JP2004345339A - Method for embedding integrated circuit chip in rubber elastic body, and method for strengthening sensing functionality - Google Patents

Method for embedding integrated circuit chip in rubber elastic body, and method for strengthening sensing functionality Download PDF

Info

Publication number
JP2004345339A
JP2004345339A JP2003180315A JP2003180315A JP2004345339A JP 2004345339 A JP2004345339 A JP 2004345339A JP 2003180315 A JP2003180315 A JP 2003180315A JP 2003180315 A JP2003180315 A JP 2003180315A JP 2004345339 A JP2004345339 A JP 2004345339A
Authority
JP
Japan
Prior art keywords
ism
rubber
chip
elastic body
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003180315A
Other languages
Japanese (ja)
Inventor
Yasuyoshi Ichiba
靖悦 市場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INB PLANNING KK
Original Assignee
INB PLANNING KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INB PLANNING KK filed Critical INB PLANNING KK
Priority to JP2003180315A priority Critical patent/JP2004345339A/en
Publication of JP2004345339A publication Critical patent/JP2004345339A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for embedding a commercial integrated circuit (IC) chip or a micro-system (hereafter abbreviated as ISM) including a sensor, an IC chip and related circuits in a rubber elastic body, and a method for strengthening sensing functionality of the rubber elastic body. <P>SOLUTION: The method for embedding an ISM in rubber comprises first engraving an engraved space 9 enough to house a specified ISM on the surface of the first layer unvulcanized rubber 8 to embed the ISM in the rubber, and housing a vulcanized rubber chip 11 and the ISM 10 into the space. In this case, the vulcanized rubber is preferably arranged around the ISM so that the ISM is positioned in the center of the engraved space. The vulcanized rubber preferably has JIS hardness of ≤50 because damage to the ISM part is feared with ≥70 hardness rubber. After filling the ISM and the vulcanized rubber chip fully in the engraved space, the second layer unvulcanized rubber 12 is placed thereon and forming under heat and pressure is performed with a mold prepared in advance. In this case, vulcanizing temperature and vulcanizing time are controlled so that the ISM in the engraved space is not heated to 70°C or higher, and ≥50 kg/cm<SP>2</SP>pressure is not applied on each part of the ISM. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【産業上の利用】
ISMを粗悪な環境下で保護すると共に、各種パイプラインなどの破損漏れ検知を点から面で行うことが出来る。
【0002】
【従来の技術】
水、石油やガスの幹線のパイプライン及び、その貯蔵タンク施設などは生活を支えるライフラインで、その高度なセキュリティの備えが非常に重要である。この様な施設における破損漏れは、その位置を特定することが困難である、例えばパイプライン1が地中か野外に設置されている場合、破損漏れ2はパイプの円周位置θと、パイプの長さ方向Zでその位置が特定されるがこれを検知する為には(θ、Z)面に多くのセンサーを取り付ける事が必要である、このような事は現実的に不可能であるので、パイプライン1に対してZ方向に沿って適当な数、例えば1mあるいは10m毎に1個ずつセンサーを取り付けても(θ、Z)面上の、センシングが出来る方法が要求される。
さらに、(θ、Z)面上のいかなる位置において破損漏れが発生した場合、その時間と位置をリアルタイムで知らせることが不可欠である。この様に、センサーが点々と存在しながら、その点の位置を含む面上の事象をセンシングしてライフラインの様ないわゆる、広域セキュリティに適用できる技術、又は製品は見当たらない。更に、前記の広域セキュリティシステムが野外等で使用される場合、次のような事が必ず起こることを想定しなければならない、即ち1日の温度変化が50℃で、それによる化学的、力学的安定性が求められる。地盤変化による引張強度、圧縮及び曲げ強度、その他異物との衝突によるθ衝撃応力に対抗できる強度が必要である、ゴム弾性体は機械的なトラブルを防止する為によく応用される、その例として本発明で目的とする内容と異なるが例えば特開2001−36369がある。ここでICチップをタイヤの内部表面に張付ける技術を発明しているが、その工程が未加硫ゴムの仮成形4を行い、その内側表面に接着層5を作りその上にICチップ6を接着させた後、加硫、成形する為、耐熱性の材料でICチップをマスキングした後でこれを取り除くなどコストが高くなることと作業が複雑である、更に前記特許ではパイプラインなどの破損を監視するようなセンシング系を収納していない。
【0003】
【発明が解決しようとする課題】
本発明では、ISMが粗悪な環境で使われる際に十分保護の対策が取られると同時に、ISMのセンサーをランダムに点在、又は1次元的に点々と配置しても2次元的に物質の流れをセンシングできる方法をゴム弾性体を用いて解決しそのための製法を解決する。
【0004】
【課題を解決する為の手段と実施例】
先ずISMをゴムに埋め込む為に第1層の未加硫ゴム8の上表面に所定のISMが十分収納できるへっこみを刻印9し、この中に加硫ゴムチップ11とISM10を入れる。
この際できるだけISMを前記刻印空間の真中に位置するように加硫ゴムを周りに入れることが望ましい、加硫ゴムはJIS硬度50以下のものが良く、硬度が70以上なるとISMの部品に損傷を与える恐れがある。本発明の例では硬度50で粒度1mmの粉末を用いた。
前記刻印空間にISMと加硫ゴムチップを空間いっぱいに充填した後、その上に第2層の未加硫ゴム12を載せ改め用意した金型で加温、加圧成形を行う、成形温度は140℃から170℃圧力は約100kg/Cmで加硫時間が15分にすることが一般のゴム成形であるが、前記刻印空間のISMに70℃以上に達しないようにまたISMの各部品に50kg/Cm以上の圧力がかからないようにする為、加硫温度と加硫時間を調整する。
本発明の例では、加硫温度を170℃にし加硫時間5分、圧力を60kg/Cmにして加硫が終わった時、前記ISM付近の温度は50℃前後であった、上記の如く、未加硫ゴムに刻印空間を作って、その中に加硫ゴムチップかISMをゴム弾性体に埋め込むことができる。ISMをはさんで第1層の未加硫ゴムと第2層の未加硫ゴムを加温、加圧して成形するとき刻印空間の加硫ゴムチップによって熱や圧力がISMの各部品に及ぶ程度を暖和することができる、同様なことはISMをゴム製のキャプセルを前記刻印空間と加硫ゴムチップの働きと同じ仕組みしても可能である、この場合は、改めキャプセルを作って、その後このキャプセルにISMを配置する。
【0005】
次に、ISMのセンサー部分に検知対象物質を(以下、対象物質と称す)誘導する手段をゴム弾性体に作る方法を説明する。以上でISMをゴム弾性体に埋め込む例を述べたが、これだけではパイプラインなどからの破損もれ物質をISMがセンシングできないので、加硫成形を行う際に前記第2層の未加硫ゴムの表面に誘導路を作り、この誘導路がICチップ又は、ISMのセンシング部に連がるようにした。前記誘導路はその断面が凹型かV字型いずれかで平面図からこの誘導路を見た場合、図5に示すように誘導路15がISMのセンサー13に集中するようなデザインは広域センシングは出来ないので、図6のようにゴム弾性体の表面に一律斜線形の誘導路16とこれを横切る誘導路丸17を成形するとこれらを、クロスするポイント18がセンサー位置18となる、即ち加硫成形時に金型で斜線状の溝つまり誘導路16を作って行き、これを横切る誘導路17を入れる事によって、このラインに沿ってISMセンサー18を点々とゴム弾性体に埋め込むことでパイプラインなどに対する2次元センシングが可能となる。
前記刻印空間に加硫ゴムを入れるか、キャプセルを入れ未加硫ゴムを加圧、加温成形を行う時、刻印の内側部分と加硫ゴム、又キャプセルの外側表面は前記第1層及び第2層の未加硫ゴムが加硫する時にこれらと同時に加硫接着され、ゴム弾性体内にそれぞれの界面で固定されることが重要である。
特に刻印空間のゴムチップはその空間の真中にISMを支えているので、ゴムチップと刻印との界面における加硫接着の他にゴムチップ同志の弱い接着状態が望ましい、その為ゴムチップを刻印空間に入れる時加硫性の接着剤、例えばEVAなどを少量改めゴムチップにぬらして使用することも出来る、本実施例では、ゴムチップをそのまま刻印空間に詰めISMがこれらゴムチップに拘束されるようにした。
【0006】
前記誘導路16は、ISMが埋め込まれた刻印空間又は、キャプセルに通じ、ISMのセンサーに対象物質を運ぶ通路を提供するとともに、ISMから発生しうる熱を外部に放散させる通路を提供することと、水道、ガスなどのパイプラインに用いる場合被検知物質によってISMセンサーをパイプ表面のどこにするか決める、
水及び石油などのように破損もれで下方へ流出する場合はセンサーがパイプラインの下19に来るように配置してパイプラインの面表(θ、Z)のあらゆる部分を監視、センシングするISMセンサーで検知したデーターはISMの中で信号処理を行いプロセサーで破損もれの時間と位置をトランスミッターで発信する、このISMの各部については本発明の目的ではないので、例えばIEEE SENSORS JOURNAL、VOL.2、NO.6のTONG BOON TANGらは、大きさが55mm×16mmのISMのようなものを開発していくコンパクトなセンサー付きICチップが本発明に適用できるようになった。
【0007】
【詳細な実施例】
ゴムはSBRに加硫剤として硫黄、加硫促進剤として酸化亜鉛、及びテトラトラメチルチオラムジサルファイドを添加して混練したものを未加硫ゴムとした。この未加硫ゴムをオープンロールで厚さ1cm、幅10cmのシート状のものを作り、これにICチップ、センサーなどを收約したものをプラスチック製の基盤に実装し、電源はゴム弾性体の外から銅線を通じて供給した。先端的なICチップには、センサーアナログ信号回路、デジタル信号プロセッサー、トランスミッター及び電源をコンパクトにまとめたものが開発されているが本発明は、このようなシステムを作ることが目的ではなく市販のものをゴム弾性体に集約しそのセンシング能力を向上させることが目的であるため、電源を銅線で外部から供給するか、他の電源チップを用いるなどには制限がない。
実際に用いたセンサー、NGSX−0.3アルコールセンサーでガス濃度と抵抗値の直線性が非常に優れているが、電源がISVで寸法が16mmと大きい。一方、ICチップは74HCO2Aで寸法が10×7×1.5mmで電源は0〜3Vが必要である。
ICチップとアルコールセンサーの大きさの差があるので収納するスペースを別々にしたいずれの刻印にも粒度1mmのゴムチップをICチップの周りとセンサーの周りにいっぱい充填した後、未加硫ゴムに対する成形圧を30kg/cm程度、湿度150℃で5分間加硫を行った成形後のゴム弾性体の厚さは20mmとなるようにした。センサー部分には5分間に約100℃まで湿度が上昇するが、それはセンサーの大きさが16mmと大きいため、湿度が金型の表面から、すぐ伝わるからである。ICチップがあるスペースの中心、即ちICチップの表面付近は成形の間50℃程度しか上昇せず、その間加硫成形は終了した。
ICチップ及びセンシング回路をPCBの上に実装しこのパッケージを収納した後、センサーに15Vの電源を印加しアルコール21を通して流した後出力端子34から電圧変化を検出し、成形時に圧力と湿度による影響がなかったことを確認した。同じくICチップに対しても検出した結果、加硫工程による損傷は認められなかった、さらに誘導路36にアルコールを少量流し、これが開口21に送られるような条件を確認したところ、傾斜度30度以上が必要であった。30度以下の場合、センシングするためにセンサーから遠いほどアルコールの量が多く必要となり流入速度が遅い。これは誘導路においてゴム弾性体にアルコールが付着し、一部が吸収されるからで本発明ではこの問題については改善しない。センサーから直接信号をICチップから発信する信号36をノイズが少ない条件で得るためには、本実施例ではある種のインターフェースが必要であったがこの問題を解決して1つのICチップにまとめたものもあるので本実施例ではICチップの出力信号電圧の確認にとどまったが実施例から本発明の各請求項の内容が認められた。
【発明の効果】
【0008】
本発明はICチップの発達と共に、より環便な方法でゴム弾性体に収納できるようになり、これを広域セキュウリティーなどに応用できる。
[0001]
[Industrial use]
In addition to protecting the ISM in a poor environment, it is possible to detect breakage and leakage of various pipelines from the point of view.
[0002]
[Prior art]
Water, oil and gas main pipelines and their storage tank facilities are lifelines that support daily life, and their high security is very important. Breakage leakage in such a facility is difficult to identify its position. For example, when the pipeline 1 is installed underground or outdoors, the damage leakage 2 is caused by the circumferential position θ of the pipe and the The position is specified in the length direction Z, but it is necessary to mount many sensors on the (θ, Z) plane to detect this position. Even if an appropriate number of sensors are attached to the pipeline 1 along the Z direction, for example, one sensor is attached every 1 m or 10 m, a method capable of sensing on the (θ, Z) plane is required.
Furthermore, if a breakage leak occurs at any position on the (θ, Z) plane, it is essential to notify the time and position in real time. As described above, there is no technology or product that can be applied to so-called wide area security, such as a lifeline, by sensing an event on a surface including the position of a point while sensors are present. Furthermore, when the above-mentioned wide-area security system is used outdoors, it must be assumed that the following will necessarily occur: the daily temperature change is 50 ° C., and the chemical and mechanical Stability is required. It is necessary to have tensile strength due to ground change, compressive and bending strength, and other strength that can resist θ impact stress due to collision with foreign matter. Rubber elastic body is often applied to prevent mechanical trouble, as an example For example, Japanese Patent Application Laid-Open No. 2001-36369 is different from the object of the present invention. Here, the technology of attaching the IC chip to the inner surface of the tire is invented. In the process, the temporary molding 4 of the unvulcanized rubber is performed, the adhesive layer 5 is formed on the inner surface thereof, and the IC chip 6 is formed thereon. After bonding, vulcanization and molding, the cost is high and the operation is complicated, such as removing the IC chip after masking it with a heat-resistant material, and the operation is complicated. No sensing system for monitoring is stored.
[0003]
[Problems to be solved by the invention]
In the present invention, sufficient protection measures are taken when the ISM is used in a bad environment, and at the same time, even if the sensors of the ISM are randomly scattered or arranged one-dimensionally, two-dimensionally, The method of sensing the flow is solved by using a rubber elastic body, and the manufacturing method for that is solved.
[0004]
Means and embodiments for solving the problem
First, in order to embed the ISM in the rubber, the upper surface of the unvulcanized rubber 8 of the first layer is stamped with a dent 9 capable of sufficiently storing a predetermined ISM, and the vulcanized rubber chip 11 and the ISM 10 are put into this.
At this time, it is preferable to put the vulcanized rubber around the ISM so that the ISM is positioned in the middle of the engraved space as much as possible. The vulcanized rubber should preferably have a JIS hardness of 50 or less. May give. In the example of the present invention, a powder having a hardness of 50 and a particle size of 1 mm was used.
After the ISM and the vulcanized rubber chip are completely filled in the engraved space, the unvulcanized rubber 12 of the second layer is placed thereon and heated and pressed by a newly prepared mold. The molding temperature is 140. In general, rubber molding is performed at a pressure of about 100 kg / Cm 2 and a vulcanization time of 15 minutes at a temperature of 170 ° C. to 170 ° C. However, the ISM in the engraved space should not exceed 70 ° C. The vulcanization temperature and the vulcanization time are adjusted so that a pressure of 50 kg / Cm 2 or more is not applied.
In the example of the present invention, when the vulcanization temperature was 170 ° C., the vulcanization time was 5 minutes, the pressure was 60 kg / Cm 2 and the vulcanization was completed, the temperature near the ISM was about 50 ° C., as described above. A stamping space is formed in the unvulcanized rubber, and a vulcanized rubber chip or ISM can be embedded in the rubber elastic body. When the unvulcanized rubber of the first layer and the unvulcanized rubber of the second layer are heated and pressed with the ISM interposed therebetween, the degree to which heat and pressure reach each part of the ISM due to the vulcanized rubber chip in the engraved space It is also possible to use a rubber capsule with the same mechanism as that of the stamping space and the vulcanized rubber chip. In this case, a new capsule is made and then the capsule is made. Place the ISM.
[0005]
Next, a method of forming a means for guiding a detection target substance (hereinafter, referred to as a target substance) to a sensor portion of the ISM in a rubber elastic body will be described. Although the example in which the ISM is embedded in the rubber elastic body has been described above, the ISM cannot sense a leaky substance from a pipeline or the like by this alone, so that when the vulcanization molding is performed, the unvulcanized rubber of the second layer is removed. A guideway was formed on the surface, and this guideway was connected to the IC chip or the sensing unit of the ISM. When the taxiway has a concave or V-shaped cross section and the taxiway is viewed from a plan view, as shown in FIG. 5, a design in which the taxiway 15 is concentrated on the ISM sensor 13 is a wide-area sensing. Since a uniform oblique guideway 16 and a guideway circle 17 crossing the guideway 16 are formed on the surface of the rubber elastic body as shown in FIG. 6, a point 18 at which these are crossed becomes a sensor position 18, ie, vulcanization. By forming a diagonal groove or guide path 16 with a mold at the time of molding and inserting a guide path 17 across the groove, the ISM sensor 18 is scattered along the line into the rubber elastic body, thereby forming a pipeline or the like. 2D sensing becomes possible.
When the vulcanized rubber is put in the engraved space or the capsule is put and the unvulcanized rubber is pressurized and heated and formed, the inner part of the engraved part and the vulcanized rubber, and the outer surface of the capsule are the first layer and the second layer. It is important that when the two layers of unvulcanized rubber are vulcanized, they are simultaneously vulcanized and bonded, and are fixed in the rubber elastic body at their respective interfaces.
In particular, since the rubber chip in the engraved space supports the ISM in the center of the space, it is desirable that the rubber chips be weakly bonded to each other in addition to the vulcanized adhesive at the interface between the rubber chip and the engraved space. A small amount of a vulcanizable adhesive, such as EVA, can be used after being wetted onto the rubber chip. In this embodiment, the rubber chip is directly filled in the engraved space so that the ISM is restrained by these rubber chips.
[0006]
The guiding path 16 provides a path for carrying a target substance to an ISM sensor through an engraved space or a capsule in which the ISM is embedded, and a path for dissipating heat generated from the ISM to the outside. When using in pipelines such as water, gas, etc., determine where the ISM sensor is located on the pipe surface depending on the substance to be detected.
In case of spillage due to breakage leakage such as water and petroleum, ISM that monitors and senses all parts of the pipeline surface (θ, Z) by arranging the sensor to be under the pipeline 19 The data detected by the sensor is subjected to signal processing in the ISM, and the processor transmits the time and position of the breakage by the transmitter. Since each part of the ISM is not the object of the present invention, for example, the IEEE SENSOR JOURNAL, VOL. 2, NO. No. 6, TONG BOON TANG et al. Can now apply a compact sensor-equipped IC chip that develops a 55 mm × 16 mm ISM or the like to the present invention.
[0007]
[Detailed Examples]
The rubber was obtained by adding and kneading SBR with sulfur as a vulcanizing agent, zinc oxide as a vulcanization accelerator, and tetratramethylthioram disulphide to obtain an unvulcanized rubber. This unvulcanized rubber is made into a sheet with a thickness of 1 cm and a width of 10 cm by an open roll, and an IC chip, a sensor, and the like are reduced and mounted on a plastic base. The power source is a rubber elastic body. Supplied from outside via copper wire. Advanced IC chips have been developed that integrate sensor analog signal circuits, digital signal processors, transmitters, and power supplies in a compact manner. The purpose is to improve the sensing capability by consolidating the power supply into a rubber elastic body. Therefore, there is no limitation in supplying power from the outside with a copper wire or using another power supply chip.
Although the sensor used in practice, the NGSX-0.3 alcohol sensor, has excellent linearity in gas concentration and resistance value, the power supply is ISV and the size is as large as 16 mm. On the other hand, the IC chip is 74HCO2A, the dimensions are 10 × 7 × 1.5 mm, and the power supply requires 0 to 3V.
Since there is a difference in size between the IC chip and the alcohol sensor, a rubber chip with a particle size of 1 mm is completely filled around the IC chip and around the sensor on both of the engraved marks, and then molded on unvulcanized rubber. The thickness of the rubber elastic body after vulcanization at a pressure of about 30 kg / cm and a humidity of 150 ° C. for 5 minutes was adjusted to 20 mm. The humidity rises to about 100 ° C. in 5 minutes in the sensor part, because the size of the sensor is as large as 16 mm, so that the humidity is immediately transmitted from the surface of the mold. The center of the space where the IC chip was located, that is, the vicinity of the surface of the IC chip, rose only about 50 ° C. during the molding, during which the vulcanization molding was completed.
After mounting the IC chip and the sensing circuit on the PCB and housing this package, apply 15V power to the sensor and let it flow through the alcohol 21, then detect the voltage change from the output terminal 34, and the influence of pressure and humidity during molding Confirmed that there was no. Similarly, as a result of detection on the IC chip, no damage due to the vulcanization process was observed. Further, a condition in which a small amount of alcohol was passed through the guide path 36 and sent to the opening 21 was confirmed. This was necessary. In the case of 30 degrees or less, the farther from the sensor, the larger the amount of alcohol is required for sensing, and the lower the inflow speed. This is because alcohol adheres to the rubber elastic body in the guideway and a part of the alcohol is absorbed, and the present invention does not solve this problem. In order to obtain a signal 36 directly transmitting a signal from the sensor from the IC chip under a condition of low noise, a certain kind of interface was necessary in the present embodiment. However, this problem was solved and the IC was integrated into one IC chip. In the present embodiment, only the output signal voltage of the IC chip was checked, but the contents of the claims of the present invention were recognized from the embodiment.
【The invention's effect】
[0008]
According to the present invention, with the development of IC chips, they can be stored in a rubber elastic body by a more convenient method, and this can be applied to wide area security and the like.

Claims (4)

センサチップを含むICチップ及び電源チップを(以下、イテティグレイティドセンサーマイクロシステム、略してISMと称す。)ゴム弾性体に埋め込む手段として第1層の未加硫ゴムの表面からISMの体積以上の空間を刻印して、そこに封印するか(以下、刻印空間と称す)改め、前記ISMを封印した加硫ゴムのキャプセル(以下、キャプセルと称す)を前記未加硫ゴムの表面に押し込み、その上部に第2層の未加硫ゴムを載せこの第2層の、未加硫ゴム表面にセンシング誘導形状(以下、誘導路と称す)及び放熱口が形成できる様に加温、加圧で成形を行うICチップの埋め込み方法とセンシング機能を強化する方法。(以下、本ゴム弾性体の製造方法と称す)As a means for embedding an IC chip including a sensor chip and a power supply chip (hereinafter, referred to as an iterated sensor microsystem, abbreviated as ISM) in a rubber elastic body, a volume of ISM or more from the surface of the unvulcanized rubber of the first layer. Is stamped and sealed there (hereinafter referred to as stamped space) and modified, and the vulcanized rubber capsule (hereinafter referred to as “capsule”) sealing the ISM is pushed into the surface of the unvulcanized rubber, A second layer of unvulcanized rubber is placed on top of it, and heated and pressurized so that a sensing induction shape (hereinafter, referred to as an induction path) and a heat radiation port can be formed on the surface of the unvulcanized rubber of this second layer. A method of embedding an IC chip for molding and a method of enhancing a sensing function. (Hereinafter, referred to as a method for producing the rubber elastic body) 前記キャプセルは、六方体及び球形を含み前記未加硫ゴムを加温、加圧成形する際に前記キャプセルの外側表面が、ゴム弾性と接着するか加硫反応して固定されること、更に前記キャプセルが放熱口及び、前記誘導路に対して連結されることを特徴とする請求項1のキャプセル。When heating the unvulcanized rubber including a hexagon and a sphere, and pressing and molding the unvulcanized rubber, the outer surface of the capsule is fixed by adhering to rubber elasticity or vulcanizing reaction, and The capsule according to claim 1, wherein a capsule is connected to the heat radiating port and the guide path. 前記誘導路は、流体をISMのセンサーに誘導する為の流路を加温、加圧の加硫成形が行われる前記第2層の表面に設けるか、又は前記第2層の未加硫ゴムに改めゴム又は、プラスチックの細管を埋め込み加圧、加温成形を行って得る請求項1の誘導路。The guide path may be provided on a surface of the second layer where vulcanization molding under heating and pressure is performed, or a non-vulcanized rubber of the second layer may be provided with a flow path for guiding a fluid to an ISM sensor. 2. The guideway according to claim 1, wherein said guide path is obtained by embedding a thin tube made of rubber or plastic and performing pressure and heat molding. 前記ISMが、稼動する際の熱を放出する手段として前記未加硫ゴムの第2層を成形する際に、前記本ゴム弾性体の表に対して開放口になるように成形するか又は、前記放熱口の中に良好な伝熱体を挿入する前記請求項1の放熱口。When the ISM forms the second layer of the unvulcanized rubber as a means for releasing heat when operating, it is formed so as to be open to the surface of the rubber elastic body, or 2. The heat radiating port according to claim 1, wherein a good heat conductor is inserted into the heat radiating port.
JP2003180315A 2003-05-21 2003-05-21 Method for embedding integrated circuit chip in rubber elastic body, and method for strengthening sensing functionality Pending JP2004345339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003180315A JP2004345339A (en) 2003-05-21 2003-05-21 Method for embedding integrated circuit chip in rubber elastic body, and method for strengthening sensing functionality

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003180315A JP2004345339A (en) 2003-05-21 2003-05-21 Method for embedding integrated circuit chip in rubber elastic body, and method for strengthening sensing functionality

Publications (1)

Publication Number Publication Date
JP2004345339A true JP2004345339A (en) 2004-12-09

Family

ID=33535149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003180315A Pending JP2004345339A (en) 2003-05-21 2003-05-21 Method for embedding integrated circuit chip in rubber elastic body, and method for strengthening sensing functionality

Country Status (1)

Country Link
JP (1) JP2004345339A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009012407A (en) * 2007-07-06 2009-01-22 Tooa:Kk Fitting structure for lumber identification tag
CN105630046A (en) * 2015-12-31 2016-06-01 山东天工石油装备有限公司 Pipeline intelligent monitoring device
CN114689128A (en) * 2022-05-31 2022-07-01 青岛道万科技有限公司 Special temperature and pressure measuring instrument and method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009012407A (en) * 2007-07-06 2009-01-22 Tooa:Kk Fitting structure for lumber identification tag
CN105630046A (en) * 2015-12-31 2016-06-01 山东天工石油装备有限公司 Pipeline intelligent monitoring device
CN105630046B (en) * 2015-12-31 2017-08-04 山东天工石油装备有限公司 A kind of pipeline Intellectualized monitoring device
CN114689128A (en) * 2022-05-31 2022-07-01 青岛道万科技有限公司 Special temperature and pressure measuring instrument and method thereof
CN114689128B (en) * 2022-05-31 2022-08-19 青岛道万科技有限公司 Special temperature and pressure measuring instrument and method thereof

Similar Documents

Publication Publication Date Title
DK177040B1 (en) Ultrasonic consumer meter with locking mechanism
US7632698B2 (en) Integrated circuit encapsulation and method therefor
US8971673B2 (en) Sensor tape for security detection and method of fabrication
US20070012117A1 (en) Sealing ring and its managing system
TW200523143A (en) System and method for providing tire electronics mounting patches
DE602005024287D1 (en) FILM-CONNECTED ELECTRICAL EQUIPMENT AND METHOD OF MANUFACTURING THEREOF
KR20150060389A (en) Leakage detection attachment for pipe
TW200821566A (en) Leak detecting system for rotating union
JP2012501461A5 (en)
KR101278198B1 (en) Device for gas leak detection
CN108506732A (en) Oil pipeline anti-leak monitors system
US20190128769A1 (en) Leakage detection system and leakage detection method
JP2004345339A (en) Method for embedding integrated circuit chip in rubber elastic body, and method for strengthening sensing functionality
CN103323189A (en) Ship pipeline negative pressure leakage detection cover
US8653971B2 (en) Sensor tape for security detection and method of fabrication
US11761838B2 (en) Sensing using nanoparticle based strain sensors
CN110418950A (en) Pressure sensor
CN112736108B (en) Visible light CMOS detector and reinforcing method thereof
DE29811737U1 (en) Device for monitoring the leakage of pipelines, in particular of riser or delivery pipes for underground gas storage surrounded by an annular space
JP6988854B2 (en) Sensor device, arithmetic unit, pipeline monitoring system, arithmetic method and program
KR101895750B1 (en) Leaking sensor for target area
ATE315220T1 (en) MONITORING DEVICE FOR LIQUID-CEARING PIPES
US7000461B2 (en) Patch wireless test fixture
CN105501004B (en) A kind of patching type passive sonic surface wave sensing device and intelligent tire
JP2022516470A (en) Leakage detection system and how to detect leaks