JP2004343521A - Differential amplifier - Google Patents

Differential amplifier Download PDF

Info

Publication number
JP2004343521A
JP2004343521A JP2003138874A JP2003138874A JP2004343521A JP 2004343521 A JP2004343521 A JP 2004343521A JP 2003138874 A JP2003138874 A JP 2003138874A JP 2003138874 A JP2003138874 A JP 2003138874A JP 2004343521 A JP2004343521 A JP 2004343521A
Authority
JP
Japan
Prior art keywords
differential amplifier
amplifier circuit
differential
input
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003138874A
Other languages
Japanese (ja)
Other versions
JP4532847B2 (en
Inventor
Makoto Hanshimoseki
誠 半下石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2003138874A priority Critical patent/JP4532847B2/en
Publication of JP2004343521A publication Critical patent/JP2004343521A/en
Application granted granted Critical
Publication of JP4532847B2 publication Critical patent/JP4532847B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Amplifiers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a complementary differential amplifier capable of receiving an input of a wide voltage range and obtaining an output of a wide voltage range. <P>SOLUTION: Each noninverted input port and each inverted input port of a differential output type first differential amplifier circuit 2 and a second differential amplifier circuit 3 are connected corresponding to a noninverted input port IN+ and an inverted input port IN-, a pair of output ports of the first differential amplifier circuit 2 is connected corresponding to conflicting input ports of a signal end type third differential amplifier circuit 4, a pair of the second differential amplifier circuit 3 is connected corresponding to conflicting input ports of a single end type fourth differential amplifier circuit 5, and each output port of the third differential amplifier circuit 4 and a fifth differential amplifier circuit 5 is connected to an output circuit 6 constituting a push-pull circuit configuration. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、入力電圧範囲が広く、広範囲な出力電圧範囲が得られるコンプリメンタリ型の差動増幅器に関する。
【0002】
【従来の技術】
従来、逆導電型の差動対を有する2つの差動増幅回路と基本的で簡単な出力回路の構成にて出力駆動能力の高いプッシュプル出力とした差動増幅器があった(例えば、特許文献1参照。)。しかし、このような構成では、例えば無負荷時の状態で入力信号が電源電圧付近までなるような場合、出力トランジスタの一方がオンしにくくなることで電流が流れなくなり、出力が不安定になっていた。差動増幅器又は電圧比較器における入力電圧と比較して電源電圧範囲は広いために動作上問題はなかったが、近年は電源電圧の低電圧化に伴い、電源電圧付近までの入力電圧範囲が要求されている。
【0003】
図4は、入出力範囲が広範囲な差動増幅器の従来例を示した図である。
図4では、極性が異なる2つの差動対を用いることで入力電圧範囲を広くとれ、2つの差動増幅回路101及び102の出力信号をいずれもフォールデッドカスコード回路103により折り返す。更に、フォールデッドカスコード回路103からの各出力信号は、プッシュプル回路構成をなして出力電圧範囲を大きくした出力回路104で合成して出力される。
【0004】
【特許文献1】
特開昭61−148906号公報
【0005】
【発明が解決しようとする課題】
このような差動増幅器を使用すれば、所望の入出力電圧範囲の広い特性が得られるが、回路を設計する上で次のような問題がある。フォールデッドカスコード回路において、複数のバイアス電圧Va〜Vdが必要であるため、バイアス電圧発生回路が必要になり、フォールデッドカスコード回路の最適なトランジスタサイズを決めるのが困難である。
【0006】
また、差動増幅回路101,102及びフォールデッドカスコード回路103の電流を決めるのが複雑で難しく、特に、トランジスタサイズが不適当であれば、フォールデッドカスコード回路103内のトランジスタ動作状態が3極間領域及び5極間領域が入り混じった状態になる場合があった。一方、出力回路104においては、広範囲なプッシュプル出力構成を得るようにすれば、図4のPMOSトランジスタ及びNMOSトランジスタの両方を駆動する必要があり、フォールデッドカスコード回路からの出力信号を合成して該PMOSトランジスタ及びNMOSトランジスタの両方を制御するための出力制御回路が必要になる。これらのことから、回路規模が大きくなり、レイアウト面積が大きくなるという問題があった。
【0007】
本発明は、上記のような問題を解決するためになされたものであり、広電圧範囲の入力が可能で、広電圧範囲の出力が得られるコンプリメンタリ型の差動増幅器を得ることを目的とする。
【0008】
【課題を解決するための手段】
この発明に係る差動増幅器は、1対の第1入力端及び第2入力端に対応して入力された第1入力信号及び第2入力信号を差動増幅して所定の出力端から出力する差動増幅器において、
非反転入力端に前記第1入力信号が入力されると共に反転入力端に前記第2入力信号が入力される差動出力型の第1差動増幅回路と、
非反転入力端に前記第1入力信号が入力されると共に反転入力端に前記第2入力信号が入力される差動出力型の第2差動増幅回路と、
前記第1差動増幅回路からの1対の出力信号が対応する入力端に入力されるシングルエンド型の第3差動増幅回路と、
前記第2差動増幅回路からの1対の出力信号が対応する入力端に入力されるシングルエンド型の第4差動増幅回路と、
前記第3差動増幅回路及び該第4差動増幅回路の各出力信号を合成して前記所定の出力端に出力する出力回路と、
を備え、
前記第1差動増幅回路及び第2差動増幅回路の各差動対は逆導電型をなすと共に、前記第3差動増幅回路及び第4差動増幅回路の各差動対は逆導電型をなすものである。
【0009】
また、前記第1差動増幅回路及び第3差動増幅回路の各差動対は同導電型をなすと共に、前記第2差動増幅回路及び第4差動増幅回路の各差動対は同導電型をなすようにした。
【0010】
具体的には、前記第1差動増幅回路は、反転出力端が第3差動増幅回路の反転入力端に接続されると共に非反転出力端が第3差動増幅回路の非反転入力端に接続され、前記第2差動増幅回路は、反転出力端が第4差動増幅回路の反転入力端に接続されると共に非反転出力端が第4差動増幅回路の非反転入力端に接続されるようにした。
【0011】
また、前記第1差動増幅回路及び第2差動増幅回路は、差動対に接続された負荷回路が該差動対をなす各トランジスタにそれぞれ順方向に対応して接続されたダイオードで形成されるようにしてもよい。
【0012】
また、前記第3差動増幅回路及び第4差動増幅回路は、差動対に接続された負荷回路がカレントミラー回路を形成してなるようにしてもよい。
【0013】
【発明の実施の形態】
次に、図面に示す実施の形態に基づいて、本発明を詳細に説明する。
第1の実施の形態.
図1は、本発明の第1の実施の形態における差動増幅器の構成例を示した図である。
図1において、差動増幅器1は、非反転入力端IN+及び反転入力端IN−に入力された1対の入力信号S1及びS2に対して差動増幅を行い出力端OUTから出力するものであり、差動出力型の第1差動増幅回路2及び第2差動増幅回路3、シングルエンド型の第3差動増幅回路4及び第4差動増幅回路5、並びにプッシュプル回路構成をなした出力回路6で構成されている。
【0014】
差動増幅器1の非反転入力端IN+には、第1差動増幅回路2及び第2差動増幅回路3の各非反転入力端がそれぞれ接続され、差動増幅器1の反転入力端IN−には、第1差動増幅回路2及び第2差動増幅回路3の各反転入力端がそれぞれ接続されている。第1差動増幅回路2において、反転出力端o−は第3差動増幅回路4の反転入力端に接続され、非反転出力端o+は第3差動増幅回路4の非反転入力端に接続されている。同様に、第2差動増幅回路3において、反転出力端o−は第4差動増幅回路5の反転入力端に接続され、非反転出力端o+は第4差動増幅回路5の非反転入力端に接続されている。第3差動増幅回路4及び第4差動増幅回路5の各出力端は出力回路6に接続され、出力回路6の出力端が差動増幅器1の出力端OUTに接続されている。
【0015】
入力された1対の入力信号S1,S2は、第1差動増幅回路2及び第2差動増幅回路3の対応する入力端に入力され、入力信号S1,S2の電圧差は第1差動増幅回路2及び第2差動増幅回路3でそれぞれ増幅され、第1差動増幅回路2及び第2差動増幅回路3の各差動出力信号の電圧差は、対応する第3差動増幅回路4及び第4差動増幅回路5でそれぞれ増幅されて出力回路6にそれぞれ出力される。出力回路6は、第3差動増幅回路4及び第4差動増幅回路5の各出力信号を合成して、出力端OUTに出力し、広い電圧範囲の入力が可能であり、高い利得を得ることができる。
【0016】
図2は、図1の各差動増幅回路の内部構成例を示したブロック図である。
図2において、差動増幅器1は、第1電源電圧V1と第2電源電圧V2を電源として作動している。第1差動増幅回路2は、第1の差動対21、該第1の差動対21に接続された第1の負荷回路22、及び第1の差動対21に電流を供給する第1の定電流源23で構成されている。第1電源電圧V1と第1の差動対21との間に第1の定電流源23が接続され、第2電源電圧V2と第1の差動対21との間に第1の負荷回路22が接続されている。第1の差動対21の各信号入力端は、入力信号S1及びS2が対応して入力されており、第1の差動対21と第1の負荷回路22との各接続部が第1差動増幅回路2の各出力端o+及びo−をそれぞれなしている。
【0017】
第2差動増幅回路3は、第2の差動対31、該第2の差動対31に接続された第2の負荷回路32、及び第2の差動対31に電流を供給する第2の定電流源33で構成されている。第2電源電圧V2と第2の差動対31との間に第2の定電流源33が接続され、第1電源電圧V1と第2の差動対31との間に第2の負荷回路32が接続されている。第2の差動対31の各信号入力端は、入力信号S1及びS2が対応して入力されており、第2の差動対31と第2の負荷回路32との各接続部が第2差動増幅回路3の各出力端o+及びo−をそれぞれなしている。
【0018】
第3差動増幅回路4は、第3の差動対41、該第3の差動対41に接続された第3の負荷回路42、及び第3の差動対41に電流を供給する第3の定電流源43で構成されている。第1電源電圧V1と第3の差動対41との間に第3の定電流源43が接続され、第2電源電圧V2と第3の差動対41との間に第3の負荷回路42が接続されている。第3の差動対41の各信号入力端は、第1差動増幅回路2からの1対の差動出力信号が対応して入力されており、第3の差動対41と第3の負荷回路42との一方の接続部が第3差動増幅回路4の出力端をなし、出力回路6に接続されている。
【0019】
第4差動増幅回路5は、第4の差動対51、該第4の差動対51に接続された第4の負荷回路52、及び第4の差動対51に電流を供給する第4の定電流源53で構成されている。第2電源電圧V2と第4の差動対51との間に第4の定電流源53が接続され、第1電源電圧V1と第4の差動対51との間に第4の負荷回路52が接続されている。第4の差動対51の各信号入力端は、第2差動増幅回路3からの1対の差動出力信号が対応して入力されており、第4の差動対51と第4の負荷回路52との一方の接続部が第4差動増幅回路5の出力端をなし、出力回路6に接続されている。
【0020】
ここで、第1差動増幅回路2及び第3差動増幅回路4は、第1及び第3の各差動対が同導電型であるため、入力信号S1及びS2が第1差動増幅回路2の入力電圧の許容範囲を超えた場合でも、第1差動増幅回路2の差動出力信号は、第3差動増幅回路4の入力電圧の許容範囲となる。同様に、第2差動増幅回路2及び第4差動増幅回路5は、第2及び第4の各差動対が同導電型であるため、入力信号S1及びS2が第2差動増幅回路3の入力電圧の許容範囲を超えた場合でも、第2差動増幅回路3の差動出力信号は、第4差動増幅回路5の入力電圧の許容範囲となる。これらのことから、出力回路6に入力される第3差動増幅回路4及び第4差動増幅回路5の各出力信号は、入力信号S1及びS2が正しく伝わったものとなり、出力回路6で合成されて出力端OUTに出力される。
【0021】
図3は、図2で示した差動増幅器1の回路例を示した図である。
図3において、第1電源電圧V1は、正側電源電圧VDDをなし、第2電源電圧V2は負側電源電圧VSS、例えば接地電圧をなしている。第1差動増幅回路2は、PMOSトランジスタM1,M2、NMOSトランジスタM3,M4及び第1の定電流源23で構成されており、PMOSトランジスタM1及びM2は、第1の差動対21をなし、NMOSトランジスタM3及びM4は第1の負荷回路22をなしている。
【0022】
PMOSトランジスタM1及びM2の各ソースは接続され、該接続部と正側電源電圧VDDとの間に第1の定電流源23が接続されている。PMOSトランジスタM1のドレインと負側電源電圧VSSとの間にはNMOSトランジスタM3が接続され、PMOSトランジスタM2のドレインと負側電源電圧VSSとの間にはNMOSトランジスタM4が接続されている。PMOSトランジスタM1のゲートは差動増幅器1の反転入力端をなし、PMOSトランジスタM2のゲートは差動増幅器1の非反転入力端をなしている。
【0023】
NMOSトランジスタM3のゲートはNMOSトランジスタM3のドレインに接続され、NMOSトランジスタM4のゲートはNMOSトランジスタM4のドレインに接続され、NMOSトランジスタM3及びM4はそれぞれダイオードをなしている。PMOSトランジスタM1とNMOSトランジスタM3の接続部が、第1差動増幅回路2の出力端o+をなし、PMOSトランジスタM2とNMOSトランジスタM4の接続部が、第1差動増幅回路2の出力端o−をなしている。
【0024】
第2差動増幅回路3は、PMOSトランジスタM5,M6、NMOSトランジスタM7,M8及び第2の定電流源33で構成されており、NMOSトランジスタM7及びM8は、第2の差動対31をなし、PMOSトランジスタM5及びM6は第2の負荷回路32をなしている。NMOSトランジスタM7及びM8の各ソースは接続され、該接続部と負側電源電圧VSSとの間に第2の定電流源33が接続されている。
【0025】
正側電源電圧VDDとNMOSトランジスタM7のドレインとの間にはPMOSトランジスタM5が接続され、電源電圧VDDとNMOSトランジスタM8のドレインとの間にはPMOSトランジスタM6が接続されている。NMOSトランジスタM7のゲートは第2差動増幅回路3の反転入力端をなし、NMOSトランジスタM8のゲートは第2差動増幅回路3の非反転入力端をなしている。PMOSトランジスタM5のゲートはPMOSトランジスタM5のドレインに接続され、PMOSトランジスタM6のゲートはPMOSトランジスタM6のドレインに接続され、PMOSトランジスタM5及びM6はそれぞれダイオードをなしている。PMOSトランジスタM5とNMOSトランジスタM7の接続部が第2差動増幅回路3の出力端o+をなし、PMOSトランジスタM6とNMOSトランジスタM8の接続部が、第2差動増幅回路3の出力端o−をなしている。
【0026】
第3差動増幅回路4は、PMOSトランジスタM9,M10、NMOSトランジスタM11,M12及び第3の定電流源43で構成されており、PMOSトランジスタM9及びM10は、第3の差動対41をなし、NMOSトランジスタM11及びM12はカレントミラー回路を形成して第3の負荷回路42をなしている。
【0027】
PMOSトランジスタM9及びM10の各ソースは接続され、該接続部と正側電源電圧VDDとの間に第3の定電流源43が接続されている。PMOSトランジスタM9のドレインと負側電源電圧VSSとの間にはNMOSトランジスタM11が接続され、PMOSトランジスタM10のドレインと負側電源電圧VSSとの間にはNMOSトランジスタM12が接続されている。PMOSトランジスタM9のゲートは第3差動増幅回路4の反転入力端をなし、PMOSトランジスタM10のゲートは第3差動増幅回路4の非反転入力端をなしている。NMOSトランジスタM11及びM12の各ゲートは接続され、該接続部はNMOSトランジスタM11のドレインに接続されている。PMOSトランジスタM10とNMOSトランジスタM12の接続部が第3差動増幅回路4の出力端をなしている。
【0028】
第4差動増幅回路5は、PMOSトランジスタM13,M14、NMOSトランジスタM15,M16及び第4の定電流源53で構成されており、NMOSトランジスタM15及びM16は、第4の差動対51をなし、PMOSトランジスタM13及びM14はカレントミラー回路を形成して第4の負荷回路52をなしている。NMOSトランジスタM15及びM16の各ソースは接続され、該接続部と負側電源電圧VSSとの間に第4の定電流源53が接続されている。
【0029】
正側電源電圧VDDとNMOSトランジスタM15のドレインとの間にはPMOSトランジスタM13が接続され、正側電源電圧VDDとNMOSトランジスタM16のドレインとの間にはPMOSトランジスタM14が接続されている。NMOSトランジスタM15のゲートは第4差動増幅回路5の反転入力端をなし、NMOSトランジスタM16のゲートは第4差動増幅回路5の非反転入力端をなしている。PMOSトランジスタ13及びM14の各ゲートは接続され、該接続部はPMOSトランジスタM13のドレインに接続されている。PMOSトランジスタM14とNMOSトランジスタM16の接続部が、第4差動増幅回路5の出力端をなしている。
【0030】
出力回路6は、PMOSトランジスタM17及びNMOSトランジスタM18で構成されており、正側電源電圧VDDと負側電源電圧VSSとの間にPMOSトランジスタM17及びNMOSトランジスタM18が直列に接続されている。PMOSトランジスタM17のゲートは第4差動増幅回路5の出力端に接続され、NMOSトランジスタM18のゲートは第3差動増幅回路4の出力端に接続されている。PMOSトランジスタM17及びNMOSトランジスタM18の接続部が出力端OUTに接続され、出力回路6はプッシュプル回路をなしている。
【0031】
このような構成において、入力信号S1及びS2は、PMOSトランジスタM1及びM2で構成された第1の差動対21と、NMOSトランジスタM7及びM8で構成された第2の差動対31へそれぞれ入力される。次に、第1差動増幅回路2の差動出力信号N1及びN2は、PMOSトランジスタM9及びM10で構成された第3の差動対41へそれぞれ入力され、第2差動増幅回路3の差動出力信号N3及びN4は、NMOSトランジスタM15及びM16で構成された第4の差動対51へそれぞれ入力される。
【0032】
入力信号S1及びS2は、第1差動増幅回路2及び第2差動増幅回路3でそれぞれ差動増幅され、第1差動増幅回路2から差動出力信号N1及びN2が、第2差動増幅回路3から差動出力信号N3及びN4がそれぞれ出力され、次段の対応する第3差動増幅回路4及び第4差動増幅回路5へ対応して入力される。通常、図3で示したように各差動増幅回路2〜4をCMOSトランジスタで構成した場合の入力電圧範囲は、定電流源が持つ電位差と、差動対をなすトランジスタが持つゲートソース間電圧Vgs、負荷回路が持つ電位差によって制約を受ける。
【0033】
したがって、PMOSトランジスタM1及びM2で構成される第1差動増幅回路2とPMOSトランジスタM9及びM10で構成される第3差動増幅回路4は、共にPチャネルトランジスタ差動入力構成であることから、第1差動増幅回路2及び第3差動増幅回路4の各入力電圧範囲は同様の制約を受ける。一方、PMOSトランジスタM1及びM2を有する第1差動増幅回路2の差動出力信号N1及びN2をPMOSトランジスタM9及びM10に対応して入力する。
【0034】
このようにすることにより、Pチャネルトランジスタ差動入力構成において、正側電源電圧VDD付近の電圧が反転入力端IN−及び非反転入力端IN+に入力されても、差動出力信号N1及びN2の電圧は負側電源電圧VSS付近に低下して第3差動増幅回路4の入力電圧の許容範囲となり、PMOSトランジスタM9及びM10を含む第3差動増幅回路4の出力信号N5には、入力信号S1及びS2が正しく伝達された信号となる。
【0035】
同様に、NMOSトランジスタM7及びM8で構成される第2差動増幅回路3とNMOSトランジスタM15及びM16で構成される第4差動増幅回路5は、共にNチャネルトランジスタ差動入力構成であることから、第2差動増幅回路3及び第4差動増幅回路5の各入力電圧範囲は同様の制約を受ける。一方、NMOSトランジスタM7及びM8を有する第2差動増幅回路3の差動出力信号N3及びN4をNMOSトランジスタM15及びM16に対応して入力する。
【0036】
このようにすることにより、Nチャネルトランジスタ差動入力構成において、負側電源電圧VSS付近の電圧が反転入力端IN−及び非反転入力端IN+に入力されても、差動出力信号N3及びN4の電圧は正側電源電圧VDD付近に上昇して第4差動増幅回路5の入力電圧の許容範囲となり、NMOSトランジスタM15及びM16を含む第4差動増幅回路5の出力信号N6には、入力信号S1及びS2が正しく伝達された信号となる。
【0037】
すなわち、出力信号N5は、相対する信号レベルをなす1対の入力信号S1及びS2が第1差動増幅回路2によって差動増幅され、更に第3差動増幅回路4によって増幅された信号となって出力回路6のNMOSトランジスタM18のゲートに入力される。同様に、出力信号N6は、相対する信号レベルをなす1対の入力信号S1及びS2が第2差動増幅回路3によって差動増幅され、更に第4差動増幅回路5によって増幅された信号となって出力回路6のPMOSトランジスタM17のゲートに入力される。
【0038】
PMOSトランジスタM17及びNMOSトランジスタM18はそれぞれオープンドレインであるため、出力回路6は、プッシュプル回路構成となって駆動能力の高い出力回路となる。また、出力端OUTがオープンになる無負荷時において、出力信号N5は、入力信号S1及びS2が正側電源電圧VDDから負側電源電圧VSSの範囲で振幅しても、第1差動増幅回路2及び第3差動増幅回路4を通ることによって負側電源電圧VSS付近にはならない。同様に、出力端OUTがオープンになる無負荷時において、出力信号N6は、入力信号S1及びS2が正側電源電圧VDDから負側電源電圧VSSの範囲で振幅しても、第1差動増幅回路2及び第3差動増幅回路4を通ることによって正側電源電圧VDD付近にはならない。これらのことから、出力端OUTから出力される信号は、電圧範囲の広い入力信号S1及びS2に追従した広電圧範囲の信号になる。
【0039】
また、利得に関しても、第1差動増幅回路2から第4差動増幅回路5及び出力回路6によって高い利得を得ることができ、動作速度に関しても、第1差動増幅回路2及び第2差動増幅回路3の各負荷回路22,32を、ダイオード接続したMOSトランジスタで形成するようにしたことから、第1差動増幅回路2及び第2差動増幅回路3における入力トランジスタのミラー効果による寄生容量を低減させることができるため、高速動作が可能になる。
【0040】
また、第3差動増幅回路4におけるNMOSトランジスタM12及び第4差動増幅回路5におけるPMOSトランジスタM14をダイオード接続せずにカレントミラー回路を形成するようにした。このことは、第3差動増幅回路4及び第4差動増幅回路5が1出力構成であるシングルエンド型の差動増幅回路であり、出力回路6のPMOSトランジスタM17及びNMOSトランジスタM18を駆動させるためにダイナミックレンジを広げることに起因する。なお、本第1の実施の形態では、図中に位相補償用の容量等は付加しておらず、差動増幅器の使用用途によっては、適切な値の容量を回路内、又は外部に付加することで所望の特性を満足できるようにする。
【0041】
このように、本第1の実施の形態における差動増幅器は、非反転入力端IN+及び反転入力端IN−に、差動出力型の第1差動増幅回路2及び第2差動増幅回路3の各非反転入力端及び各反転入力端が対応して接続され、第1差動増幅回路2の1対の出力端がシングルエンド型の第3差動増幅回路4の相反する入力端に対応して接続され、第2差動増幅回路3の1対の出力端がシングルエンド型の第4差動増幅回路5の相反する入力端に対応して接続され、第3差動増幅回路4及び第5差動増幅回路5の各出力端がプッシュプル回路構成をなす出力回路6に接続されるようにした。このことから、高利得で、電圧範囲の広い相対する信号レベルの1対の入力信号に追従した広電圧範囲の出力信号を得ることができる。
【0042】
【発明の効果】
上記の説明から明らかなように、本発明の差動増幅器によれば、1対の第1入力端及び第2入力端に制御電極がそれぞれ対応して接続された、互いに逆導電型の第1差動増幅回路及び第2差動増幅回路を備え、第1差動増幅回路及び第2差動増幅回路の各差動出力が、逆導電型の第3差動増幅回路及び第4差動増幅回路へ対応して入力され、第3差動増幅回路及び第4差動増幅回路の各出力信号を合成して出力するようにし、具体的には、前記第1差動増幅回路及び第3差動増幅回路の各差動対は同導電型をなすと共に、前記第2差動増幅回路及び第4差動増幅回路の各差動対は同導電型をなすようにした。このことから、広い電圧範囲の入出力が可能であり、利得も高く、簡単な構成でプッシュプル出力を行うことができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態における差動増幅器の構成例を示した図である。
【図2】図1の各差動増幅回路の内部構成例を示したブロック図である。
【図3】図2で示した差動増幅器1の回路例を示した図である。
【図4】従来の差動増幅器の例を示した回路図である。
【符号の説明】
1 差動増幅器
2 第1差動増幅回路
3 第2差動増幅回路
4 第3差動増幅回路
5 第4差動増幅回路
6 出力回路
21 第1の差動対
22 第1の負荷回路
23 第1の定電流源
31 第2の差動対
32 第2の負荷回路
33 第2の定電流源
41 第3の差動対
42 第3の負荷回路
43 第3の定電流源
51 第4の差動対
52 第4の負荷回路
53 第4の定電流源
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a complementary differential amplifier capable of obtaining a wide input voltage range and a wide output voltage range.
[0002]
[Prior art]
Conventionally, there has been a differential amplifier that has a push-pull output with a high output driving capability by using two differential amplifier circuits having opposite conductive differential pairs and a basic and simple output circuit configuration (for example, see Patent Document 1). 1). However, in such a configuration, for example, when the input signal is close to the power supply voltage in a no-load state, one of the output transistors becomes difficult to turn on, so that no current flows and the output becomes unstable. Was. There was no problem in operation because the power supply voltage range was wider than the input voltage of the differential amplifier or the voltage comparator, but in recent years, with the reduction of the power supply voltage, the input voltage range up to near the power supply voltage has been required. Have been.
[0003]
FIG. 4 is a diagram showing a conventional example of a differential amplifier having a wide input / output range.
In FIG. 4, the input voltage range is widened by using two differential pairs having different polarities, and the output signals of the two differential amplifier circuits 101 and 102 are both folded back by the folded cascode circuit 103. Further, the output signals from the folded cascode circuit 103 are combined and output by the output circuit 104 having a push-pull circuit configuration and an increased output voltage range.
[0004]
[Patent Document 1]
JP-A-61-148906
[Problems to be solved by the invention]
If such a differential amplifier is used, a wide characteristic of a desired input / output voltage range can be obtained, but there are the following problems in designing a circuit. Since a plurality of bias voltages Va to Vd are required in the folded cascode circuit, a bias voltage generation circuit is required, and it is difficult to determine an optimal transistor size of the folded cascode circuit.
[0006]
Also, it is complicated and difficult to determine the currents of the differential amplifier circuits 101 and 102 and the folded cascode circuit 103. In particular, if the transistor size is inappropriate, the operating state of the transistors in the folded cascode circuit 103 becomes three poles. There was a case where the region and the region between the five poles were mixed. On the other hand, in the output circuit 104, if a wide range of push-pull output configuration is obtained, it is necessary to drive both the PMOS transistor and the NMOS transistor in FIG. 4, and the output signal from the folded cascode circuit is synthesized. An output control circuit for controlling both the PMOS transistor and the NMOS transistor is required. For these reasons, there has been a problem that the circuit scale increases and the layout area increases.
[0007]
The present invention has been made in order to solve the above problems, and has as its object to obtain a complementary differential amplifier capable of inputting a wide voltage range and obtaining an output in a wide voltage range. .
[0008]
[Means for Solving the Problems]
A differential amplifier according to the present invention differentially amplifies a first input signal and a second input signal input corresponding to a pair of a first input terminal and a second input terminal and outputs the amplified signal from a predetermined output terminal. In a differential amplifier,
A first differential amplifier circuit of a differential output type in which the first input signal is input to a non-inverting input terminal and the second input signal is input to an inverting input terminal;
A differential output type second differential amplifier circuit in which the first input signal is input to a non-inverting input terminal and the second input signal is input to an inverting input terminal;
A single-ended third differential amplifier circuit in which a pair of output signals from the first differential amplifier circuit are input to corresponding input terminals;
A single-ended fourth differential amplifier circuit in which a pair of output signals from the second differential amplifier circuit are input to corresponding input terminals;
An output circuit that combines the output signals of the third differential amplifier circuit and the fourth differential amplifier circuit and outputs the combined signal to the predetermined output terminal;
With
Each differential pair of the first differential amplifier circuit and the second differential amplifier circuit has a reverse conductivity type, and each differential pair of the third differential amplifier circuit and the fourth differential amplifier circuit has a reverse conductivity type. It is what constitutes.
[0009]
Further, each differential pair of the first differential amplifier circuit and the third differential amplifier circuit has the same conductivity type, and each differential pair of the second differential amplifier circuit and the fourth differential amplifier circuit has the same conductivity type. It was made to be a conductive type.
[0010]
Specifically, the first differential amplifier circuit has an inverted output terminal connected to the inverted input terminal of the third differential amplifier circuit and a non-inverted output terminal connected to the non-inverted input terminal of the third differential amplifier circuit. The second differential amplifier circuit has an inverted output terminal connected to the inverted input terminal of the fourth differential amplifier circuit and a non-inverted output terminal connected to the non-inverted input terminal of the fourth differential amplifier circuit. It was to so.
[0011]
Further, the first differential amplifier circuit and the second differential amplifier circuit are formed by diodes in which load circuits connected to a differential pair are respectively connected in a forward direction to respective transistors forming the differential pair. May be performed.
[0012]
In the third differential amplifier circuit and the fourth differential amplifier circuit, a load circuit connected to a differential pair may form a current mirror circuit.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the present invention will be described in detail based on an embodiment shown in the drawings.
First embodiment.
FIG. 1 is a diagram showing a configuration example of the differential amplifier according to the first embodiment of the present invention.
In FIG. 1, a differential amplifier 1 differentially amplifies a pair of input signals S1 and S2 input to a non-inverting input terminal IN + and an inverting input terminal IN−, and outputs the amplified signal from an output terminal OUT. A differential output type first differential amplifier circuit 2 and a second differential amplifier circuit 3, a single-ended third differential amplifier circuit 4 and a fourth differential amplifier circuit 5, and a push-pull circuit. An output circuit 6 is provided.
[0014]
The non-inverting input terminal IN + of the differential amplifier 1 is connected to the non-inverting input terminals of the first differential amplifier circuit 2 and the second differential amplifier circuit 3, respectively. Are connected to respective inverting input terminals of the first differential amplifier circuit 2 and the second differential amplifier circuit 3. In the first differential amplifier circuit 2, the inverted output terminal o− is connected to the inverted input terminal of the third differential amplifier circuit 4, and the non-inverted output terminal o + is connected to the non-inverted input terminal of the third differential amplifier circuit 4. Have been. Similarly, in the second differential amplifier circuit 3, the inverted output terminal o− is connected to the inverted input terminal of the fourth differential amplifier circuit 5, and the non-inverted output terminal o + is the non-inverted input terminal of the fourth differential amplifier circuit 5. Connected to the end. Each output terminal of the third differential amplifier circuit 4 and the fourth differential amplifier circuit 5 is connected to the output circuit 6, and the output terminal of the output circuit 6 is connected to the output terminal OUT of the differential amplifier 1.
[0015]
The input pair of input signals S1 and S2 is input to corresponding input terminals of the first differential amplifier circuit 2 and the second differential amplifier circuit 3, and the voltage difference between the input signals S1 and S2 is the first differential signal. The voltage difference between the differential output signals of the first differential amplifier circuit 2 and the second differential amplifier circuit 3 is amplified by the amplifier circuit 2 and the second differential amplifier circuit 3, respectively. The signals are amplified by the fourth and fourth differential amplifier circuits 5 and output to the output circuit 6, respectively. The output circuit 6 combines the respective output signals of the third differential amplifier circuit 4 and the fourth differential amplifier circuit 5 and outputs the combined signal to the output terminal OUT, so that a wide voltage range can be input and a high gain is obtained. be able to.
[0016]
FIG. 2 is a block diagram showing an example of the internal configuration of each differential amplifier circuit of FIG.
In FIG. 2, the differential amplifier 1 operates using a first power supply voltage V1 and a second power supply voltage V2 as power supplies. The first differential amplifier circuit 2 supplies a current to the first differential pair 21, the first load circuit 22 connected to the first differential pair 21, and the first differential pair 21. One constant current source 23 is provided. A first constant current source 23 is connected between the first power supply voltage V1 and the first differential pair 21, and a first load circuit is connected between the second power supply voltage V2 and the first differential pair 21. 22 are connected. Input signals S1 and S2 are correspondingly input to each signal input end of the first differential pair 21, and each connection between the first differential pair 21 and the first load circuit 22 is connected to the first input terminal. The output terminals o + and o− of the differential amplifier circuit 2 are provided.
[0017]
The second differential amplifier circuit 3 supplies a current to the second differential pair 31, a second load circuit 32 connected to the second differential pair 31, and a second differential pair 31. And two constant current sources 33. A second constant current source 33 is connected between the second power supply voltage V2 and the second differential pair 31, and a second load circuit is connected between the first power supply voltage V1 and the second differential pair 31. 32 are connected. The input signals S1 and S2 are correspondingly input to each signal input end of the second differential pair 31, and each connection between the second differential pair 31 and the second load circuit 32 is connected to the second input terminal. The output terminals o + and o− of the differential amplifier circuit 3 are provided.
[0018]
The third differential amplifier circuit 4 supplies a current to the third differential pair 41, a third load circuit 42 connected to the third differential pair 41, and a third differential pair 41. 3 constant current sources 43. A third constant current source 43 is connected between the first power supply voltage V1 and the third differential pair 41, and a third load circuit is connected between the second power supply voltage V2 and the third differential pair 41. 42 are connected. To each signal input terminal of the third differential pair 41, a pair of differential output signals from the first differential amplifier circuit 2 are input correspondingly, and the third differential pair 41 and the third differential pair One connection to the load circuit 42 forms an output terminal of the third differential amplifier circuit 4 and is connected to the output circuit 6.
[0019]
The fourth differential amplifier circuit 5 supplies a current to the fourth differential pair 51, a fourth load circuit 52 connected to the fourth differential pair 51, and a fourth differential pair 51. 4 constant current sources 53. A fourth constant current source 53 is connected between the second power supply voltage V2 and the fourth differential pair 51, and a fourth load circuit is connected between the first power supply voltage V1 and the fourth differential pair 51. 52 are connected. To each signal input terminal of the fourth differential pair 51, a pair of differential output signals from the second differential amplifier circuit 3 is input correspondingly, and the fourth differential pair 51 and the fourth differential pair One connection to the load circuit 52 forms an output terminal of the fourth differential amplifier circuit 5 and is connected to the output circuit 6.
[0020]
Here, since the first and third differential pairs are of the same conductivity type, the input signals S1 and S2 of the first differential amplifier circuit 2 and the third differential amplifier circuit 4 are the first differential amplifier circuit. 2, the differential output signal of the first differential amplifier circuit 2 is within the allowable range of the input voltage of the third differential amplifier circuit 4. Similarly, in the second differential amplifier circuit 2 and the fourth differential amplifier circuit 5, since the second and fourth differential pairs are of the same conductivity type, the input signals S1 and S2 are the second differential amplifier circuit. Even when the input voltage exceeds the allowable range of the input voltage of the third differential amplifier circuit 3, the differential output signal of the second differential amplifier circuit 3 is within the allowable range of the input voltage of the fourth differential amplifier circuit 5. From these facts, the output signals of the third differential amplifier circuit 4 and the fourth differential amplifier circuit 5 input to the output circuit 6 are those in which the input signals S1 and S2 are correctly transmitted, and are synthesized by the output circuit 6. And output to the output terminal OUT.
[0021]
FIG. 3 is a diagram showing a circuit example of the differential amplifier 1 shown in FIG.
In FIG. 3, the first power supply voltage V1 forms a positive power supply voltage VDD, and the second power supply voltage V2 forms a negative power supply voltage VSS, for example, a ground voltage. The first differential amplifier circuit 2 includes PMOS transistors M1 and M2, NMOS transistors M3 and M4, and a first constant current source 23. The PMOS transistors M1 and M2 form a first differential pair 21. , NMOS transistors M3 and M4 form a first load circuit 22.
[0022]
The sources of the PMOS transistors M1 and M2 are connected, and a first constant current source 23 is connected between the connection and the positive power supply voltage VDD. An NMOS transistor M3 is connected between the drain of the PMOS transistor M1 and the negative power supply voltage VSS, and an NMOS transistor M4 is connected between the drain of the PMOS transistor M2 and the negative power supply voltage VSS. The gate of the PMOS transistor M1 forms the inverting input terminal of the differential amplifier 1, and the gate of the PMOS transistor M2 forms the non-inverting input terminal of the differential amplifier 1.
[0023]
The gate of the NMOS transistor M3 is connected to the drain of the NMOS transistor M3, the gate of the NMOS transistor M4 is connected to the drain of the NMOS transistor M4, and the NMOS transistors M3 and M4 each form a diode. The connection between the PMOS transistor M1 and the NMOS transistor M3 forms the output terminal o + of the first differential amplifier circuit 2, and the connection between the PMOS transistor M2 and the NMOS transistor M4 forms the output terminal o− of the first differential amplifier circuit 2. Has made.
[0024]
The second differential amplifier circuit 3 includes PMOS transistors M5 and M6, NMOS transistors M7 and M8, and a second constant current source 33. The NMOS transistors M7 and M8 form a second differential pair 31. , PMOS transistors M5 and M6 form a second load circuit 32. The sources of the NMOS transistors M7 and M8 are connected, and the second constant current source 33 is connected between the connection and the negative power supply voltage VSS.
[0025]
A PMOS transistor M5 is connected between the positive power supply voltage VDD and the drain of the NMOS transistor M7, and a PMOS transistor M6 is connected between the power supply voltage VDD and the drain of the NMOS transistor M8. The gate of the NMOS transistor M7 forms the inverting input terminal of the second differential amplifier circuit 3, and the gate of the NMOS transistor M8 forms the non-inverting input terminal of the second differential amplifier circuit 3. The gate of the PMOS transistor M5 is connected to the drain of the PMOS transistor M5, the gate of the PMOS transistor M6 is connected to the drain of the PMOS transistor M6, and the PMOS transistors M5 and M6 each form a diode. The connection between the PMOS transistor M5 and the NMOS transistor M7 forms the output terminal o + of the second differential amplifier circuit 3, and the connection between the PMOS transistor M6 and the NMOS transistor M8 forms the output terminal o- of the second differential amplifier circuit 3. No.
[0026]
The third differential amplifier circuit 4 includes PMOS transistors M9 and M10, NMOS transistors M11 and M12, and a third constant current source 43. The PMOS transistors M9 and M10 form a third differential pair 41. , NMOS transistors M11 and M12 form a current mirror circuit to form a third load circuit 42.
[0027]
The sources of the PMOS transistors M9 and M10 are connected, and a third constant current source 43 is connected between the connection and the positive power supply voltage VDD. An NMOS transistor M11 is connected between the drain of the PMOS transistor M9 and the negative power supply voltage VSS, and an NMOS transistor M12 is connected between the drain of the PMOS transistor M10 and the negative power supply voltage VSS. The gate of the PMOS transistor M9 forms an inverting input terminal of the third differential amplifier circuit 4, and the gate of the PMOS transistor M10 forms a non-inverting input terminal of the third differential amplifier circuit 4. The gates of the NMOS transistors M11 and M12 are connected, and the connection is connected to the drain of the NMOS transistor M11. The connection between the PMOS transistor M10 and the NMOS transistor M12 forms the output terminal of the third differential amplifier circuit 4.
[0028]
The fourth differential amplifier circuit 5 includes PMOS transistors M13 and M14, NMOS transistors M15 and M16, and a fourth constant current source 53. The NMOS transistors M15 and M16 form a fourth differential pair 51. , PMOS transistors M13 and M14 form a current mirror circuit to form a fourth load circuit 52. The sources of the NMOS transistors M15 and M16 are connected, and a fourth constant current source 53 is connected between the connection and the negative power supply voltage VSS.
[0029]
A PMOS transistor M13 is connected between the positive power supply voltage VDD and the drain of the NMOS transistor M15, and a PMOS transistor M14 is connected between the positive power supply voltage VDD and the drain of the NMOS transistor M16. The gate of the NMOS transistor M15 forms the inverting input terminal of the fourth differential amplifier circuit 5, and the gate of the NMOS transistor M16 forms the non-inverting input terminal of the fourth differential amplifier circuit 5. The gates of the PMOS transistors 13 and M14 are connected, and the connection is connected to the drain of the PMOS transistor M13. The connection between the PMOS transistor M14 and the NMOS transistor M16 forms the output terminal of the fourth differential amplifier circuit 5.
[0030]
The output circuit 6 includes a PMOS transistor M17 and an NMOS transistor M18. The PMOS transistor M17 and the NMOS transistor M18 are connected in series between the positive power supply voltage VDD and the negative power supply voltage VSS. The gate of the PMOS transistor M17 is connected to the output terminal of the fourth differential amplifier circuit 5, and the gate of the NMOS transistor M18 is connected to the output terminal of the third differential amplifier circuit 4. The connection between the PMOS transistor M17 and the NMOS transistor M18 is connected to the output terminal OUT, and the output circuit 6 forms a push-pull circuit.
[0031]
In such a configuration, the input signals S1 and S2 are input to a first differential pair 21 composed of PMOS transistors M1 and M2 and a second differential pair 31 composed of NMOS transistors M7 and M8, respectively. Is done. Next, the differential output signals N1 and N2 of the first differential amplifier circuit 2 are input to a third differential pair 41 composed of PMOS transistors M9 and M10, respectively. The dynamic output signals N3 and N4 are input to a fourth differential pair 51 including NMOS transistors M15 and M16, respectively.
[0032]
The input signals S1 and S2 are differentially amplified by a first differential amplifier circuit 2 and a second differential amplifier circuit 3, respectively, and the differential output signals N1 and N2 from the first differential amplifier circuit 2 are converted to a second differential amplifier circuit. The differential output signals N3 and N4 are output from the amplifier circuit 3 and input to the corresponding third and fourth differential amplifier circuits 4 and 5 at the next stage. Normally, as shown in FIG. 3, when each of the differential amplifier circuits 2 to 4 is constituted by CMOS transistors, the input voltage range is the potential difference of the constant current source and the gate-source voltage of the transistors forming the differential pair. Vgs is restricted by the potential difference of the load circuit.
[0033]
Therefore, the first differential amplifier circuit 2 including the PMOS transistors M1 and M2 and the third differential amplifier circuit 4 including the PMOS transistors M9 and M10 both have a P-channel transistor differential input configuration. Each input voltage range of the first differential amplifier circuit 2 and the third differential amplifier circuit 4 is similarly restricted. On the other hand, the differential output signals N1 and N2 of the first differential amplifier circuit 2 having the PMOS transistors M1 and M2 are input corresponding to the PMOS transistors M9 and M10.
[0034]
By doing so, in the P-channel transistor differential input configuration, even if a voltage near the positive power supply voltage VDD is input to the inverting input terminal IN− and the non-inverting input terminal IN +, the differential output signals N1 and N2 The voltage drops to the vicinity of the negative power supply voltage VSS and becomes an allowable range of the input voltage of the third differential amplifier circuit 4. The output signal N5 of the third differential amplifier circuit 4 including the PMOS transistors M9 and M10 includes the input signal. S1 and S2 are correctly transmitted signals.
[0035]
Similarly, the second differential amplifier circuit 3 composed of the NMOS transistors M7 and M8 and the fourth differential amplifier circuit 5 composed of the NMOS transistors M15 and M16 both have an N-channel transistor differential input configuration. , The respective input voltage ranges of the second differential amplifier circuit 3 and the fourth differential amplifier circuit 5 are similarly restricted. On the other hand, the differential output signals N3 and N4 of the second differential amplifier circuit 3 having the NMOS transistors M7 and M8 are input corresponding to the NMOS transistors M15 and M16.
[0036]
Thus, in the N-channel transistor differential input configuration, even if a voltage near the negative power supply voltage VSS is input to the inverting input terminal IN− and the non-inverting input terminal IN +, the differential output signals N3 and N4 The voltage rises to the vicinity of the positive power supply voltage VDD and becomes an allowable range of the input voltage of the fourth differential amplifier circuit 5, and the output signal N6 of the fourth differential amplifier circuit 5 including the NMOS transistors M15 and M16 includes the input signal. S1 and S2 are correctly transmitted signals.
[0037]
That is, the output signal N5 is a signal obtained by differentially amplifying the pair of input signals S1 and S2 having the opposite signal level by the first differential amplifier circuit 2, and further amplifying by the third differential amplifier circuit 4. And input to the gate of the NMOS transistor M18 of the output circuit 6. Similarly, the output signal N6 is a signal obtained by differentially amplifying a pair of input signals S1 and S2 having opposite signal levels by the second differential amplifier circuit 3 and further amplifying by the fourth differential amplifier circuit 5. The signal is input to the gate of the PMOS transistor M17 of the output circuit 6.
[0038]
Since each of the PMOS transistor M17 and the NMOS transistor M18 has an open drain, the output circuit 6 has a push-pull circuit configuration and is an output circuit having a high driving capability. Further, at the time of no load in which the output terminal OUT is open, the output signal N5 is the first differential amplifier circuit even if the input signals S1 and S2 oscillate in the range from the positive power supply voltage VDD to the negative power supply voltage VSS. By passing through the second and third differential amplifier circuits 4, the voltage does not become near the negative power supply voltage VSS. Similarly, at the time of no load when the output terminal OUT is open, the output signal N6 is the first differential amplification signal even if the input signals S1 and S2 have amplitudes in the range from the positive power supply voltage VDD to the negative power supply voltage VSS. By passing through the circuit 2 and the third differential amplifier circuit 4, the voltage does not become near the positive power supply voltage VDD. For these reasons, the signal output from the output terminal OUT is a signal in a wide voltage range that follows the input signals S1 and S2 in a wide voltage range.
[0039]
Further, with respect to the gain, a high gain can be obtained from the first differential amplifier circuit 2 to the fourth differential amplifier circuit 5 and the output circuit 6, and the operating speed can also be increased. Since each of the load circuits 22 and 32 of the dynamic amplifying circuit 3 is formed by a diode-connected MOS transistor, the parasitic effect of the input transistors in the first differential amplifying circuit 2 and the second differential amplifying circuit 3 due to the Miller effect. Since the capacity can be reduced, high-speed operation becomes possible.
[0040]
Further, a current mirror circuit is formed without connecting the NMOS transistor M12 in the third differential amplifier circuit 4 and the PMOS transistor M14 in the fourth differential amplifier circuit 5 with a diode. This means that the third differential amplifier circuit 4 and the fourth differential amplifier circuit 5 are single-ended type differential amplifier circuits having one output configuration, and drive the PMOS transistor M17 and the NMOS transistor M18 of the output circuit 6. To increase the dynamic range. In the first embodiment, a capacity for phase compensation is not added in the figure, and a capacity having an appropriate value is added inside or outside the circuit depending on the usage of the differential amplifier. Thus, desired characteristics can be satisfied.
[0041]
As described above, the differential amplifier according to the first embodiment includes a differential output type first differential amplifier circuit 2 and a second differential amplifier circuit 3 at the non-inverting input terminal IN + and the inverting input terminal IN−. Are connected correspondingly, and a pair of output terminals of the first differential amplifier circuit 2 correspond to opposing input terminals of the single-ended third differential amplifier circuit 4. And a pair of output terminals of the second differential amplifier circuit 3 are connected corresponding to the opposite input terminals of the single-ended fourth differential amplifier circuit 5, and the third differential amplifier circuit 4 Each output terminal of the fifth differential amplifier circuit 5 is connected to an output circuit 6 having a push-pull circuit configuration. From this, it is possible to obtain an output signal having a high gain and a wide voltage range following a pair of input signals having opposite signal levels in a wide voltage range.
[0042]
【The invention's effect】
As is apparent from the above description, according to the differential amplifier of the present invention, the first and second input terminals are respectively connected to the control electrodes in a corresponding manner. A differential amplifier circuit and a second differential amplifier circuit, wherein each differential output of the first differential amplifier circuit and the second differential amplifier circuit is a reverse conductive third differential amplifier circuit and a fourth differential amplifier circuit. The first differential amplifier circuit and the third differential amplifier circuit combine the output signals of the third differential amplifier circuit and the fourth differential amplifier circuit and output the combined signals. Each differential pair of the dynamic amplifier circuit has the same conductivity type, and each differential pair of the second differential amplifier circuit and the fourth differential amplifier circuit has the same conductivity type. Thus, input / output in a wide voltage range is possible, gain is high, and push-pull output can be performed with a simple configuration.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a configuration example of a differential amplifier according to a first embodiment of the present invention.
FIG. 2 is a block diagram illustrating an example of an internal configuration of each differential amplifier circuit of FIG. 1;
FIG. 3 is a diagram illustrating a circuit example of the differential amplifier 1 illustrated in FIG. 2;
FIG. 4 is a circuit diagram showing an example of a conventional differential amplifier.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 differential amplifier 2 first differential amplifier circuit 3 second differential amplifier circuit 4 third differential amplifier circuit 5 fourth differential amplifier circuit 6 output circuit 21 first differential pair 22 first load circuit 23 1 constant current source 31 second differential pair 32 second load circuit 33 second constant current source 41 third differential pair 42 third load circuit 43 third constant current source 51 fourth difference Dynamic pair 52 fourth load circuit 53 fourth constant current source

Claims (5)

1対の第1入力端及び第2入力端に対応して入力された第1入力信号及び第2入力信号を差動増幅して所定の出力端から出力する差動増幅器において、
非反転入力端に前記第1入力信号が入力されると共に反転入力端に前記第2入力信号が入力される差動出力型の第1差動増幅回路と、
非反転入力端に前記第1入力信号が入力されると共に反転入力端に前記第2入力信号が入力される差動出力型の第2差動増幅回路と、
前記第1差動増幅回路からの1対の出力信号が対応する入力端に入力されるシングルエンド型の第3差動増幅回路と、
前記第2差動増幅回路からの1対の出力信号が対応する入力端に入力されるシングルエンド型の第4差動増幅回路と、
前記第3差動増幅回路及び該第4差動増幅回路の各出力信号を合成して前記所定の出力端に出力する出力回路と、
を備え、
前記第1差動増幅回路及び第2差動増幅回路の各差動対は逆導電型をなすと共に、前記第3差動増幅回路及び第4差動増幅回路の各差動対は逆導電型をなすことを特徴とする差動増幅器。
A differential amplifier that differentially amplifies a first input signal and a second input signal input corresponding to a pair of a first input terminal and a second input terminal and outputs the amplified signal from a predetermined output terminal,
A first differential amplifier circuit of a differential output type in which the first input signal is input to a non-inverting input terminal and the second input signal is input to an inverting input terminal;
A differential output type second differential amplifier circuit in which the first input signal is input to a non-inverting input terminal and the second input signal is input to an inverting input terminal;
A single-ended third differential amplifier circuit in which a pair of output signals from the first differential amplifier circuit are input to corresponding input terminals;
A single-ended fourth differential amplifier circuit in which a pair of output signals from the second differential amplifier circuit are input to corresponding input terminals;
An output circuit that combines the output signals of the third differential amplifier circuit and the fourth differential amplifier circuit and outputs the combined signal to the predetermined output terminal;
With
Each differential pair of the first differential amplifier circuit and the second differential amplifier circuit has a reverse conductivity type, and each differential pair of the third differential amplifier circuit and the fourth differential amplifier circuit has a reverse conductivity type. A differential amplifier.
前記第1差動増幅回路及び第3差動増幅回路の各差動対は同導電型をなすと共に、前記第2差動増幅回路及び第4差動増幅回路の各差動対は同導電型をなすことを特徴とする請求項1記載の差動増幅器。Each differential pair of the first differential amplifier circuit and the third differential amplifier circuit has the same conductivity type, and each differential pair of the second differential amplifier circuit and the fourth differential amplifier circuit has the same conductivity type. 2. The differential amplifier according to claim 1, wherein: 前記第1差動増幅回路は、反転出力端が第3差動増幅回路の反転入力端に接続されると共に非反転出力端が第3差動増幅回路の非反転入力端に接続され、前記第2差動増幅回路は、反転出力端が第4差動増幅回路の反転入力端に接続されると共に非反転出力端が第4差動増幅回路の非反転入力端に接続されることを特徴とする請求項1又は2記載の差動増幅器。The first differential amplifier circuit has an inverted output terminal connected to an inverted input terminal of a third differential amplifier circuit, and a non-inverted output terminal connected to a non-inverted input terminal of a third differential amplifier circuit. In the two differential amplifier circuit, the inverted output terminal is connected to the inverted input terminal of the fourth differential amplifier circuit, and the non-inverted output terminal is connected to the non-inverted input terminal of the fourth differential amplifier circuit. The differential amplifier according to claim 1, wherein 前記第1差動増幅回路及び第2差動増幅回路は、差動対に接続された負荷回路が該差動対をなす各トランジスタにそれぞれ順方向に対応して接続されたダイオードで形成されることを特徴とする請求項1、2又は3記載の差動増幅器。The first differential amplifier circuit and the second differential amplifier circuit are formed by diodes in which load circuits connected to a differential pair are respectively connected to respective transistors forming the differential pair in a forward direction. The differential amplifier according to claim 1, 2 or 3, wherein: 前記第3差動増幅回路及び第4差動増幅回路は、差動対に接続された負荷回路がカレントミラー回路を形成してなることを特徴とする請求項1、2、3又は4記載の差動増幅器。5. The third differential amplifier circuit and the fourth differential amplifier circuit, wherein a load circuit connected to a differential pair forms a current mirror circuit. Differential amplifier.
JP2003138874A 2003-05-16 2003-05-16 Differential amplifier Expired - Fee Related JP4532847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003138874A JP4532847B2 (en) 2003-05-16 2003-05-16 Differential amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003138874A JP4532847B2 (en) 2003-05-16 2003-05-16 Differential amplifier

Publications (2)

Publication Number Publication Date
JP2004343521A true JP2004343521A (en) 2004-12-02
JP4532847B2 JP4532847B2 (en) 2010-08-25

Family

ID=33528123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003138874A Expired - Fee Related JP4532847B2 (en) 2003-05-16 2003-05-16 Differential amplifier

Country Status (1)

Country Link
JP (1) JP4532847B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007074670A (en) * 2005-09-09 2007-03-22 Nec Electronics Corp Differential amplifier circuit and semiconductor device
JP2008277889A (en) * 2007-04-25 2008-11-13 Nec Electronics Corp Semiconductor circuit
US8125268B2 (en) 2005-08-26 2012-02-28 Micron Technology, Inc. High performance input receiver circuit for reduced-swing inputs
JP2014123973A (en) * 2010-01-22 2014-07-03 Panasonic Corp Injection-locked odd frequency divider and pll circuit
CN113271072A (en) * 2020-02-14 2021-08-17 株式会社东芝 Amplifying circuit and voltage correcting circuit

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62230206A (en) * 1986-03-31 1987-10-08 Toshiba Corp Power amplifier circuit
JPH01161908A (en) * 1987-12-17 1989-06-26 Mitsubishi Electric Corp Differential amplifier
JPH03207106A (en) * 1990-01-10 1991-09-10 Asahi Kasei Micro Syst Kk Amplifying circuit
JPH10178320A (en) * 1996-12-17 1998-06-30 Sharp Corp Differential amplifier in semiconductor integrated circuit
JPH1188076A (en) * 1997-09-04 1999-03-30 Nec Yamagata Ltd Operational amplifier
JP2001060832A (en) * 1999-08-20 2001-03-06 Matsushita Electric Ind Co Ltd Differential amplifier
JP2001515674A (en) * 1997-03-20 2001-09-18 マキシム・インテグレイテッド・プロダクツ・インコーポレーテッド Rail-to-rail operational amplifier
JP2002351406A (en) * 2001-05-21 2002-12-06 Sunplus Technology Co Ltd Source driving amplifier for liquid crystal display
JP2003249829A (en) * 2002-02-22 2003-09-05 Hitachi Ltd Semiconductor integrated circuit device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62230206A (en) * 1986-03-31 1987-10-08 Toshiba Corp Power amplifier circuit
JPH01161908A (en) * 1987-12-17 1989-06-26 Mitsubishi Electric Corp Differential amplifier
JPH03207106A (en) * 1990-01-10 1991-09-10 Asahi Kasei Micro Syst Kk Amplifying circuit
JPH10178320A (en) * 1996-12-17 1998-06-30 Sharp Corp Differential amplifier in semiconductor integrated circuit
JP2001515674A (en) * 1997-03-20 2001-09-18 マキシム・インテグレイテッド・プロダクツ・インコーポレーテッド Rail-to-rail operational amplifier
JPH1188076A (en) * 1997-09-04 1999-03-30 Nec Yamagata Ltd Operational amplifier
JP2001060832A (en) * 1999-08-20 2001-03-06 Matsushita Electric Ind Co Ltd Differential amplifier
JP2002351406A (en) * 2001-05-21 2002-12-06 Sunplus Technology Co Ltd Source driving amplifier for liquid crystal display
JP2003249829A (en) * 2002-02-22 2003-09-05 Hitachi Ltd Semiconductor integrated circuit device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8125268B2 (en) 2005-08-26 2012-02-28 Micron Technology, Inc. High performance input receiver circuit for reduced-swing inputs
US8884690B2 (en) 2005-08-26 2014-11-11 Micron Technology, Inc. High performance input receiver circuit for reduced-swing inputs
JP2007074670A (en) * 2005-09-09 2007-03-22 Nec Electronics Corp Differential amplifier circuit and semiconductor device
JP4694323B2 (en) * 2005-09-09 2011-06-08 ルネサスエレクトロニクス株式会社 Differential amplifier circuit and semiconductor device
JP2008277889A (en) * 2007-04-25 2008-11-13 Nec Electronics Corp Semiconductor circuit
JP4695621B2 (en) * 2007-04-25 2011-06-08 ルネサスエレクトロニクス株式会社 Semiconductor circuit
JP2014123973A (en) * 2010-01-22 2014-07-03 Panasonic Corp Injection-locked odd frequency divider and pll circuit
CN113271072A (en) * 2020-02-14 2021-08-17 株式会社东芝 Amplifying circuit and voltage correcting circuit
CN113271072B (en) * 2020-02-14 2024-06-11 株式会社东芝 Amplifying circuit and voltage correction circuit

Also Published As

Publication number Publication date
JP4532847B2 (en) 2010-08-25

Similar Documents

Publication Publication Date Title
USRE47461E1 (en) Differential amplifying circuit
US7382180B2 (en) Reference voltage source and current source circuits
JP4850669B2 (en) Low voltage, low power class AB output stage
US20060012429A1 (en) Self biased differential amplifier
JP4666346B2 (en) Voltage comparator
US7495510B2 (en) Current source circuit and differential amplifier
US7737782B1 (en) Operational amplifier circuit
US7098736B2 (en) Amplifier circuit
US7573302B2 (en) Differential signal comparator
JP2005303664A (en) Differential amplifying circuit
US20070024367A1 (en) Operational amplifier and constant-current generation circuit using the same
JP2004343521A (en) Differential amplifier
US6822513B1 (en) Symmetric and complementary differential amplifier
JP4371618B2 (en) Differential amplifier circuit
US7078970B2 (en) CMOS class AB operational amplifier
US7956690B2 (en) Operational amplification circuit
US7514877B2 (en) Display panel driving circuit
JP2007180796A (en) Differential amplifier circuit
JP3119221B2 (en) Operational amplifier
KR100668455B1 (en) Variable gain amplifier
US7230487B2 (en) Amplifying device and converter thereof
JP7025498B2 (en) Memory control device and memory control method
JP5203809B2 (en) Current mirror circuit
US7193465B2 (en) Variable gain amplifier capable of functioning at low power supply voltage
JP2001339257A (en) Operational amplifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060213

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100611

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees