられる。
【0035】
要求トルク算出手段40は、アクセル開度と車速とから要求駆動トルクを算出する。回転電機2の要求駆動トルクは蓄電装置12のSOCに基づく出力分担比によって設定する。
【0036】
駆動輪のスリップ判定手段43は、各車輪(前輪33、後輪34)の回転速度より駆動輪34のスリップ状態を判定する。
【0037】
発進時に、回転電機トルク値補正出力手段44は、回転電機2が出力分担比の要求駆動トルクを発生するようにトルク指令値をインバータ3へ出力する。
【0038】
発進時に、動的荷重選択手段47は、駆動輪34のスリップ状態が検出された場合、前車軸20側、後車軸(駆動軸)22側の車高レベル(発進前の値)と、前車軸20、後車軸22の軸重(発進前の値)とに基づき、駆動輪(後輪34)に動的荷重を付与するべくエアサスバルブ(ソレノイドバルブ)25a、25b、26a、26bを制御するように、エアスプリングバルブ制御手段48に指令する。
【0039】
この場合、前車軸20側、後車軸(駆動軸)22側の車高レベルが所定レベル以下のときは、後車軸22のエアサスペンション23a、23bのベローズへエアリザーバタンク24から所定圧のエアを瞬時的に供給するようにエアスプリングバルブ制御手段48に指令する。同時に、前車軸20のエアサスペンション21a、21bのベローズのエアの瞬時的な排出動作を行う。
【0040】
また、前車軸20、後車軸22の軸重が所定値以下で、前車軸20側、後車軸(駆動軸)22側の車高レベルが所定レベルを越えているときは、後車軸22のエアサスペンション23a、23bのベローズのエアの瞬時的な排出動作を行うようにエアスプリングバルブ制御手段48に指令する。
【0041】
駆動輪34のスリップ状態が検出されなくなると、前車軸20側、後車軸(駆動軸)22側の車高レベルを元の車高レベルに戻すように、エアスプリングバルブ制御手段48に指令する。
【0042】
エンジン制御手段50は、エンジン1の出力分担比を基にエンジン1の出力を制御する。また、走行中、駆動輪(後輪32)のスリップ状態を生じた場合、エンジン出力補正手段51の補正指令に基づきエンジン1の出力を下げるように制御する。
【0043】
トランスミッション制御手段52は、ギヤ変速制御手段53からの指令に基づき変速機6をシフトする。ギヤ変速制御手段53は、走行中、駆動輪(後輪32)のスリップ状態を生じた場合、変速を禁止する。
【0044】
図3は、エアサスコントロールユニット30の発進制御のフローチャートを示す。
【0045】
S1においては、ハイブリッド車両のシステムの起動条件信号を読み込む。
【0046】
S2においては、発進条件が成立しているかを判定する。
【0047】
S3においては、発進条件が成立している場合、エアサスペンション21a、21b、23a、23bのベローズの内圧より前車軸20、後車軸22の軸重を演算する。
【0048】
S4においては、車両の発進状態かを見る。回転電機2の単独発進の場合、クラッチ5が接続された状態(変速機6は発進段にシフト)で、アクセルペダルが踏み込まれた状態か、エンジン1の出力と回転電機2の出力との併用発進の場合、クラッチ5が接続された状態(変速機6は発進段にシフト)で、アクセルペダルが踏み込まれて、クラッチ4が接続された状態(半クラッチを含む)か、エンジン1の単独発進の場合、クラッチ5が切断された状態(変速機6は発進段にシフト)で、アクセルペダルが踏み込まれて、クラッチ4が接続された状態(半クラッチを含む)かを見る。
【0049】
S5においては、駆動輪34のスリップがあるかどうかを見る。
【0050】
駆動輪34のスリップがある場合、S6において前車軸20側、後車軸(駆動軸)22側の車高レベルを見る。
【0051】
S7においては、前車軸20側、後車軸(駆動軸)22側の車高レベルが所定レベル以下のときは、後車軸22のエアサスペンション23a、23bのベローズへエアリザーバタンク24から所定圧のエアを瞬時的に供給するようにソレノイドバルブ26a、26bを制御する。同時に、前車軸20のエアサスペンション21a、21bのベローズのエアの瞬時的な排出動作を行うようにソレノイドバルブ25a、25bを制御する。
【0052】
また、前車軸20、後車軸22の軸重が所定値以下で、前車軸20側、後車軸(駆動軸)22側の車高レベルが所定レベルを越えているときは、後車軸22のエアサスペンション23a、23bのベローズのエアの瞬時的な排出動作を行うようにソレノイドバルブ26a、26bを制御する。
【0053】
S8において、駆動輪34のスリップがなくなると、S9において、前車軸20側、後車軸(駆動軸)22側の車高レベルを元の車高レベルに戻すように、ソレノイドバルブ25a、25b、26a、26bを制御する。
【0054】
一方、S4において、登坂路での発進状態かを見て、登坂路での発進状態の場合、駆動輪34のスリップに関わらず、S6以降の処理を行う。
【0055】
このように構成したため、発進時に駆動輪34のスリップ状態を生じた場合、前車軸20側、後車軸(駆動軸)22側の車高レベルと、前車軸20、後車軸22の軸重とに基づき、瞬時的に後車軸22のエアサスペンション23a、23bが伸動もしくは縮動される。
【0056】
すなわち、駆動輪(後輪34)に動的荷重が付与され、これによって接地圧が瞬時的に高まって、変速機6を介して伝えられる駆動力によって、発進が行われる。
【0057】
この場合、前車軸20側、後車軸(駆動軸)22側の車高レベルが所定レベル以下のときは、後車軸22のエアサスペンション23a、23bのベローズへのエア供給によるエアサスペンション23a、23bの瞬時的な伸動によって、駆動輪(後輪34)が路面に押圧動される。同時に前車軸20のエアサスペンション21a、21bのベローズのエア排出によって駆動輪(後輪34)の押圧動がアシストされる。
【0058】
また、前車軸20、後車軸22の軸重が所定値以下で、前車軸20側、後車軸(駆動軸)22側の車高レベルが所定レベルを越えているときは、後車軸22のエアサスペンション23a、23bのベローズのエア排出によるエアサスペンション23a、23bの縮動に対する反動によって、駆動輪(後輪34)が路面に押圧動される。
【0059】
一方、登坂路での発進の場合は、前車軸20側、後車軸(駆動軸)22側の車高レベルと、前車軸20、後車軸22の軸重とに基づき、前述のように駆動輪(後輪34)に動的荷重が付与され、変速機6を介して伝えられる駆動力によって、発進が行われる。
【0060】
したがって、滑りやすい路面や登坂路にて発進する場合、スリップによる駆動力の低下を抑えて、積載量に合った発進を行え、路面状態、積載状態に対する高度な運転技術を必要とせず、良好な発進を得ることができる。
【0061】
この発進時のエアサスペンション21a、21b、23a、23bの制御は、特に回転電機2の単独発進の場合およびエンジン1の出力と回転電機2の出力との併用発進の場合に行うようにして良い。
【0062】
ハイブリッド車両において、回転電機2の出力による発進時に駆動輪34のスリップ状態を生じると、回転電機2の出力が変化して駆動輪34の回転が急に高まることがあるが、こうしたスリップを抑えて発進を行える。
【0063】
図4は本発明の別の実施の形態を示す。
【0064】
これは、板バネ方式の後輪2軸(後前軸60、後後軸61)車の後後軸(駆動軸)61と車体62との間にエアサスペンション63a、63bを設け、車両の発進時に、後前軸60、後後軸(駆動軸)61の軸重に基づき、駆動輪(後輪64)のスリップ状態を生じた場合あるいは登坂路の場合、駆動輪(後輪64)に動的荷重を付与するように、ソレノイドバルブ(図示しない)を制御して、エアサスペンション63a、63bのベローズへエアリザーバタンクから所定圧のエアの供給を行う。
【0065】
このようにすれば、板バネ方式の後輪2軸車に適用できる。
【図面の簡単な説明】
【図1】この発明の実施形態を表すシステム構成図である。
【図2】発進時の制御ブロック構成図である。
【図3】発進時の制御内容を説明するフローチャートである。
【図4】別の実施形態を表す部分概要図である。
【符号の説明】
1 エンジン
2 回転電機
3 インバータ
4、5 クラッチ
6 変速機
10 車両コントロールユニット
12 蓄電装置
20 前車軸
21a、21b エアサスペンション
22 後車軸
23a、23b エアサスペンション
24 エアリザーバタンク
25a、25b、26a、26b ソレノイドバルブ
30 エアサスコントロールユニット
31a、31b 車高センサ
32a、32b 内圧センサ
33 前輪
34 後輪
35、36 車輪速センサ
40 要求駆動トルク算出手段
43 駆動輪のスリップ状態判定手段
44 回転電機のトルク値補正出力手段
45 車高レベル判定手段
46 軸重判定手段
47 動的荷重選択手段
48 エアスプリングバルブ制御手段
50 エンジン制御手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a travel control device for a vehicle.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, there is a vehicle suspension that uses an air suspension to improve ride comfort.
[0003]
Like a heavy-duty vehicle, one of the two rear wheel axles (for example, a rear-front axle) having a drive shaft and the other (for example, a rear-rear axle) having a driven shaft has a small load (axle load) on the drive shaft. If it is too long, it affects running, so that the air pressure of the air suspension of the drive shaft is relatively increased to increase the load sharing of the drive shaft.
[0004]
Therefore, when starting on a slippery road surface (low friction coefficient road surface) or an ascending road surface with a small amount of loading, etc., it is possible to start the vehicle without reducing the driving force and suppressing the slip (Patent) Literatures 1 to 3).
[0005]
[Patent Document 1]
JP-A-9-109645 [Patent Document 2]
JP-A-9-202123 [Patent Document 3]
JP-A-2001-213130
[0006]
[Problems to be solved by the invention]
Such axle load distribution can be performed for a rear-wheel two-axle vehicle, but cannot be applied to a vehicle with one front wheel and one rear wheel.
[0007]
Even in the case of a rear-wheel single-axle vehicle, when starting on a slippery road surface or climbing road surface, the driving force is reduced or slip occurs, and it is difficult to obtain a good start when starting on a slippery road surface or climbing road surface However, even if the air pressure of the air suspension of the drive shaft is relatively increased, the load sharing does not change.
[0008]
The present invention has been made in view of such a problem, and provides a travel control device for a vehicle that can apply a dynamic load to drive wheels and ensure good starting even with a rear-wheel single-axle vehicle. The purpose is to:
[0009]
[Means for Solving the Problems]
A first aspect of the present invention relates to a vehicle having valve means for supplying air of a predetermined pressure from an air tank to an air suspension and discharging air from the air suspension to an air suspension provided on a front axle and a rear axle. Vehicle height detection means for detecting the vehicle height level on the side and rear axle side, axle load detection means for detecting the axle weight of the front axle and rear axle, and slip detection means for detecting the slip state of the drive wheels, At the time of starting, based on the vehicle height level on the front axle side and the rear axle side and the axle weight of the front axle and the rear axle, when a slip state of the drive wheel occurs, the drive axle is to apply a dynamic load to the drive wheel. Start control means for controlling the valve means so as to extend or contract the air suspension, and for controlling the valve means to return to the original vehicle height level after the start.
[0010]
A second invention provides a vehicle having valve means for supplying air at a predetermined pressure from an air tank to an air suspension and discharging air from the air suspension to an air suspension provided on a front axle and a rear axle. A vehicle height detecting means for detecting a vehicle height level on the side and rear axle side; an axle load detecting means for detecting axle weight of the front axle and the rear axle; and an ascending road detecting means for detecting an ascending road. When the vehicle starts, the air suspension of the drive axle is extended or contracted to apply a dynamic load to the drive wheels based on the vehicle height level on the front axle side and the rear axle side and the axle weight of the front axle and the rear axle. Start control means for controlling the valve means so as to return to the original vehicle height level after starting.
[0011]
In a third aspect based on the first and second aspects, the start control means controls the valve means such that the air suspension other than the drive axle operates in the direction opposite to the air suspension of the drive axle.
[0012]
According to a fourth aspect, in the first to third aspects, the invention is directed to a vehicle operable by an engine and a rotating electric machine, wherein the control of the start control means is performed only at the time of starting only by the output of the rotating electric machine and when the output and rotation of the engine are changed. This is executed at the time of starting using the output of the electric machine together.
[0013]
【The invention's effect】
In the first invention, when a slip state of the drive wheel occurs at the time of starting, a dynamic load is applied to the drive wheel based on the vehicle height level on the front axle side and the rear axle side and the axle weight of the front axle and the rear axle. Is given, the contact pressure instantaneously increases, and the vehicle is started. Therefore, when starting on a slippery road surface, a decrease in driving force due to slippage can be suppressed, starting can be performed in accordance with the load amount, and good starting can be obtained.
[0014]
In the second invention, a dynamic load is applied to the drive wheels based on the vehicle height levels on the front axle side and the rear axle side and the axle weight of the front axle and the rear axle at the start of the uphill road, and the start is started. Done. Therefore, when starting on an uphill road, a decrease in driving force due to slippage can be suppressed, starting can be performed according to the load amount, and good starting can be obtained.
[0015]
In the third aspect, the dynamic operation of the drive wheels can be assisted.
[0016]
In the fourth aspect, in the hybrid vehicle, the vehicle can be started while suppressing a slip due to a change in the output of the rotating electric machine.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows a system configuration diagram of a hybrid vehicle having one front wheel axle (front axle: idler wheel) and one rear wheel axle (rear axle: drive wheel).
[0018]
In FIG. 1, reference numeral 1 denotes an engine, and 2 denotes a rotating electric machine (motor generator) having an inverter 3. The engine 1 and the rotating electric machine 2 are connected to a transmission 6 via clutches 4 and 5, respectively. Is transmitted to the drive wheels 34 of the rear axle 22.
[0019]
As the engine 1, a diesel engine (or a CNG engine using compressed natural gas as fuel) is employed. As the rotating electric machine 2, a permanent magnet synchronous motor (IPM synchronous motor) is used in terms of high efficiency and small size and light weight.
[0020]
The engine 1, the rotating electric machine 2, the clutches 4, 5, and the transmission 6 are controlled by the vehicle control unit 10 to depress an accelerator pedal (accelerator operation amount: accelerator opening), the rotation speed of the engine 1, and the rotation speed of the rotating electric machine 2. , The speed of the brake pedal 11, the SOC (state of change) of the power storage device 12, and the like.
[0021]
As the power storage device 12, an electric double layer capacitor is used which easily secures a required output density with respect to a battery allowable mass of the vehicle in order to regenerate braking energy in a short time and without waste.
[0022]
The vehicle control unit 10 sets the sharing ratio between the output of the rotating electric machine 2 and the output of the engine 1 in a predetermined control map using the SOC of the power storage device 12 as a parameter, and from the control map to the SOC of the power storage device 12. A corresponding output sharing ratio is determined, and the output of the rotating electric machine 2 and the output of the engine 1 are controlled based on the sharing ratio and the required driving force (accelerator operation amount).
[0023]
When the output sharing ratio of the rotating electric machine 2 is 1 (the output sharing ratio of the engine 1 = 0), an output corresponding to the accelerator operation amount is obtained from the rotating electric machine 2 in a state where the clutch 4 is disconnected (the clutch 5 is connected). The inverter 3 is controlled as described above. In the case where the output sharing ratio of the rotating electric machine 2 <1 (the output sharing ratio of the engine 1> 0), the shared output of the rotating electric machine 2 decreases as the SOC of the power storage device 12 decreases with the clutch 4 connected. The output of the engine 1 and the inverter 3 are controlled so that the shared output of the engine 1 increases accordingly. When the output sharing ratio of the engine 1 is 1 (the output sharing ratio of the rotary electric machine 2 = 0), the output of the engine 1 is controlled so that an output corresponding to the accelerator operation amount is obtained from the engine 1.
[0024]
In addition, at the time of deceleration for releasing the accelerator, the inverter 3 is controlled so as to generate electric power (regeneration electric power) of the rotating electric machine 2 in a state where the clutch 4 is disconnected, as long as charging of the power storage device 12 is possible. At the time of service braking, the rotating electric machine 2 performs power generation (regenerative power generation) in a state where the clutch 4 is disconnected as long as the power storage device 12 can be charged based on the amount of depression of the brake pedal 11 (required braking force). The inverter 3 is controlled as described above.
[0025]
When the vehicle is started, when the key switch is turned on (ST), the engine 1 is started, the clutch 4 is disengaged, and the engine 1 is stopped in an idling mode, and the start mode is set based on the SOC of the power storage device 12 and the like. Selected.
[0026]
In the case where the rotating electric machine 2 is started independently, in a state where the clutch 5 is connected (the transmission 6 is shifted to the starting gear), the rotating electric machine 2 is controlled so as to generate the required driving force in accordance with the depression of the accelerator pedal, The vehicle will start running.
[0027]
In the case of simultaneous start of the output of the engine 1 and the output of the rotary electric machine 2, with the clutch 5 connected (the transmission 6 is shifted to the starting stage), the clutch 4 is connected in accordance with the depression of the accelerator pedal. The engine 1 and the rotating electric machine 2 are controlled so as to generate their respective shared outputs, and the vehicle starts running.
[0028]
In the case where the engine 1 is started independently, in a state where the clutch 5 is disengaged (the transmission 6 shifts to the starting stage), the clutch 4 is connected and the engine 1 generates the required driving force in accordance with the depression of the accelerator pedal. And the vehicle will start running.
[0029]
On the other hand, air suspensions 21a and 21b are provided between the front axle 20 and the vehicle body of the vehicle, and air suspensions 23a and 23b are provided between the rear axle (drive shaft) 22 and the vehicle body.
[0030]
Solenoid valves 25a, 25b, 26a for supplying air at a predetermined pressure from the air reservoir tank 24 to the bellows and discharging air from the bellows to the bellows (air springs) of the air suspensions 21a, 21b, 23a, 23b, respectively. , 26b are provided.
[0031]
The solenoid valves 25a, 25b, 26a, 26b are detected by the air suspension control unit 30 to detect the vehicle height levels on the front axle 20 side and the rear axle (drive shaft) 22 side. , 21b, 23a, 23b, detection signals of internal pressure sensors 32a, 32b for detecting the internal pressure of the bellows (axle load of the front axle 20, rear axle 22), information of the vehicle control unit 10 (stop, start, run, etc.), brake Depression of the pedal 11, detection signals of wheel speed sensors 35 and 36 for detecting the rotation speed of each wheel (front wheel 33, rear wheel 34), detection signals of a tilt sensor 37 for detecting an uphill road, a vehicle height level operation switch (illustrated) No) is controlled based on the signal.
[0032]
The air suspension control unit 30 controls the solenoid valves 25a, 25b, 26a, 26b to set the vehicle height level on the front axle 20 side and the rear axle (drive shaft) 22 side to the level required by the vehicle height level operation switch.
[0033]
When the vehicle starts moving, if the driving wheels (rear wheels 34) are in a slip state or on an uphill road, the vehicle height levels on the front axle 20 side and the rear axle (drive shaft) 22 side, and the air suspensions 21a, 21b, 23a. , 23b based on the internal pressure of the bellows (the axle load of the front axle 20 and the rear axle 22), etc., to apply a dynamic load to the drive wheels (rear wheels 34) in the direction of extension or contraction of the air suspensions 23a, 23b. The solenoid valves 26a and 26b are controlled.
[0034]
FIG. 2 shows a block configuration of the control function at the time of starting (with respect to the slip of the drive wheels), and includes a required drive torque calculating unit 40, a unit 41 for calculating the rotational acceleration of the rotary electric machine 2, Means 42 for calculating the inertia torque of the drive shaft, means 43 for determining the slip state of the drive wheels, means 44 for correcting and outputting the torque value of the rotary electric machine 2, the front axle 20 side, the rear axle (drive shaft) 22 side Means for determining the vehicle height level, means for determining the axle load (distribution) of the front axle 20 and rear axle 22 from the internal pressure of the bellows of the air suspensions 21a, 21b, 23a and 23b, means for selecting the dynamic load 47 are provided.
[0035]
The required torque calculation means 40 calculates a required drive torque from the accelerator opening and the vehicle speed. The required driving torque of rotating electric machine 2 is set by an output sharing ratio based on the SOC of power storage device 12.
[0036]
The drive wheel slip determination means 43 determines the slip state of the drive wheel 34 based on the rotation speed of each wheel (the front wheel 33 and the rear wheel 34).
[0037]
At the time of starting, the rotating electrical machine torque value correction output means 44 outputs a torque command value to the inverter 3 so that the rotating electrical machine 2 generates a required driving torque of an output sharing ratio.
[0038]
At the time of starting, when the slip state of the drive wheel 34 is detected, the dynamic load selection means 47 determines the vehicle height level (the value before starting) on the front axle 20 side and the rear axle (drive shaft) 22 side, and the front axle. 20, air suspension valves (solenoid valves) 25a, 25b, 26a, and 26b are controlled to apply a dynamic load to the drive wheels (rear wheels 34) based on the axle load of the rear axle 22 (the value before starting). Then, a command is sent to the air spring valve control means 48.
[0039]
In this case, when the vehicle height level on the front axle 20 side and the rear axle (drive shaft) 22 side is equal to or lower than a predetermined level, air of a predetermined pressure is supplied from the air reservoir tank 24 to the bellows of the air suspensions 23a and 23b of the rear axle 22. A command is sent to the air spring valve control means 48 to supply it instantaneously. At the same time, the air of the bellows of the air suspensions 21a and 21b of the front axle 20 is instantaneously discharged.
[0040]
If the axle weight of the front axle 20 and the rear axle 22 is equal to or less than a predetermined value, and the vehicle height level of the front axle 20 and the rear axle (drive shaft) 22 exceeds a predetermined level, the air of the rear axle 22 A command is issued to the air spring valve control means 48 so that the bellows of the suspensions 23a and 23b are instantaneously discharged.
[0041]
When the slip state of the driving wheel 34 is no longer detected, the air spring valve control means 48 is instructed to return the vehicle height level on the front axle 20 side and the rear axle (drive shaft) 22 side to the original vehicle height level.
[0042]
The engine control means 50 controls the output of the engine 1 based on the output sharing ratio of the engine 1. In addition, when a slip state of the drive wheel (rear wheel 32) occurs during traveling, the output of the engine 1 is controlled to be reduced based on a correction command of the engine output correction means 51.
[0043]
The transmission control means 52 shifts the transmission 6 based on a command from the gear shift control means 53. The gear shift control means 53 prohibits gear shifting when a slip state of the drive wheel (rear wheel 32) occurs during traveling.
[0044]
FIG. 3 shows a flowchart of start control of the air suspension control unit 30.
[0045]
In S1, a start condition signal of the system of the hybrid vehicle is read.
[0046]
In S2, it is determined whether a start condition is satisfied.
[0047]
In S3, when the start condition is satisfied, the axle weight of the front axle 20 and the rear axle 22 is calculated from the internal pressure of the bellows of the air suspensions 21a, 21b, 23a, 23b.
[0048]
In S4, it is checked whether the vehicle is in a starting state. In the case where the rotating electric machine 2 is started independently, the state where the clutch 5 is connected (the transmission 6 is shifted to the starting stage) and the accelerator pedal is depressed, or the output of the engine 1 and the output of the rotating electric machine 2 are used together In the case of starting, in a state where the clutch 5 is connected (the transmission 6 is shifted to the starting stage), the accelerator pedal is depressed and the clutch 4 is connected (including a half clutch), or the engine 1 is started alone. In the case of (1), it is checked whether the accelerator pedal is depressed and the clutch 4 is connected (including the half-clutch) in a state where the clutch 5 is disengaged (the transmission 6 is shifted to the starting gear).
[0049]
In S5, it is determined whether or not the drive wheel 34 has slipped.
[0050]
If the drive wheel 34 slips, the vehicle height levels on the front axle 20 side and the rear axle (drive shaft) 22 side are checked in S6.
[0051]
In S7, when the vehicle height level on the front axle 20 side and the rear axle (drive shaft) 22 side is equal to or lower than a predetermined level, air of a predetermined pressure is supplied from the air reservoir tank 24 to the bellows of the air suspensions 23a and 23b of the rear axle 22. The solenoid valves 26a and 26b are controlled so as to supply the pressure instantaneously. At the same time, the solenoid valves 25a and 25b are controlled such that the bellows of the air suspensions 21a and 21b of the front axle 20 are instantaneously discharged.
[0052]
If the axle weight of the front axle 20 and the rear axle 22 is equal to or less than a predetermined value, and the vehicle height level of the front axle 20 and the rear axle (drive shaft) 22 exceeds a predetermined level, the air of the rear axle 22 The solenoid valves 26a and 26b are controlled so that the bellows of the suspensions 23a and 23b are instantaneously discharged.
[0053]
In S8, when the slip of the drive wheel 34 disappears, in S9, the solenoid valves 25a, 25b, 26a are set so that the vehicle height level on the front axle 20 side and the rear axle (drive shaft) 22 side is returned to the original vehicle height level. , 26b.
[0054]
On the other hand, in S4, it is checked whether the vehicle is starting on an uphill road. If the vehicle is starting on an uphill road, the processes after S6 are performed irrespective of the slip of the drive wheel 34.
[0055]
With this configuration, when the driving wheel 34 slips at the time of starting, the vehicle height level on the front axle 20 side and the rear axle (drive shaft) 22 side and the axle weight of the front axle 20 and the rear axle 22 are reduced. Based on this, the air suspensions 23a and 23b of the rear axle 22 are instantaneously extended or retracted.
[0056]
That is, a dynamic load is applied to the drive wheel (rear wheel 34), whereby the ground pressure is instantaneously increased, and the vehicle is started by the driving force transmitted via the transmission 6.
[0057]
In this case, when the vehicle height level on the front axle 20 side and the rear axle (drive shaft) 22 side is equal to or lower than a predetermined level, the air suspensions 23a and 23b of the rear axle 22 are supplied with air to the bellows. By the instantaneous extension, the drive wheel (rear wheel 34) is pressed and moved to the road surface. At the same time, the bellows of the air suspensions 21a and 21b of the front axle 20 discharge air to assist the pressing of the drive wheels (rear wheels 34).
[0058]
If the axle weight of the front axle 20 and the rear axle 22 is equal to or less than a predetermined value, and the vehicle height level of the front axle 20 and the rear axle (drive shaft) 22 exceeds a predetermined level, the air of the rear axle 22 The drive wheels (rear wheels 34) are pressed against the road surface by a reaction to the contraction of the air suspensions 23a, 23b due to the exhaust of the bellows of the suspensions 23a, 23b.
[0059]
On the other hand, in the case of starting on an uphill road, the driving wheels are determined based on the vehicle height levels of the front axle 20 and the rear axle (drive axle) 22 and the axle weight of the front axle 20 and the rear axle 22 as described above. A dynamic load is applied to the (rear wheel 34), and the vehicle is started by the driving force transmitted via the transmission 6.
[0060]
Therefore, when starting on a slippery road surface or on an uphill road, it is possible to perform a start that matches the loading amount by suppressing a decrease in driving force due to slippage, and does not require advanced driving techniques for road surface conditions and loading conditions, and is good. You can get a start.
[0061]
The control of the air suspensions 21a, 21b, 23a, 23b at the time of starting may be performed particularly when the rotating electric machine 2 is started alone and when the output of the engine 1 and the output of the rotating electric machine 2 are started together.
[0062]
In a hybrid vehicle, if a slip state of the drive wheels 34 occurs at the time of starting due to the output of the rotary electric machine 2, the output of the rotary electric machine 2 may change and the rotation of the drive wheels 34 may suddenly increase. You can start.
[0063]
FIG. 4 shows another embodiment of the present invention.
[0064]
In this configuration, air suspensions 63a and 63b are provided between a rear rear shaft (drive shaft) 61 of a vehicle and two rear wheels (a rear front shaft 60 and a rear rear shaft 61) of a leaf spring type and a vehicle body 62 to start the vehicle. Sometimes, based on the axle weight of the rear front shaft 60 and the rear rear shaft (drive shaft) 61, when the slip condition of the drive wheel (rear wheel 64) occurs or on an uphill road, the drive wheel (rear wheel 64) moves. By controlling a solenoid valve (not shown) so as to apply an appropriate load, air at a predetermined pressure is supplied from the air reservoir tank to the bellows of the air suspensions 63a and 63b.
[0065]
With this configuration, the present invention can be applied to a leaf spring type rear wheel two-axle wheel.
[Brief description of the drawings]
FIG. 1 is a system configuration diagram showing an embodiment of the present invention.
FIG. 2 is a control block diagram at the time of starting.
FIG. 3 is a flowchart illustrating control contents at the time of starting.
FIG. 4 is a partial schematic diagram illustrating another embodiment.
[Explanation of symbols]
Reference Signs List 1 engine 2 rotating electric machine 3 inverter 4, 5 clutch 6 transmission 10 vehicle control unit 12 power storage device 20 front axles 21a, 21b air suspension 22 rear axles 23a, 23b air suspension 24 air reservoir tanks 25a, 25b, 26a, 26b solenoid valves Reference Signs List 30 Air suspension control units 31a, 31b Vehicle height sensors 32a, 32b Internal pressure sensors 33 Front wheels 34 Rear wheels 35, 36 Wheel speed sensors 40 Required drive torque calculation means 43 Drive wheel slip state determination means 44 Rotary electric machine torque value correction output means 45 Vehicle height level determination means 46 Axle load determination means 47 Dynamic load selection means 48 Air spring valve control means 50 Engine control means

Claims (4)

前車軸ならびに後車軸に備えるエアサスペンションに対して、エアタンクからエアサスペンションへの所定圧のエアの供給とエアサスペンションのエアの排出とを行う弁手段を備える車両において、
前車軸側および後車軸側の車高レベルを検出する車高検出手段と、
前車軸および後車軸の軸重を検出する軸重検出手段と、
駆動輪のスリップ状態を検出するスリップ検出手段とを備え、
発進時に、前車軸側および後車軸側の車高レベルと、前車軸および後車軸の軸重とに基づき、駆動輪のスリップ状態を生じた場合、駆動輪に動的荷重を付与するべく駆動車軸のエアサスペンションを伸動もしくは縮動するよう弁手段を制御すると共に、発進後は、元の車高レベルに戻すように弁手段を制御する発進制御手段を備えることを特徴とする車両の走行制御装置。
A vehicle provided with valve means for supplying air at a predetermined pressure from the air tank to the air suspension and discharging air from the air suspension, with respect to the air suspension provided on the front axle and the rear axle,
Vehicle height detecting means for detecting a vehicle height level on the front axle side and the rear axle side;
Axle load detection means for detecting the axle load of the front axle and the rear axle,
A slip detecting means for detecting a slip state of the drive wheel,
At the time of starting, based on the vehicle height level on the front axle side and the rear axle side and the axle weight of the front axle and the rear axle, when a slip state of the drive wheel occurs, the drive axle is to apply a dynamic load to the drive wheel. Vehicle starting control means for controlling the valve means to extend or contract the air suspension of the vehicle and controlling the valve means to return to the original vehicle height level after starting. apparatus.
前車軸ならびに後車軸に備えるエアサスペンションに対して、エアタンクからエアサスペンションへの所定圧のエアの供給とエアサスペンションのエアの排出とを行う弁手段を備える車両において、
前車軸側および後車軸側の車高レベルを検出する車高検出手段と、
前車軸および後車軸の軸重を検出する軸重検出手段と、
登坂路を検出する登坂路検出手段とを備え、
登坂路の発進時に、前車軸側および後車軸側の車高レベルと、前車軸および後車軸の軸重とに基づき、駆動輪に動的荷重を付与するべく駆動車軸のエアサスペンションを伸動もしくは縮動するよう弁手段を制御すると共に、発進後は、元の車高レベルに戻すように弁手段を制御する発進制御手段を備えることを特徴とする車両の走行制御装置。
A vehicle provided with valve means for supplying air at a predetermined pressure from the air tank to the air suspension and discharging air from the air suspension, with respect to the air suspension provided on the front axle and the rear axle,
Vehicle height detecting means for detecting a vehicle height level on the front axle side and the rear axle side;
Axle load detection means for detecting the axle load of the front axle and the rear axle,
Uphill detecting means for detecting an uphill,
At the start of an uphill road, the air suspension of the drive axle is extended or extended to apply a dynamic load to the drive wheels based on the vehicle height level on the front axle side and the rear axle side and the axle weight of the front axle and the rear axle. A travel control device for a vehicle, comprising: start control means for controlling the valve means so as to contract, and controlling the valve means so as to return to the original vehicle height level after the start.
前記発進制御手段は、駆動車軸以外のエアサスペンションを駆動車軸のエアサスペンションと反対方向に動作するように弁手段を制御することを特徴とする請求項1または2に記載の車両の走行制御装置。3. The travel control device according to claim 1, wherein the start control unit controls the valve unit so that an air suspension other than the drive axle operates in a direction opposite to the air suspension of the drive axle. エンジンならびに回転電機によって走行可能な車両にあって、
前記発進制御手段の制御は、回転電機の出力のみによる発進時およびエンジンの出力と回転電機の出力を併用しての発進時に実行することを特徴とする請求項1〜3のいずれか1つに記載の車両の走行制御装置。
In a vehicle that can run with the engine and rotating electric machine,
The control according to any one of claims 1 to 3, wherein the control of the start control means is performed at the time of start using only the output of the rotating electric machine and at the time of starting using both the output of the engine and the output of the rotating electric machine. The travel control device for a vehicle according to claim 1.
JP2003143391A 2003-05-21 2003-05-21 Vehicle travel control device Expired - Fee Related JP4334277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003143391A JP4334277B2 (en) 2003-05-21 2003-05-21 Vehicle travel control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003143391A JP4334277B2 (en) 2003-05-21 2003-05-21 Vehicle travel control device

Publications (2)

Publication Number Publication Date
JP2004345446A true JP2004345446A (en) 2004-12-09
JP4334277B2 JP4334277B2 (en) 2009-09-30

Family

ID=33531193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003143391A Expired - Fee Related JP4334277B2 (en) 2003-05-21 2003-05-21 Vehicle travel control device

Country Status (1)

Country Link
JP (1) JP4334277B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017171185A (en) * 2016-03-24 2017-09-28 アイシン精機株式会社 Vehicle height adjustment device
EP4147895A1 (en) * 2021-09-10 2023-03-15 Hino Motors, Ltd. Drive control device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101440239B1 (en) 2013-07-01 2014-10-30 김창율 Method and Apparatus for Controlling of Lift Axle of Vechile

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017171185A (en) * 2016-03-24 2017-09-28 アイシン精機株式会社 Vehicle height adjustment device
EP4147895A1 (en) * 2021-09-10 2023-03-15 Hino Motors, Ltd. Drive control device

Also Published As

Publication number Publication date
JP4334277B2 (en) 2009-09-30

Similar Documents

Publication Publication Date Title
JP4606074B2 (en) Method and apparatus for regenerative braking control of electric vehicle
JP3879650B2 (en) Vehicle control device
US7426975B2 (en) Vehicle regenerative braking control apparatus and method
JP5454698B2 (en) Control device for hybrid vehicle
JP3915391B2 (en) Braking force control device for vehicle
JP5247000B2 (en) Coastal deceleration control device for vehicle
JP3563314B2 (en) Auto cruise control system for hybrid vehicles
WO2012056857A1 (en) Engine start control device for hybrid electric vehicle
JP2004268901A (en) Brake control system
KR20030048089A (en) Hybrid vehicle system
JP2007060761A (en) Deceleration controller for hybrid car
JP2011131830A (en) Controller for hybrid electric vehicle
JP2006217677A (en) Regenerative brake controller of vehicle
JP2010269642A (en) Braking controller of hybrid vehicle
JP2011097666A (en) Vehicle and control method therefor
JP4089608B2 (en) Car
JP2005304182A (en) Controller of hybrid vehicle
JP2006197757A (en) Regenerative braking controller for vehicle
JP2010143512A (en) Control apparatus for hybrid vehicle
JP2010206893A (en) Regeneration control device for electric vehicle
JP3622656B2 (en) Vehicle braking force control device
JP2012091573A (en) Device and method for controlling torque
JP2010241166A (en) Four-wheel drive controller and four-wheel drive control method for vehicle
JP5761327B2 (en) Control device for hybrid vehicle
JP4334277B2 (en) Vehicle travel control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090623

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees