JP2004344056A - Method for evaluating active state of microorganism group and sensor of microorganismic activity - Google Patents

Method for evaluating active state of microorganism group and sensor of microorganismic activity Download PDF

Info

Publication number
JP2004344056A
JP2004344056A JP2003144203A JP2003144203A JP2004344056A JP 2004344056 A JP2004344056 A JP 2004344056A JP 2003144203 A JP2003144203 A JP 2003144203A JP 2003144203 A JP2003144203 A JP 2003144203A JP 2004344056 A JP2004344056 A JP 2004344056A
Authority
JP
Japan
Prior art keywords
thin film
activity
polymer material
microorganism
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003144203A
Other languages
Japanese (ja)
Inventor
Yoichi Ito
洋一 伊東
Hiroshi Ueno
博志 上野
Katsuhiro Shimada
勝廣 島田
Izumi Miyoshi
泉 三好
Toshio Kinoshita
稔夫 木下
Tomokazu Maeno
智和 前野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Government
Original Assignee
Tokyo Metropolitan Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Government filed Critical Tokyo Metropolitan Government
Priority to JP2003144203A priority Critical patent/JP2004344056A/en
Publication of JP2004344056A publication Critical patent/JP2004344056A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To simply assay and evaluate a microorganismic activity in microorganism treatment. <P>SOLUTION: A biodegradable polymer thin film is fixed in an object requiring the activity control of a microorganism and the microorganismic activity is assayed and evaluated by change of the thin film by decomposition by the microorganism, especially change of a color by extinction of a colorant contained in the film. A sensor of microorganismic activity useful in the method is formed by coating a support substrate with a thin film of a biodegradable polymer material having a color different from that of the support substrate. The microorganismic activity is simply and rapidly assayed/evaluated by adding a colorant, or the like, to a biodegradable polymer resin and forming a polymer thin film on a support substrate by a printing technique. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は微生物群の活性状態を評価する方法、特に生分解性を有する高分子材料を用いる微生物群の活性状態の評価方法およびこの方法に用いる微生物活性センサならびに生分解性高分子材料の分解速度を評価する方法に関する。
【0002】
【従来の技術および解決すべき課題】
微生物は、工業、農業、医薬、食品の分野だけでなく下水処理、土壌の浄化など多くの用途に活用されている。このような用途で微生物群を有効に活用するためには、微生物群の活性状態を評価して適正に管理しなければならない。
【0003】
前記用途としてはたとえば具体的には次のようなものが含まれる。
(1)一般家庭
発酵食品(味噌、漬け物)、コンポストなど生ゴミ処理や下水処理槽の微生物群の管理。
(2)飲食業
食品リサイクル法に基づくコンポストの微生物群の管理。
(3)下水処理場
下水処理場における活性汚泥槽の微生物群の管理。
(4)農業
土壌中の微生物活性および堆肥の発酵管理。
(5)化学工業
製薬における微生物の活性管理および生分解性樹脂の分解速度の評価。
【0004】
土壌、下水処理、湖沼、コンポスト、食品、医薬品などで用いられる微生物の活性状態は、これまでBOD、TOC、炭酸ガス濃度などを専用の測定機により測定されているが(特開平10−185865号および特開平9−135679号公報等)、設備が複雑で専門的な知識を必要とし、特に夫々の用途における現場において、管理者や作業者によって随時簡便かつ容易に行われる測定には不向きであった。
【0005】
一方、プラスチック材料の廃棄後における環境に対する影響を減少させるために微生物活性により比較的容易に分解する高分子材料いわゆる生分解性樹脂に対する需要が次第に増大している。従来、生分解性樹脂の分解速度の評価方法は、活性汚泥や土壌中に一定期間放置し、機械的強度(引っ張り強度)、重量変化、放出される炭酸ガス濃度等により行っているが、これらの試験方法は、時間がかかるだけでなく、専用の測定機が必要となる。これらの生分解性樹脂の分解速度を迅速かつ簡単に測定する方法は現在知られていない。
【0006】
本発明の課題は、専門的知識や専用の機器を必要とせずに微生物群の活性状態を容易に評価することのできる方法を提供することにある。
【0007】
本発明のさらに具体的な課題は微生物の活性状態を色彩の変化を尺度とする簡単な目視によって比較的短時間で容易に評価することのできる微生物活性センサを提供することにある。
【0008】
本発明の別の課題は生分解性高分子材料の分解速度を簡単に評価できる方法を提供することである。
【0009】
【課題を解決するための手段】
前記本発明の課題は、活性を評価する微生物群の繁殖する場所に生分解性機能を有する高分子材料の薄膜を定置し、この薄膜の微生物分解による変化によって前記微生物群の活性を評価する方法によって解決される(請求項1)。
【0010】
生分解性の高分子材料の薄膜に微生物群を作用させることにより高分子膜が微生物活性により分解消失するので、その度合いを観察することにより微生物処理の際の微生物群の活性を簡単に評価することができる。
【0011】
本発明のより具体的な態様においては、前記高分子材料の薄膜に着色剤を含有微生物による分解にともなう膜厚の減少の際の前記着色剤の脱落による色彩の変化に基いて微生物群の活性状態を評価する(請求項2)。
この方法では、高分子材料の薄膜の分解消失にともなって膜中に含まれている着色剤が脱落して行くので、たとえばこの高分子薄膜をこれとは異なった色彩を有する支持基体上に形成しておくことにより、微生物活性を膜厚の減少による色彩の変化として明確にかつ容易に評価することができる。
【0012】
さらに本発明の別の態様においては、前記生分解性を有する高分子材料に微生物群が容易に分解、吸収できる栄養源を添加して高分子材料の分解速度を向上させる(請求項3)。
この方法によれば高分子材料に添加された栄養源により、微生物の活性が増大し高分子薄膜の分解速度(感度)が向上し、より短時間での活性の評価が可能になる。
【0013】
本発明の前記さらに具体的な課題は着色剤を含む生分解性機能を有する高分子材料の薄膜を支持基体の表面に形成してなる微生物活性センサによって達成される(請求項4)。
【0014】
支持基体に形成された高分子材料の薄膜はその表面側から微生物による分解を受けて徐々に分解消失し、これによる膜厚の減少に伴なって薄膜中の着色剤が脱落して行き、下地である支持基体の色が薄膜の表面側で次第に顕著にはるのでこの色彩の変化によって微生物の活性を評価することできる。たとえば着色剤が赤色、支持基体が白色であればその表面の高分子膜の色彩は微生物の活性に応じて当初の膜自体の赤色から薄膜が完全に消失し支持基体が表面に露出した際の白色まで次第に淡色化しその度合いによって微生物の活性を評価することができる。
【0015】
前記微生物活性センサはより具体的には生分解性機能を有する高分子材料を着色剤と共に溶剤に溶解してインキ化/塗料化し、印刷技術によって前記着色剤とは色彩の異なる支持基体上に薄膜状の高分子膜を形成してなる微生物活性センサとして構成される(請求項5)。
【0016】
生分解性の高分子材料および着色剤を支持基体上に塗膜として印刷/又はコーティングするので極めて薄い生分解性の高分子膜が容易に形成され実用性に優れた感度の高い微生物活性評価のための活性センサが得られる。
【0017】
尚本発明による微生物活性の評価の尺度は用途によっても異なるが、たとえば土壌の肥沃度や堆肥の熟成度などを管理するような場合には、「活性なし」「活性最大」およびそれらの間の数段階程度の変化を目視で観察できれば充分に目的が達成される。
【0018】
たとえばこれらの場合、所定の色彩(たとえば白色)の支持基体上にコーティングされたこれと明確に識別される色彩(たとえば赤色)の高分子薄膜に活性管理を意図する標準的な微生物を作用させ、支持基体上の薄膜が全く分解せず色彩が当初と変わらない状態(赤→活性なし)および薄膜が完全に分解して消失し支持基体が表面に露出した状態(白→活性最良)ならびにこれらの間の数段階の状態(赤色:濃→淡)に対応するカラーチャートを予め用意する。実際の測定には特定の管理対象中に定置しておくことにより変化を生じたセンサの薄膜表面の色彩をカラーチャートの色彩と対比し、目視で合致したチャートの部位の色彩によってその管理場所の微生物群の活性を簡便に評価することができる。
【0019】
前記本発明の別の課題は支持基体上に形成した生分解性高分子材料の薄膜に所定の微生物を作用させ、薄膜の微生物分解による変化により高分子材料の分解速度を評価する方法によって達成される(請求項8)。この場合前記高分子材料の薄膜に着色剤を含有させ微生物分解による膜厚の減少に伴なう色彩の変化により生分解性高分子材料の分解速度を評価することが好ましい(請求項9)。高分子材料の分解速度の評価を膜厚の減少による色彩の変化を測定して行なうので評価の結果を短時間で得ることができる。
【0020】
以下本発明の構成をより具体的に説明する。
(生分解性高分子)
生分解性高分子とは一般には自然環境下で微生物の作用により分解して低分子化される物質をいゝ、微生物産生系(ポリヒドロキシ酪酸その共重合体等)、天然高分子系(キチン、キトサン、バクテリアセルロース、多糖類等)、化学合成系(脂肪族ポリエステル、脂肪族・芳香族ポリエステル、PVA等)およびそれらの複合物等がある。
【0021】
本発明に用いる生分解性高分子はその目的からみて多くの種類の微生物により分解が可能で、分解速度が早く、非水溶性で、pHによる影響の少ないものが用いられる。また印刷により高分子薄膜として用いる場合には比較的高沸点の溶媒に溶解するものが好ましい。具体例としては、ポリカプロラクトン、ポリブチレンサクシネート、エステル化澱粉がありポリカプロラクトンおよびポリブチレンサクシネートが特に好ましい。
【0022】
本発明において生分解性の高分子材料をインキ塗膜として形成する場合に用いられる溶剤は、生分解性高分子を容易に溶解し、適度な蒸発速度を有するものが好ましく、イソホロン、シクロヘキサノン、アセトン、エチルセロソルブ、ブチルセロソルブ、酢酸エチル、酢酸ブチル、酢酸セロソルブなどがあり、たとえばシクロヘキサノンが好ましい。
【0023】
生分解性高分子に混入される着色剤として無機・有機の顔料および水性、油性の塗料のいずれもが用いられ、たとえばアゾ系色素(顔料)、フタロシアニン系色素(顔料)、カーボンブラック(顔料)、チタン白(顔料)、食用色素(染料)があり金属を含まないアゾ系色素が好ましい。
【0024】
塗膜組成物の着色剤の含有量は膜の分解による色彩の明確な視認および膜形成性等を考慮して全体に対して約1〜30重量%であり、通常約5重量%程度が適当である。分解による膜厚の減少による色差は膜が薄いほど顕著にあらわれるが、膜の形成性等を考慮して約1〜100μmとすることが好ましい。インキ塗膜はたとえばロールコート方式で1回塗りまたは複数回塗りによって形成される。
【0025】
インキ化に際して高分子材料に添加される微生物の栄養源としては広範囲の種類の微生物に適合するものが好ましく、たとえば顆粒状のポテトデキストロ−ス寒天培地が挙げられる。添加量は添加対象となる高分子材料や微生物の種類に応じかつ測定感度および膜形成性等を考慮して適宜に決定される。
【0026】
【発明の実施の態様】
[微生物活性センサ]
図1および図2は本発明の微生物群の活性評価方法に用いる微生物活性センサの概念的な説明図であり図1(A、B、C)は微生物活性センサの高分子薄膜が微生物による分解に伴なって消失する状態を示すモデル図であり、図2は図1の微生物活性センサを土壌等の管理対象中に深さ方向Dに沿って定置した場合の高分子薄膜の減少状態を示す。生分解性高分子材料としてのポリカプロラクトンに対して着色剤としての5重量%のカーミン6B401(紅色)、および栄養添加物としてのポテトデキストロース寒天培地(Pda)を配合しこれを溶剤としてのシクロヘキサノンに均一に溶解し、印刷支持基体としての厚さ1mmの白色のアルミニウム又はエポキシ樹脂板上にコーティングして厚さ(1〜15μm)の生分解性高分子膜を形成した。尚、Pdaの配合量は25重量%、50重量%および無添加の三種類とした。
【0027】
図1において支持基体(白色)1が初期の膜厚の高分子薄膜2によってコーティングされている状態では微生物活性センサの表面は色素3による紅色を示す(図1A)。高分子薄膜(ポリカプロラクトン)2および膜中のPda4が微生物によって分解されるにつれて膜厚が減少して色素2が脱落して行くので薄膜を通して下地の支持基体1表面の白色が顕著になり活性の度合いに応じて膜表面側の紅色は次第に淡色化する(図1B)。膜が完全に分解される微生物の活性状態では支持基体1の表面が露出してセンサ表面は白色となる(図1C).
【0028】
この微生物活性センサの実際の使用の際には比色のためのカラーチャートを予め作成しておくことが好ましい。たとえば図1Aに示すセンサの高分子膜厚を、夫々の管理用途に応じて予め選択した微生物により所定段階の活性度によって分解し、各段階毎に測定される薄膜表面側からみた異なった色彩を順に配列しカラーチャートを用意し、実際に使用されるセンサ表面の色彩を対応するチャートの色彩と対比させることにより微生物の活性度が評価される。
図2は前記図1Aの形式の微生物活性センサを土壌中に垂直に定置して前記微生物の活性を評価すると共にその深さ方向での活性の分布を動じに測定する状態を示すモデル図である。
【0029】
図2中、土壌が大気に露出される最表面(領域I)では微生物が実質的に活性を示さないので基体1上の高分子薄膜2はほとんど分解せず着色剤3の紅色がそのまゝ観察される。表層よりも下方の部分は微生物の活性が高くなり高分子薄膜2は著しい分解を受けて深さ方向Dに膜厚が減少し着色剤3が脱落して下地としての基体1の白色により膜の色彩(紅色)が次第に淡色化し膜が完全に分解されて、基体1が露出した部分ではセンサ表面は白色となる(領域II)。さらにこれよりも深部では微生物の活性が低下するので多くの着色剤が残存して薄膜の紅色の濃度が次第に増加する(領域III)。このように微生物の活性にしたがって高分子膜の分解度が異なり、活性大→色差大、活性低→色差小としてその活性ないしは活性の変化が簡単に観察される。
【0030】
[実施例]
以下本発明の前記微生物活性センサを用いて畑地および活性汚泥中の微生物の活性を評価した実施例を示す、
尚下記各実施例の結果を示す夫々のグラフにおいて、横軸は微生物活性センサ(試料)を対象物中に定量した経過時間(日数)を縦軸はセンサの色彩の変化を示す。この実験ではセンサ表面における色彩の変化を色差によって測定した。色差はD65光源を測色光源として用い10°視野で経過時間の前後における試料の対比すべき色彩を測色し、夫々のLの値を求め、色計算により得られた値である。
【0031】
[実施例1]
図3、図4は前記微生物活性センサを用いて二種類の条件の異なる土壌(畑地)(A、B)で微生物活性を測定した結果を示す。いずれの場合においても、測定時間の経過と共に、微生物による分解が進み、色彩の変化(色差)が増大することが示される。尚平均気温が高いほど分解速度が大きい(色差大)ことが示されている。
【0032】
[実施例2]
図5、図6は生分解性高分子膜に栄養源を添加することによる微生物の活性増大(感度増幅)を示す図である。図5は土壌、図6は活性汚泥に適用した例である。
【0033】
栄養源として用いたポテトデキストロース寒天培地(Pda)の配合比は土壌の場合(図5)25wt%、(−●−)、および比較のための0wt%(−■−)とし、活性汚泥の場合(図6)はさらに50wt%(−▲−)とした場合についても測定した。いずれの場合にもPdaの混合によって分解速度(感度)が向上し、またその混合比の増大にともなって分解速度が向上することが確認された。図3〜6のいずれの場合についても比較的短時間の測定期間(28日)内での微生物活性およびその変化が顕著な色差として測定され、これは目視による色彩の変化として明確に評価することができた。
【0034】
微生物による生分解性樹脂の分解速度は一般に菌の種類、数量、活性度によるものと考えられているが、さらに実験によって菌の栄養状態(飢餓度)が大きく関与する傾向も認められた。
【0035】
図7は微生物の栄養源としての肥料を加えてある畑と無添加の畑とでの生分解性樹脂の色彩変化により微生物活性を評価した結果を示す。無肥料群(飢餓状態)の畑の方が加肥料群(栄養状態)の方より色差が大きかった
【0036】
[実施例3]
−生分解性樹脂の分解速度評価−
生分解性樹脂の分解速度評価を評価するために図1に示す微生物活性センサと同一の製造プロセスでカーミン6B401、5重量%およびPdsを含むポリカプロラクトンをシクロヘサノンに溶解し、厚さ1mmのアルミニウム(又はエポキシ樹脂)板にコーティングして厚さ1μmの生分解性樹脂膜を形成した。Pdsの配合量は0%および50%とした。
【0037】
この樹脂膜コーティング基材を活性汚泥の成分に近似させた下記組成を有し、処理場の活性汚泥から得られた菌類を含む人工下水中に浸漬して25℃での微生物活性による樹脂膜の消失およびそれに伴なうコーティング表面の色彩の変化を経時的に観察した。
人工下水1リットル当たりの含有量
ブドウ糖 500mg
塩化カルシウム 27.5mg
硫酸マグネシウム7水和物 22.5mg
塩化第二鉄6水和物 0.25mg
塩化アンモニウム 46.9mg
りん酸水素二カリウム 5.86mg
りん酸二水素カリウム 2.30mg
りん酸水素二ナトリウム12水和物 12・0mg
【0038】
図8は微生物による支持基体表面のコーティング膜厚の減少量を、図9は膜厚の減少に伴なうコーティング膜表面の色彩の変化(色差)を示す。いずれの場合にも5〜10日の比較的短い測定期間で樹脂が分解してコーティング膜厚が減少し、それに伴なうコーティング膜表面での色彩の変化によって高分子材料の分解速度が明瞭に観察された。
【0039】
【発明の効果】
本発明においては、微生物群の活性を評価する際に、生分解性機能を有する高分子薄膜を用いてその分解・消失により前記微生物群の活性を測定しているので、微生物群の活性を従来のようなBOD、TOC、炭酸ガス濃度などの専用測定機を用いることなく高分子膜の分解状態として簡単な目視によって評価することができる。
【0040】
特に前記高分子膜に着色剤を含有させ高分子膜の微生物による分解に伴なう膜厚の減少による色度の変化に基いて微生物群の活性状態を測定するので、微生物活性による分解状態を色彩の変化として明確且つ簡単に評価することができる。
【0041】
また生分解性を有する高分子膜に微生物群が容易に分解、吸収できる栄養源を添加して高分子膜材料の分解速度を向上させることにより、評価を一層迅速に行なうことができる。
【0042】
特に、生分解性の高分子材料を着色剤や栄養源などと共に溶剤に溶解してインキ化/塗料化し、印刷技術によって支持基体上に薄膜状の高分子膜を形成した微生物活性センサでは、生分解性の高分子材料を極めて薄いフィルムとして支持基体上に均一に形成することができるので、短時間での高感度な評価が可能であり、かつ構造の簡単なセンサを容易に製造することができる。
【0043】
以上本発明を土壌、汚泥等における微生物群の活性評価について説明したが、本発明はその他食品、発酵、農園芸用コンポストおよび医薬品製造等の分野にも適用することができる。
【0044】
さらに本発明は高分子材料である生分解性樹脂の分解特性(速度)を評価する方法にも適用することができる。従来ではこのような評価には時間がかゝり(月単位)かつ専用の測定機を必要としたが、本発明を適用すれば、評価対象とする生分解性樹脂を前記のようにして印刷技術により薄膜に形成しこれに対して微生物を所定の条件で作用させてその膜厚を減少させ、それに伴なう色彩の変化によって材料の分解速度を評価するので評価をより短時間でかつ簡便に行なうことができる。
【図面の簡単な説明】
【図1】本発明に用いる微生物活性センサの概要を示すモデル図である。
【図2】本発明に用いる微生物活性センサの概要を示すモデル図である。
【図3】微生物による生分解性高分子薄膜の色彩変化(色差)を示すグラフである。
【図4】微生物による生分解性高分子薄膜の色彩変化(色差)を示すグラフである。
【図5】栄養源の添加による生分解性高分子薄膜の分解速度の向上を示すグラフである。
【図6】栄養源の添加による生分解性高分子薄膜の分解速度の向上を示すグラフである。
【図7】微生物の飢餓状態が微生物活性に及ぼす影響を示すグラフである。
【図8】生分解性樹脂の微生物による分解速度を樹脂薄膜の厚さの減少量によって示すグラフである。
【図9】生分解性樹脂の微生物による分解速度を樹脂薄膜の色彩の変化によって示すグラフである。
【符号の説明】
1 支持基体
2 生分解性高分子薄膜
3 着色剤
4 栄養源
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for evaluating the activity state of a microorganism group, in particular, a method for evaluating the activity state of a microorganism group using a biodegradable polymer material, a microbial activity sensor used in the method, and the degradation rate of the biodegradable polymer material On how to evaluate.
[0002]
[Prior art and problems to be solved]
Microorganisms are utilized in many applications such as sewage treatment and soil purification, as well as in the fields of industry, agriculture, medicine and food. In order to effectively utilize the microorganism group in such applications, the activity state of the microorganism group must be evaluated and properly managed.
[0003]
Examples of the applications include, for example, the following.
(1) General household fermented foods (miso, pickles), compost and other garbage disposal, and management of microorganisms in sewage treatment tanks.
(2) Management of compost microorganisms based on the Food and Beverage Business Food Recycling Law.
(3) Management of microorganisms in activated sludge tanks at sewage treatment plants.
(4) Microbial activity in agricultural soil and fermentation management of compost.
(5) Evaluation of microbial activity management and biodegradable resin degradation rate in chemical industry pharmaceuticals.
[0004]
The activity of microorganisms used in soil, sewage treatment, lakes and marshes, composts, foods, pharmaceuticals, and the like has been measured for BOD, TOC, carbon dioxide concentration, and the like by a dedicated measuring device so far (JP-A-10-185865). And Japanese Patent Application Laid-Open No. Hei 9-135679), the equipment is complicated and requires specialized knowledge, and it is not suitable for a measurement which is performed easily and easily by a manager or an operator at any time, especially in the field of each application. Was.
[0005]
On the other hand, there is an increasing demand for polymer materials, which are relatively easily degraded by microbial activity, so-called biodegradable resins, in order to reduce the impact on the environment after disposal of plastic materials. Conventionally, a method for evaluating the decomposition rate of a biodegradable resin is performed by leaving it in activated sludge or soil for a certain period of time and measuring mechanical strength (tensile strength), weight change, and concentration of released carbon dioxide. Is not only time-consuming, but also requires a dedicated measuring instrument. A method for quickly and easily measuring the decomposition rate of these biodegradable resins is not known at present.
[0006]
An object of the present invention is to provide a method capable of easily evaluating the activity state of a microorganism group without requiring specialized knowledge or dedicated equipment.
[0007]
A more specific object of the present invention is to provide a microorganism activity sensor that can easily evaluate the activity state of microorganisms in a relatively short time by simple visual observation using a change in color as a scale.
[0008]
Another object of the present invention is to provide a method for easily evaluating the decomposition rate of a biodegradable polymer material.
[0009]
[Means for Solving the Problems]
The object of the present invention is to provide a method of evaluating the activity of the microorganism group by placing a thin film of a polymer material having a biodegradable function at a place where the microorganism group whose activity is to be evaluated is bred, and changing the thin film by the microbial degradation. (Claim 1).
[0010]
When microbial groups act on the biodegradable polymer material thin film, the polymer membrane is decomposed and disappears due to the microbial activity. By observing the degree, the activity of the microbial groups during microbial treatment can be easily evaluated. be able to.
[0011]
In a more specific embodiment of the present invention, the activity of the microorganisms is based on the change in color due to the colorant falling off when the film thickness decreases due to the decomposition by the microorganism containing the colorant in the thin film of the polymer material. The state is evaluated (claim 2).
In this method, the coloring agent contained in the thin film of the polymer material falls off as the thin film of the polymer material is decomposed and disappears. For example, the thin polymer film is formed on a supporting substrate having a different color from the thin film. By doing so, the microbial activity can be clearly and easily evaluated as a change in color due to a decrease in film thickness.
[0012]
Furthermore, in another aspect of the present invention, a nutrient that can be easily decomposed and absorbed by a microorganism group is added to the biodegradable polymer material to improve the decomposition rate of the polymer material (claim 3).
According to this method, the activity of the microorganism is increased by the nutrient added to the polymer material, the decomposition rate (sensitivity) of the polymer thin film is improved, and the activity can be evaluated in a shorter time.
[0013]
The more specific object of the present invention is achieved by a microbial activity sensor comprising a thin film of a polymer material having a biodegradable function containing a colorant formed on the surface of a support substrate.
[0014]
The thin film of the polymer material formed on the supporting substrate is gradually decomposed and decomposed by the microorganisms from the surface side thereof, and the colorant in the thin film drops off as the film thickness decreases, and Since the color of the support substrate becomes increasingly prominent on the surface side of the thin film, the activity of the microorganism can be evaluated by the change in color. For example, if the colorant is red and the support substrate is white, the color of the polymer film on the surface is such that the thin film completely disappears from the initial red color of the film itself and the support substrate is exposed to the surface according to the activity of the microorganism. The activity of microorganisms can be evaluated based on the degree of fading to white.
[0015]
More specifically, the microbial activity sensor is formed by dissolving a polymer material having a biodegradable function in a solvent together with a coloring agent into an ink / paint, and forming a thin film on a supporting substrate having a different color from the coloring agent by a printing technique. The present invention is configured as a microbial activity sensor formed by forming a polymer film in the shape of a circle (claim 5).
[0016]
Since biodegradable polymer material and colorant are printed and / or coated as a coating film on a supporting substrate, an extremely thin biodegradable polymer film is easily formed, and it is highly practical and highly sensitive for evaluation of microbial activity. An active sensor is obtained.
[0017]
The scale of the evaluation of the microbial activity according to the present invention varies depending on the application. For example, when the fertility of soil or the maturity of compost is controlled, “no activity”, “maximum activity”, and the The objective is sufficiently achieved if the change of several steps can be visually observed.
[0018]
For example, in these cases, a standard microorganism intended for activity control is allowed to act on a polymer thin film of a clearly distinguishable color (for example, red) coated on a supporting substrate of a predetermined color (for example, white), A state in which the thin film on the supporting substrate does not decompose at all and the color remains unchanged from the initial state (red → no activity), a state in which the thin film is completely decomposed and disappears and the supporting substrate is exposed on the surface (white → active best), and A color chart corresponding to several stages between the states (red: dark to light) is prepared in advance. In the actual measurement, the color of the thin film surface of the sensor that has changed due to being fixed in a specific management target is compared with the color of the color chart, and the color of the part of the chart that visually matches the color The activity of the microorganism group can be easily evaluated.
[0019]
Another object of the present invention is achieved by a method in which a predetermined microorganism is allowed to act on a thin film of a biodegradable polymer material formed on a supporting substrate, and a degradation rate of the polymer material is evaluated by a change due to the microbial degradation of the thin film. (Claim 8). In this case, it is preferable to include a colorant in the thin film of the polymer material and evaluate the decomposition rate of the biodegradable polymer material by a change in color accompanying a decrease in film thickness due to microbial decomposition (claim 9). Since the evaluation of the decomposition rate of the polymer material is performed by measuring the color change due to the decrease in the film thickness, the evaluation result can be obtained in a short time.
[0020]
Hereinafter, the configuration of the present invention will be described more specifically.
(Biodegradable polymer)
Biodegradable polymers generally refer to substances that are degraded to lower molecular weight by the action of microorganisms in the natural environment, such as microorganism-producing systems (polyhydroxybutyric acid and copolymers thereof) and natural polymer systems (chitin). , Chitosan, bacterial cellulose, polysaccharides, etc.), chemically synthesized systems (aliphatic polyesters, aliphatic / aromatic polyesters, PVA, etc.) and composites thereof.
[0021]
From the viewpoint of the purpose, the biodegradable polymer used in the present invention can be decomposed by many kinds of microorganisms, has a high decomposition rate, is insoluble in water, and has little influence of pH. When used as a polymer thin film by printing, it is preferable to dissolve in a solvent having a relatively high boiling point. Specific examples include polycaprolactone, polybutylene succinate, and esterified starch, and polycaprolactone and polybutylene succinate are particularly preferred.
[0022]
The solvent used when the biodegradable polymer material is formed as an ink coating film in the present invention is preferably one that readily dissolves the biodegradable polymer and has an appropriate evaporation rate, and is preferably isophorone, cyclohexanone, or acetone. , Ethyl cellosolve, butyl cellosolve, ethyl acetate, butyl acetate, cellosolve acetate and the like, for example, cyclohexanone is preferable.
[0023]
As the colorant mixed into the biodegradable polymer, both inorganic and organic pigments and aqueous and oily paints are used. For example, azo dyes (pigments), phthalocyanine dyes (pigments), carbon black (pigments) An azo-based dye containing titanium, titanium white (pigment), and an edible dye (dye) and containing no metal is preferable.
[0024]
The content of the colorant in the coating composition is about 1 to 30% by weight, and usually about 5% by weight based on the total weight of the coating composition, in consideration of clear visual recognition of the color due to decomposition of the film and film forming properties. It is. The color difference due to the reduction of the film thickness due to the decomposition becomes more noticeable as the film is thinner, but it is preferably about 1 to 100 μm in consideration of the film formability and the like. The ink coating film is formed, for example, by a single coating or a multiple coating by a roll coating method.
[0025]
As a nutrient source of the microorganisms added to the polymer material at the time of ink formation, those suitable for a wide variety of microorganisms are preferable, and examples thereof include a granular potato dextrose agar medium. The amount to be added is appropriately determined according to the type of the polymer material or the microorganism to be added and in consideration of the measurement sensitivity, the film forming property, and the like.
[0026]
DESCRIPTION OF THE PREFERRED EMBODIMENTS
[Microbial activity sensor]
1 and 2 are conceptual explanatory views of a microorganism activity sensor used in the method for evaluating the activity of a microorganism group of the present invention. FIG. 1 (A, B, C) shows that a polymer thin film of the microorganism activity sensor is degraded by microorganisms. FIG. 2 is a model diagram showing a state in which the polymer thin film disappears as a result, and FIG. 2 shows a state in which the polymer thin film is reduced in a case where the microorganism activity sensor in FIG. 5% by weight of carmine 6B401 (red) as a coloring agent and potato dextrose agar medium (Pda) as a nutritional additive are blended with polycaprolactone as a biodegradable polymer material, and this is mixed with cyclohexanone as a solvent. The solution was uniformly dissolved and coated on a white aluminum or epoxy resin plate having a thickness of 1 mm as a printing support base to form a biodegradable polymer film having a thickness (1 to 15 μm). The amount of Pda was 25% by weight, 50% by weight, and no addition.
[0027]
In FIG. 1, when the support base (white) 1 is coated with the polymer thin film 2 having an initial film thickness, the surface of the microorganism activity sensor shows a red color due to the dye 3 (FIG. 1A). As the polymer thin film (polycaprolactone) 2 and Pda4 in the film are decomposed by microorganisms, the film thickness decreases and the dye 2 drops off. The red color on the film surface side gradually fades according to the degree (FIG. 1B). In the active state of the microorganism in which the membrane is completely decomposed, the surface of the supporting substrate 1 is exposed and the sensor surface becomes white (FIG. 1C).
[0028]
In actual use of the microorganism activity sensor, it is preferable to prepare a color chart for colorimetry in advance. For example, the polymer film thickness of the sensor shown in FIG. 1A is decomposed by microorganisms preliminarily selected according to each management application according to the activity of a predetermined stage, and different colors as viewed from the thin film surface side measured at each stage are measured. A color chart is prepared by arranging in order, and the activity of the microorganism is evaluated by comparing the color of the sensor surface actually used with the color of the corresponding chart.
FIG. 2 is a model diagram showing a state in which a microbial activity sensor of the type shown in FIG. 1A is vertically set in soil to evaluate the activity of the microorganism and dynamically measure the distribution of the activity in the depth direction. .
[0029]
In FIG. 2, at the outermost surface (region I) where the soil is exposed to the atmosphere, the microorganisms have substantially no activity, so that the polymer thin film 2 on the substrate 1 hardly decomposes, and the red color of the colorant 3 remains unchanged. To be observed. The portion below the surface layer has high microbial activity, the polymer thin film 2 undergoes remarkable decomposition, the film thickness decreases in the depth direction D, the colorant 3 drops off, and the white color of the base 1 as a base makes the film thin. The color (red) gradually becomes lighter, the film is completely decomposed, and the sensor surface becomes white at the portion where the base 1 is exposed (region II). Furthermore, since the activity of the microorganisms is reduced at a deeper portion, a large amount of the coloring agent remains and the concentration of the red color of the thin film gradually increases (region III). As described above, the degree of decomposition of the polymer membrane varies depending on the activity of the microorganism, and the activity or the change in the activity is easily observed as large activity → large color difference, low activity → small color difference.
[0030]
[Example]
The following shows an example of evaluating the activity of microorganisms in upland and activated sludge using the microorganism activity sensor of the present invention,
In each of the graphs showing the results of the following examples, the abscissa indicates the elapsed time (number of days) in which the microorganism activity sensor (sample) was quantified in the object, and the ordinate indicates the change in the color of the sensor. In this experiment, the color change on the sensor surface was measured by the color difference. Color difference colorimetry color to be compared of the sample before and after the elapsed time 10 ° field of view using the illuminant D 65 as colorimetric light source, obtains the respective L * a * b * values were obtained by the color calculation Value.
[0031]
[Example 1]
FIGS. 3 and 4 show the results of measuring the microbial activity in soils (fields) (A, B) under two different conditions using the microbial activity sensor. In any case, it is shown that as the measurement time elapses, the decomposition by the microorganism proceeds, and the change in color (color difference) increases. It is shown that the higher the average temperature, the higher the decomposition rate (larger color difference).
[0032]
[Example 2]
5 and 6 are diagrams showing an increase in the activity of microorganisms (sensitivity amplification) by adding a nutrient source to the biodegradable polymer membrane. FIG. 5 shows an example applied to soil and FIG. 6 shows an example applied to activated sludge.
[0033]
The mixing ratio of potato dextrose agar medium (Pda) used as a nutrient source was 25 wt% for soil (FIG. 5), (-●-), and 0 wt% (-■-) for comparison, and activated sludge. (FIG. 6) was also measured for the case of 50 wt% (-▲-). In each case, it was confirmed that the decomposition rate (sensitivity) was improved by mixing Pda, and the decomposition rate was improved as the mixing ratio was increased. In any of the cases of FIGS. 3 to 6, the microbial activity and its change within a relatively short measurement period (28 days) are measured as a remarkable color difference, which should be clearly evaluated as a visual color change. Was completed.
[0034]
It is generally believed that the rate of biodegradable resin degradation by microorganisms depends on the type, quantity, and activity of the bacteria, but further experiments have shown that the nutritional status (starvation) of the bacteria has a significant effect.
[0035]
FIG. 7 shows the results of evaluating the microbial activity by the color change of the biodegradable resin in a field to which a fertilizer as a microbial nutrient is added and a field to which no fertilizer is added. The color difference was larger in the fields of the fertilizer-free group (hunger state) than in the fertilizer group (nutrition state).
[Example 3]
-Evaluation of decomposition rate of biodegradable resin-
In order to evaluate the degradation rate evaluation of the biodegradable resin, carmine 6B401, polycaprolactone containing 5% by weight and Pds were dissolved in cyclohesanone in the same manufacturing process as the microbial activity sensor shown in FIG. Or an epoxy resin) plate to form a biodegradable resin film having a thickness of 1 μm. The amount of Pds was 0% and 50%.
[0037]
This resin film-coated substrate has the following composition approximated to the components of activated sludge, and is immersed in artificial sewage containing fungi obtained from activated sludge in a treatment plant to form a resin film by microbial activity at 25 ° C. The disappearance and the accompanying color change of the coating surface were observed over time.
500mg of glucose per liter of artificial sewage
27.5mg of calcium chloride
Magnesium sulfate heptahydrate 22.5mg
Ferric chloride hexahydrate 0.25mg
Ammonium chloride 46.9mg
5.86mg dipotassium hydrogen phosphate
2.30 mg of potassium dihydrogen phosphate
Disodium hydrogen phosphate dodecahydrate 12.0mg
[0038]
FIG. 8 shows the amount of decrease in the coating film thickness on the surface of the supporting substrate caused by microorganisms, and FIG. 9 shows the change in color (color difference) of the coating film surface as the film thickness decreases. In each case, the resin is decomposed in a relatively short measurement period of 5 to 10 days, and the coating film thickness is reduced, and the accompanying change in color on the coating film surface makes the decomposition rate of the polymer material clear. Was observed.
[0039]
【The invention's effect】
In the present invention, when the activity of the microorganisms is evaluated, the activity of the microorganisms is measured by decomposing and disappearing using a polymer thin film having a biodegradable function. As described above, the state of decomposition of the polymer film can be evaluated by simple visual observation without using a dedicated measuring device for measuring the BOD, TOC, carbon dioxide concentration and the like.
[0040]
In particular, since the polymer film contains a colorant, the activity of the microorganisms is measured based on the change in chromaticity due to the decrease in film thickness accompanying the decomposition of the polymer film by microorganisms. It can be clearly and easily evaluated as a change in color.
[0041]
Further, by adding a nutrient capable of easily decomposing and absorbing the microorganisms to the biodegradable polymer membrane to improve the decomposition rate of the polymer membrane material, the evaluation can be performed more quickly.
[0042]
Particularly, in a microbial activity sensor in which a biodegradable polymer material is dissolved in a solvent together with a coloring agent and a nutrient source to form an ink / paint, and a thin polymer film is formed on a supporting substrate by a printing technique, Since a degradable polymer material can be uniformly formed as an extremely thin film on a supporting substrate, highly sensitive evaluation can be performed in a short time, and a sensor having a simple structure can be easily manufactured. it can.
[0043]
Although the present invention has been described with reference to the evaluation of the activity of microorganisms in soil, sludge, and the like, the present invention can also be applied to other fields such as food, fermentation, agricultural and horticultural compost, and pharmaceutical production.
[0044]
Further, the present invention can be applied to a method for evaluating the decomposition characteristics (rate) of a biodegradable resin which is a polymer material. Conventionally, such an evaluation takes a long time (monthly) and requires a dedicated measuring instrument. However, if the present invention is applied, the biodegradable resin to be evaluated is printed as described above. The technology is used to form a thin film, on which the microorganisms act under predetermined conditions to reduce the film thickness, and the resulting change in color evaluates the decomposition rate of the material, making evaluation quicker and easier. Can be performed.
[Brief description of the drawings]
FIG. 1 is a model diagram showing an outline of a microorganism activity sensor used in the present invention.
FIG. 2 is a model diagram showing an outline of a microorganism activity sensor used in the present invention.
FIG. 3 is a graph showing a color change (color difference) of a biodegradable polymer thin film by a microorganism.
FIG. 4 is a graph showing a color change (color difference) of a biodegradable polymer thin film by a microorganism.
FIG. 5 is a graph showing the improvement of the decomposition rate of a biodegradable polymer thin film by adding a nutrient source.
FIG. 6 is a graph showing the improvement of the decomposition rate of a biodegradable polymer thin film by adding a nutrient source.
FIG. 7 is a graph showing the effect of starvation of microorganisms on microbial activity.
FIG. 8 is a graph showing the degradation rate of a biodegradable resin by microorganisms by the amount of decrease in the thickness of a resin thin film.
FIG. 9 is a graph showing a decomposition rate of a biodegradable resin by microorganisms by a change in color of a resin thin film.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Support base 2 Biodegradable polymer thin film 3 Colorant 4 Nutrient source

Claims (9)

活性を評価する微生物群の繁殖する場所に生分解性機能を有する高分子材料の薄膜を定置し、この薄膜の微生物分解による変化によって前記微生物群の活性を評価する方法。A method in which a thin film of a polymer material having a biodegradable function is placed in a place where a group of microorganisms to be evaluated for activity proliferates, and the activity of the group of microorganisms is evaluated by a change due to the microbial decomposition of the thin film. 前記高分子材料の薄膜に着色剤を含有させ微生物による分解に伴なう膜厚の減少の際の前記着色剤の脱落による色彩の変化に基いて微生物群の活性状態を評価する請求項1記載の方法。2. The active state of a microorganism group is evaluated based on a change in color caused by dropping of the colorant when the film thickness is reduced due to decomposition by microorganisms by including a colorant in the thin film of the polymer material. the method of. 生分解性機能を有する高分子材料に微生物群が容易に分解、吸収できる栄養源を添加して高分子材料の分解速度を向上させる請求項1又は2記載の方法。The method according to claim 1 or 2, wherein a nutrient source capable of easily decomposing and absorbing microorganisms is added to the polymer material having a biodegradable function to improve the decomposition rate of the polymer material. 着色剤を含む生分解性機能を有する高分子材料の薄膜を支持基体の表面に形成してなる微生物活性センサ。A microbial activity sensor in which a thin film of a polymer material having a biodegradable function including a colorant is formed on the surface of a supporting substrate. 生分解性機能を有する高分子材料を着色剤と共に溶剤に溶解してインキ化/塗料化し、印刷技術によって前記着色剤とは色彩の異なる支持基体上に薄膜状の高分子膜を形成してなる請求項4記載の微生物活性センサ。A polymer material having a biodegradable function is dissolved in a solvent together with a colorant to form an ink / paint, and a thin film-like polymer film is formed on a supporting substrate having a different color from the colorant by a printing technique. The microorganism activity sensor according to claim 4. 生分解性機能を有する高分子材料に微生物群が容易に分解、吸収できる栄養源を添加して分解速度を向上させる請求項5記載の微生物活性センサ。6. The microbial activity sensor according to claim 5, wherein a nutrient that can be easily decomposed and absorbed by the microorganisms is added to the polymer material having a biodegradable function to improve the decomposition rate. 前記薄膜の厚さを1〜100μmとする請求項5記載の微生物活性センサ。The microorganism activity sensor according to claim 5, wherein the thickness of the thin film is 1 to 100 m. 支持基体上に形成した生分解性高分子材料の薄膜に所定の微生物を作用させ、薄膜の微生物分解による変化により高分子材料の分解速度を評価する方法。A method in which a predetermined microorganism is allowed to act on a thin film of a biodegradable polymer material formed on a supporting substrate, and the degradation rate of the polymer material is evaluated by a change due to the microbial degradation of the thin film. 前記高分子材料の薄膜に着色剤を含有させ微生物分解による膜厚の減少に伴なう色彩の変化により生分解性高分子材料の分解速度を評価する請求項8記載の方法。9. The method according to claim 8, wherein a colorant is contained in the thin film of the polymer material, and the decomposition rate of the biodegradable polymer material is evaluated based on a change in color accompanying a decrease in the film thickness due to microbial decomposition.
JP2003144203A 2003-05-22 2003-05-22 Method for evaluating active state of microorganism group and sensor of microorganismic activity Pending JP2004344056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003144203A JP2004344056A (en) 2003-05-22 2003-05-22 Method for evaluating active state of microorganism group and sensor of microorganismic activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003144203A JP2004344056A (en) 2003-05-22 2003-05-22 Method for evaluating active state of microorganism group and sensor of microorganismic activity

Publications (1)

Publication Number Publication Date
JP2004344056A true JP2004344056A (en) 2004-12-09

Family

ID=33531706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003144203A Pending JP2004344056A (en) 2003-05-22 2003-05-22 Method for evaluating active state of microorganism group and sensor of microorganismic activity

Country Status (1)

Country Link
JP (1) JP2004344056A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007144367A1 (en) * 2006-06-16 2007-12-21 Universität Wien Optical sensor and method for indicating the age or quality of a natural product
WO2008104242A1 (en) * 2007-03-01 2008-09-04 Universität Wien Device comprising a coloured and biodegradable polymer layer for analyzing the age and/or quality of a natural product (integrated freshness indicator)
WO2009144228A1 (en) * 2008-05-27 2009-12-03 Commissariat A L'energie Atomique Method of detecting the presence or absence of a chemical substance in a liquid medium

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007144367A1 (en) * 2006-06-16 2007-12-21 Universität Wien Optical sensor and method for indicating the age or quality of a natural product
CN101473217B (en) * 2006-06-16 2011-10-05 索尼达德克奥地利股份公司 Optical sensor and method for indicating the age or quality of a natural product
WO2008104242A1 (en) * 2007-03-01 2008-09-04 Universität Wien Device comprising a coloured and biodegradable polymer layer for analyzing the age and/or quality of a natural product (integrated freshness indicator)
US20110020859A1 (en) * 2007-03-01 2011-01-27 Universität Wien Device comprising a coloured and biodegradable polymer layer for analyzing the age and/or quality of a natural product (integrated freshness indicator)
WO2009144228A1 (en) * 2008-05-27 2009-12-03 Commissariat A L'energie Atomique Method of detecting the presence or absence of a chemical substance in a liquid medium
FR2931943A1 (en) * 2008-05-27 2009-12-04 Commissariat Energie Atomique METHOD FOR DETECTING THE PRESENCE OR ABSENCE OF A CHEMICAL SUBSTANCE IN A LIQUID MEDIUM.

Similar Documents

Publication Publication Date Title
Fontanella et al. Comparison of the biodegradability of various polyethylene films containing pro-oxidant additives
Gryta et al. The application of the Biolog EcoPlate approach in ecotoxicological evaluation of dairy sewage sludge
Aminabhavi et al. A review on biodegradable plastics
Ros et al. A full-scale study of treatment of pig slurry by composting: Kinetic changes in chemical and microbial properties
Kapanen et al. Ecotoxicity tests for compost applications
Chen et al. The impacts of silver nanoparticles and silver ions on wastewater biological phosphorous removal and the mechanisms
Andrady Assessment of environmental biodegradation of synthetic polymers
Gao et al. Development of a mediated whole cell-based electrochemical biosensor for joint toxicity assessment of multi-pollutants using a mixed microbial consortium
Watermann et al. Bioassays and selected chemical analysis of biocide-free antifouling coatings
Mezzanotte et al. Influence of inocula on the results of biodegradation tests
Fernández et al. Carbon mineralization in an arid soil amended with thermally-dried and composted sewage sludges
Wang et al. Performance evaluation, microbial enzymatic activity and microbial community of a sequencing batch reactor under long-term exposure to cerium dioxide nanoparticles
Kopeć et al. Assessment of respiration activity and ecotoxicity of composts containing biopolymers
US20200158601A1 (en) Biodegradable sterile sampling bag
Ribba et al. Biodegradable plastics in aquatic ecosystems: latest findings, research gaps, and recommendations
Hoffmann et al. Assessing biodegradability of plastics based on poly (vinyl alcohol) and protein wastes
Sarioglu et al. The removal of CI Basic Red 46 in a mixed methanogenic anaerobic culture
Tiquia et al. Effects of bacterial inoculum and moisture adjustment on composting of pig manure
Khanjanzadeh et al. Intelligent pH-and ammonia-sensitive indicator films using neutral red immobilized onto cellulose nanofibrils
Alexandrovskaya et al. A comprehensive study of the resistance to biofouling of different polymers for optical oxygen sensors. The advantage of the novel fluorinated composite based on core-dye-shell structure
JP2004344056A (en) Method for evaluating active state of microorganism group and sensor of microorganismic activity
Khoramnejadian et al. Bio-based plastic a way for reduce municipal solid waste
Andrady Biodegradation of plastics: monitoring what happens
Adamcová et al. Ecotoxicity of composts containing aliphatic-aromatic copolyesters.
CN109497053A (en) A kind of microbial pesticide film forming agent and its application