JP2004342878A - Cooling apparatus - Google Patents

Cooling apparatus Download PDF

Info

Publication number
JP2004342878A
JP2004342878A JP2003138467A JP2003138467A JP2004342878A JP 2004342878 A JP2004342878 A JP 2004342878A JP 2003138467 A JP2003138467 A JP 2003138467A JP 2003138467 A JP2003138467 A JP 2003138467A JP 2004342878 A JP2004342878 A JP 2004342878A
Authority
JP
Japan
Prior art keywords
heat
radiator
temperature
cooling device
dissipating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003138467A
Other languages
Japanese (ja)
Inventor
Shunji Mori
俊二 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric FA Components and Systems Co Ltd
Original Assignee
Fuji Electric FA Components and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric FA Components and Systems Co Ltd filed Critical Fuji Electric FA Components and Systems Co Ltd
Priority to JP2003138467A priority Critical patent/JP2004342878A/en
Publication of JP2004342878A publication Critical patent/JP2004342878A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To enhance the heat dissipation efficiency of a heat dissipating element and reduce the size of the entire apparatus in the cooling apparatus which is constituted of a combination of the solid heat dissipating element and a heat accumulator to level the dissipation of heat generated by a heating element. <P>SOLUTION: The cooling apparatus comprises: the heat dissipating element in contact with the heating element; the heat accumulator located in the proximity of the heat dissipating element; and a thermal conductivity switching means which senses the temperature of the heat dissipating element and thermal-conductively connects the heat accumulator to the heat dissipating element, when the temperature of the heat dissipating element becomes a prescribed one or above and thermal-conductively disconnects the heat accumulator from the heat dissipating element when the temperature of the heat dissipating element becomes a prescribed one or below. While the caloric value of the heat dissipating element is small, the heat accumulator is thermally conductively separated from the heat dissipating element. When the caloric value increases, the heat accumulator is thermal-conductively connected to the heat dissipating element. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、半導体素子等の発熱体から発生した熱を放熱して冷却する冷却装置に係り、特に放熱を平準化するために固体の放熱体と蓄熱体とを組み合わせて構成した冷却装置に関する。
【0002】
【従来の技術】
電子機器の高密度化、高出力化にともなって、これを構成する電子機器の発熱量が大きくなり、その熱処理に問題が発生している。電子素子の発熱の特徴は、非常に狭い範囲から大きな熱量が発生する点であり、熱密度の大きい発熱に対する効果的な冷却が要求される。冷却には、一般にフィン付きの放熱体を用い、発熱量が大きい場合は、この放熱体を大形にするか、または、電動ファンを用いて冷却体に強制的に冷却風を当てて放熱量の増大を図るようにしている。
【0003】
また、電子機器の発熱は一定でなく、その機能によって時間的に大きく変化する場合がある。例えば、コンピュータ等の無停電電源装置に使用される電力変換器は、商用電源が停電していない正常状態では、負荷のコンピュータへは商用電源から直接給電されるため、コンピュータの電力は負担せず、バッテリの充電電力のみを負担するので、低負荷状態となる。ところが、商用電源が停電した非常状態では、この電力変換器は、バッテリからこれに充電されている電力を負荷へ給電するように働くので、低負荷状態の電力の10倍以上の電力を供給するようになり、高負荷状態となる。そして、負荷がコンピュータである場合は、商用電源が停電した時、バッテリからコンピュータへの給電は、コンピュータが停電処理のための非常処理を行う間の5分程度の非常に短い時間だけ行なえばよいので、無停電電源装置における電力変換器が高負荷状態となるのは極めて短時間である。
【0004】
このように無停電電源装置は、定常的にはほとんど低負荷状態の運転となるが、その電力変換器を構成する半導体素子の冷却装置は、高負荷状態となる極めて短時間の非常運転期間の熱的条件に合わせて放熱体の放熱容量が決められていた。
【0005】
しかしこれでは、運転状態によって発熱量が大幅に増減する電子機器における冷却装置の放熱体が必要以上に大形になるので、これを小形化するため、放熱体と蓄熱体を組み合わせて高負荷時と低負荷時の放熱体からの放熱を平準化するようにした冷却装置が、特許文献1によりすでに提案されている。
【0006】
この特許文献1に示された冷却装置は、図9に示すように、電子機器等の発熱体3と熱伝導度の高い金属で構成された放熱体1との間に、蓄熱材で構成された蓄熱体2を一体的に設け、発熱体3で発生した熱を発熱体3と放熱体1との間にある蓄熱体2に一旦蓄熱し、次いでこの蓄熱体2に蓄熱された熱を放熱体1へ伝達し、最終的にこの放熱体1から大気へ放熱するものである。
【0007】
このように構成すると、発熱体を構成する電子機器が一時的に高負荷となって発熱量が増大したとき、その発生熱を一旦蓄熱体に蓄熱し、負荷が減少した後に蓄熱体に蓄積された熱が放熱体を介して放熱されるようになるため、放熱体からの放熱量が平準化されて放熱体の最大放熱量が低下するので、放熱体1を小形にすることが可能となるのである。
【0008】
【特許文献1】
特開平8−148618号公報(第2〜3頁、図1)
【0009】
【発明が解決しようとする課題】
しかしながら、このような従来の冷却装置においては、次のような問題がある。
【0010】
すなわち、発熱体と放熱体との間に蓄熱体が一体的に設けられているため、発熱体と放熱体との間の熱抵抗が大きくなり、放熱体の放熱効率が低下するということ、および発熱体で発生した熱を、蓄熱体に蓄熱させる必要のない場合でも、必ず蓄熱体に蓄熱されてしまい、蓄熱体を効果的に使用できないということである。したがって、この従来の冷却装置においては、放熱体および蓄熱体の小形化には限界があった。
【0011】
この発明は、このような従来装置における問題点を解消して、放熱体および蓄熱体を最適に設計して小形化することの可能な冷却装置を提供することを目的とするものである。
【0012】
【課題を解決するための手段】
上記の目的を達成するため、この発明は、発熱体に熱伝導的に結合された放熱体と、この放熱体に近接して設けられた蓄熱体と、前記放熱体の温度を感知し、その温度が所定の温度以上で前記蓄熱体を前記放熱体に熱伝導的に接続し、所定温度以下で蓄熱体を放熱体から熱伝導的に遮断する熱伝導開閉手段とを備えることを特徴とする。
【0013】
この発明において、前記熱伝導開閉手段として、加熱によって変形する形状記憶合金またはバイメタル等からなる熱変形板により構成した手段を用いることができる。
【0014】
また、前記熱伝導開閉手段として、放熱体に熱的に結合され、加熱により熱膨張を起こす材料で形成された棒状部材と、この棒状部材が低温状態で僅かな隙間をもって挿入可能な大きさの蓄熱体に設けられた嵌合穴とにより構成した手段を用いることもできる。
【0015】
さらに、この発明において、蓄熱体は、融解時に大きな融解潜熱を必要とする相変化物質により構成するのが良い。
【0016】
この発明において、発熱体の熱が放熱体を介して放熱される際、発熱体の発熱量が放熱体で放熱容量の範囲にある間は、放熱体の温度は所定の温度以下に保たれているが、発熱量がこれより増加すると、放熱体の温度が上昇し、所定の温度を越えるようになる。そして、熱伝導開閉手段は、放熱体の温度が所定温度以下においては、蓄熱体を放熱体から離間させて熱伝導的に接続を遮断し、所定温度以上においては、蓄熱体を放熱体に接触させて熱伝導的に接続するので、発熱体の発熱量が放熱体の放熱容量より小さい範囲にある間は、放熱体の温度が所定温度以下に保たれるため、蓄熱体が放熱体から離間され、蓄熱は行なわれないが、発熱体の発熱量が増大して放熱体の放熱容量を越えると放熱体の温度が上昇して所定温度を超えるため、蓄熱体が放熱体に熱伝導的に接続され、発熱体の発生熱の一部が放熱体を介して蓄熱体に伝導されこれに蓄熱されるようになる。したがって、この発明によれば、発熱体の発熱量が放熱体の放熱容量をを超えるときのみ蓄熱体が有効に作用して発熱体を冷却しその温度上昇を抑える。
【0017】
【発明の実施の形態】
この発明の実施の形態を、図に示す実施例について説明する。
【0018】
図1および図2には、この発明の第1の実施例を示すものである。これらの図において、10は、銅やアルミニウムのような高熱伝導性の金属材料により形成した放熱体で、表面に複数の放熱フィン11を備えている。20は、温度によって凝固と融解を繰り返し、融解時に大きな融解潜熱を必要とするパラフィン等の相変化物質からなる熱媒体を内蔵した蓄熱体である。30は、電子機器等の負荷を担ったとき負荷の大きさに応じて熱を発生する発熱体である。40は、放熱体10の温度を感知し、その温度によって変形する、例えば形状記憶金属や、バイメタル等によって形成された熱変形板である。
【0019】
放熱体10は、発熱体30に熱伝導的に結合され、発熱体30から伝導される熱を放熱してこれを冷却する。蓄熱体20は、熱変形板40を介して放熱体10に機械的に結合される。
【0020】
このように構成されたこの発明の実施例による冷却装置においては、発熱体30が発熱すると、その熱は放熱体10へ伝導される。放熱体10へ伝導された熱は、放熱体10の放熱フィン11が大気と接しているので、放熱体10と大気の温度差により放熱体10から大気へ放熱され、発熱体10が冷却される。その結果、放熱体10および発熱体30の温度上昇が抑えられる。
【0021】
熱変形板40は、温度の低いときは図1に示すようにへ字型に屈曲した形状を示しているが、放熱体10の温度上昇とともに矢印方向へ変形する。したがって発熱体30の発熱量が小さく、放熱体10の温度が所定の温度よりも低いときは、蓄熱体20は、図1に示すように放熱体10から離間された位置にあり、放熱体10から蓄熱体20への熱伝導路が開かれ、熱伝導が遮断された状態となる。そして、発熱体10の発熱量が増大し、放熱体10の温度が所定温度より高くなると、熱変形板40が変形し、蓄熱体20を矢印方向へ移動させ、図2に示すように放熱板10の側面に押し付けるようになる。これにより、放熱体10から蓄熱体20への熱伝導路が閉成される。
【0022】
蓄熱体20が放熱体10に熱伝導的に接続されると、放熱体10の発生熱の一部が蓄熱体20に伝導されこれに吸収蓄熱されて放熱体10の温度上昇が抑えらるので、発熱体30が冷却されて許容温度以下の温度に抑えられる。
【0023】
発熱体30の発熱量が低下すると、発熱体30から蓄熱体20へ伝導される熱量が減少するので、今度はその分だけ蓄熱体20からこれに蓄積された熱が放熱体10へ伝導され、この放熱体10から大気へ放熱され、蓄熱体20に蓄積された熱量が漸次減少する。
【0024】
この実施例の冷却装置は、放熱体と蓄熱体を組み合わせて、発熱体30の発熱量が増大したときに発熱体30の発生熱の一部を蓄熱体20により一時的に蓄積して吸収することにより放熱体10の大きさを一定のままにして冷却容量の増大を図るものであるが、熱変形板40の作用により、発熱体30の発熱量が小さく放熱体10の温度が低い間は、蓄熱体20を放熱体10から離間され熱伝導的に遮断し、発熱体30の発熱量が増大して放熱体10の温度が所定の温度を超えてはじめて蓄熱体20を放熱体10に熱伝導的に接続するようにしているので、発熱体20と放熱体10とが直接熱伝導的に接続され、その間の熱抵抗が小さくなり、発熱体30から放熱体10への熱伝導が効率よく行なわれ、放熱体10による冷却効果が高くなる。また、蓄熱体20は、大きな冷却能力を必要とする発熱体30の発熱量が大きくなったときにだけ放熱体10に熱伝導的に結合されるため、この放熱体10の冷却能力を損なうことなく効果的に補助することができる。
【0025】
図3ないし図8にこの発明の第2の実施例を示す。
【0026】
これらの図において、10、20および30は、前記第1の実施例の場合と同じく、それぞれ放熱体、蓄熱体および発熱体である。この実施例においては、放熱体10と蓄熱体20との熱伝導的接続の開閉手段として、放熱体10の側面に断面円形の棒状部材12を一体的に形成し(図5、図6参照)、蓄熱体20側に、この棒状部材12の挿入される断面円形の嵌合穴21を設け(図7、図8参照)、図3に示すように放熱体10の棒状部材12を蓄熱体20の嵌合穴21に挿入して互いを結合する。
【0027】
このとき、棒状部材の直径D1と嵌合穴の内径D2とは、次のようにな関係になるようにする。
【0028】
すなわち、発熱体放熱体10の温度が低い状態、すなわち棒状部材の熱膨張が小さい状態のとき、図4に示すように、棒状部材直径D1を嵌合穴の直径D2より僅かに小さくなるように選び、棒状部材12を嵌合穴21に挿入して嵌め込んだとき両者間に僅かな隙間gが生じるようにするのである。
【0029】
このようにすると、発熱体30の発熱量が小さい間は、発生された熱が放熱体10によって十分放熱されるため放熱体10の温度は所定の温度より低い値に保たれているので、棒状部材12の温度も低く、熱膨張も小さいため、棒状部材12の嵌合された蓄熱体20の嵌合穴21の内周面との間に隙間gが生じており、放熱体10と蓄熱体20との間の熱伝導的接続が遮断される。したがってこの状態では発熱体30で発生された熱の放熱は放熱体10のみによって行なわれる。
【0030】
ところが、発熱体30の発熱量が増大すると、放熱体10の放熱能力は規定されているので、放熱体10の温度が次第に上昇し、棒状部材12の温度も上昇する。放熱体10の温度が所定の温度以上になると放熱体10の棒状部材12が熱膨張によりその外径が嵌合穴21の内周面に接触するまで拡大し、両者間の隙間gがなくなり、放熱体10と蓄熱体20とが熱伝導的に接続されるようになるため、放熱体10を介して発熱体30の発生する熱の一部が蓄熱体20へ伝導されこれに吸収蓄熱される。したがって放熱体10の温度はそれ以上上昇せず、発熱体30の温度上昇も抑制される。
【0031】
発熱体30の発熱量が減少すると発熱体30から放熱体20への伝導熱量が減少し、その分が蓄熱体20からその分の蓄積熱が放熱体10へ伝導されここから大気へ放熱される。蓄熱体20の蓄積熱量が減少すると放熱体10の温度が次第に低下し、所定の温度より低くなると棒状部材12の膨張が収縮し、再び嵌合穴21内に隙間gができ、蓄熱体20と放熱体10との熱伝導路が開かれ、放熱体10から蓄熱体20への熱伝導が遮断され、元の状態に戻る。
【0032】
第1および第2実施例のいずれの冷却装置においても、発熱体の発生熱量が蓄熱体20の蓄熱容量を越えると、蓄熱体20の蓄熱能力が消失するので、発熱体10および放熱体の温度がさらに上昇する危険があるが、発熱体10が、無停電電源装置の電力変換器を構成する電子機器のように発熱量を増大する期間が限定されるものの場合は、この発熱量増大期間に合わせて蓄熱体20の蓄熱容量を選定するようにすれば、このような危険はなくなる。蓄熱体20の蓄熱材に相変化時に大きな潜熱を必要とする相変化物質を用いるようにすると、小容量の蓄熱材でより多くの蓄熱が可能となるため、蓄熱体20の容積を小さくすることができる。
【0033】
そして、前記の熱伝導的接続の開閉手段における動作温度すなわち、蓄熱体と放熱体との熱伝導的接続を開閉する温度を、発熱体の最高許容温度付近の温度に選んでおくと発熱体の温度は最高許容温度以下に抑えらるで、発熱体が過熱により焼損することがなくなる。
【0034】
【発明の効果】
この発明による冷却装置は、発熱体に熱伝導的に結合された放熱体と、この放熱体に近接して設けられた蓄熱体と、前記放熱体の温度を感知し、その温度が所定の温度以上で前記蓄熱体を前記放熱体に熱伝導的に接続し、所定温度以下で蓄熱体を放熱体から熱伝導的に遮断する熱伝導開閉手段とを備える構成としたので、発熱体の発熱量が大きい間は、発熱量の一部を蓄熱器へ移動させることができ、放熱器の温度上昇を抑制することができるため、放熱体の放熱効率が向上し放熱体を小形化することが可能となる。また蓄熱体は、発熱体の発熱量が増大したときだけ放熱体に熱伝導的に接続されるので、放熱体は、発熱体の発熱量が小さいときの放熱設計で最適化でき、放熱器および装置の小形化と低価格化を達成できる。
【0035】
さらに、発熱体の発熱量が小さいときの発熱体の温度差が小さくなり、発熱体となる半導体素子等を長寿命化できる効果もある。
【図面の簡単な説明】
【図1】この発明の第1の実施例による冷却装置の低発熱状態を示す正面図。
【図2】この発明の第1の実施例による冷却装置の高発熱状態を示す正面図。
【図3】この発明の第2の実施例の冷却装置を示す正面図。
【図4】この発明の第2の実施例の冷却装置を示す側面図。
【図5】この発明の第2の実施例の冷却装置における放熱体の正面図。
【図6】この発明の第2の実施例の冷却装置における放熱体の側面図。
【図7】この発明の第2の実施例の冷却装置における蓄熱体の正面図。
【図8】この発明の第2の実施例の冷却装置における蓄熱体の側面図。
【図9】従来の冷却装置を示す正面断面図。
【符号の説明】
10:放熱体、11:放熱フィン、12:棒状部材、20:蓄熱体、21:嵌合穴、30:発熱体、40:熱変形板。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cooling device that radiates and cools heat generated from a heating element such as a semiconductor element, and more particularly to a cooling device that is configured by combining a solid radiator and a heat storage to level heat radiation.
[0002]
[Prior art]
With the increase in density and output of electronic devices, the amount of heat generated by the electronic devices constituting them has increased, and problems have arisen in the heat treatment. A characteristic of heat generation of an electronic element is that a large amount of heat is generated from a very narrow range, and effective cooling for heat generation with a large heat density is required. In general, use a finned radiator for cooling, and if the heat generation is large, increase the size of this radiator or forcibly apply cooling air to the cooling body using an electric fan to dissipate the heat. Is to be increased.
[0003]
Further, the heat generation of the electronic device is not constant, and may vary greatly with time depending on the function. For example, in a power converter used for an uninterruptible power supply device such as a computer, in a normal state in which the commercial power supply is not interrupted, the load computer is directly supplied with power from the commercial power supply, and therefore does not bear the power of the computer. Since only the charging power of the battery is borne, the load becomes low. However, in an emergency state where the commercial power supply is interrupted, the power converter works so as to supply the electric power charged in the battery to the load, so that the power converter supplies electric power at least 10 times the electric power in the low load state. As a result, the load becomes high. When the load is a computer, when the commercial power supply fails, the power supply from the battery to the computer may be performed for a very short time of about 5 minutes while the computer performs emergency processing for the power failure processing. Therefore, it takes an extremely short time for the power converter in the uninterruptible power supply to enter a high load state.
[0004]
As described above, the uninterruptible power supply normally operates almost in a low-load state, but the cooling device of the semiconductor element constituting the power converter is in an extremely short emergency operation period in which the load is in a high-load state. The heat radiation capacity of the heat radiator has been determined according to the thermal conditions.
[0005]
However, in this case, the heat radiator of the cooling device in the electronic equipment, whose heat value greatly increases and decreases depending on the operation state, becomes unnecessarily large, so in order to reduce the size, the heat radiator and the heat accumulator are combined under high load. Patent Document 1 has already proposed a cooling device for leveling heat radiation from a heat radiator at low load.
[0006]
As shown in FIG. 9, the cooling device disclosed in Patent Literature 1 is configured with a heat storage material between a heat generating body 3 such as an electronic device and a heat radiating body 1 formed of a metal having high thermal conductivity. The heat storage element 2 is integrally provided, heat generated by the heat generation element 3 is temporarily stored in the heat storage element 2 between the heat generation element 3 and the heat radiator 1, and then the heat stored in the heat storage element 2 is radiated. The heat is transmitted to the body 1 and finally radiated from the radiator 1 to the atmosphere.
[0007]
With this configuration, when the load of the electronic device constituting the heating element temporarily increases and the amount of generated heat increases, the generated heat is temporarily stored in the storage element, and then stored in the storage element after the load is reduced. Since the heat is radiated through the heat radiator, the heat radiated from the heat radiator is leveled and the maximum heat radiated by the heat radiator is reduced, so that the heat radiator 1 can be downsized. It is.
[0008]
[Patent Document 1]
JP-A-8-148618 (pages 2-3, FIG. 1)
[0009]
[Problems to be solved by the invention]
However, such a conventional cooling device has the following problems.
[0010]
That is, since the heat storage element is provided integrally between the heat generator and the heat radiator, the thermal resistance between the heat generator and the heat radiator increases, and the heat radiation efficiency of the heat radiator decreases, and This means that even when it is not necessary to store the heat generated in the heat generating element in the heat storing element, the heat is always stored in the heat storing element and the heat storing element cannot be used effectively. Therefore, in this conventional cooling device, there is a limit to downsizing of the radiator and the heat storage.
[0011]
SUMMARY OF THE INVENTION It is an object of the present invention to provide a cooling apparatus which can solve the problems of the conventional apparatus and can design the heat radiator and the heat storage body optimally and downsize them.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a radiator thermally conductively coupled to a heating element, a heat storage element provided in close proximity to the radiating element, and sensing a temperature of the radiating element. A heat conduction opening / closing means for thermally connecting the heat storage body to the heat radiator when the temperature is equal to or higher than a predetermined temperature and thermally conductively disconnecting the heat storage body from the heat radiator when the temperature is equal to or lower than the predetermined temperature; .
[0013]
In the present invention, a means constituted by a heat deformable plate made of a shape memory alloy or a bimetal or the like which is deformed by heating can be used as the heat conduction opening / closing means.
[0014]
Further, as the heat conduction opening / closing means, a rod-shaped member which is thermally coupled to the radiator and is formed of a material which thermally expands by heating, and a rod having a size such that the rod-shaped member can be inserted with a small gap in a low temperature state. Means constituted by a fitting hole provided in the heat storage body can also be used.
[0015]
Further, in the present invention, the heat storage body is preferably made of a phase change material that requires a large latent heat of fusion during melting.
[0016]
In the present invention, when the heat of the heating element is radiated through the radiating element, the temperature of the radiating element is maintained at a predetermined temperature or lower while the calorific value of the heating element is within the range of the radiating capacity of the radiating element. However, when the calorific value increases more than this, the temperature of the radiator rises and exceeds a predetermined temperature. When the temperature of the radiator is equal to or lower than a predetermined temperature, the heat-conduction opening / closing means thermally disconnects the heat storage from the radiator to cut off the connection. The heat storage element is separated from the heat radiator because the temperature of the heat radiator is maintained at a predetermined temperature or less while the heat generation amount of the heat radiator is within a range smaller than the heat radiation capacity of the heat radiator. Although heat storage is not performed, when the heat generation amount of the heating element increases and exceeds the heat radiation capacity of the heat radiator, the temperature of the heat radiator rises and exceeds a predetermined temperature. A part of the heat generated by the heating element is connected to the heat storage element via the radiator and is stored therein. Therefore, according to the present invention, only when the heat generation amount of the heating element exceeds the heat radiation capacity of the heat radiating element, the heat storage element effectively acts to cool the heating element and suppress its temperature rise.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to an embodiment shown in the drawings.
[0018]
1 and 2 show a first embodiment of the present invention. In these figures, reference numeral 10 denotes a radiator formed of a metal material having high thermal conductivity such as copper or aluminum, and has a plurality of radiating fins 11 on the surface. Reference numeral 20 denotes a heat storage body containing a heat medium made of a phase change material such as paraffin, which repeatedly solidifies and melts depending on the temperature, and requires a large latent heat of fusion at the time of melting. Reference numeral 30 denotes a heating element that generates heat according to the magnitude of the load when the load of the electronic device or the like is carried. Reference numeral 40 denotes a heat deformable plate that senses the temperature of the heat radiator 10 and deforms according to the temperature, and is formed of, for example, a shape memory metal or a bimetal.
[0019]
The radiator 10 is thermally conductively coupled to the heating element 30, radiates heat conducted from the heating element 30 and cools it. The heat storage body 20 is mechanically coupled to the heat radiator 10 via the heat deformation plate 40.
[0020]
In the cooling device according to the embodiment of the present invention configured as described above, when the heating element 30 generates heat, the heat is transmitted to the radiator 10. The heat conducted to the heat radiator 10 is radiated from the heat radiator 10 to the atmosphere due to the temperature difference between the heat radiator 10 and the atmosphere because the heat radiating fins 11 of the heat radiator 10 are in contact with the atmosphere, and the heat generator 10 is cooled. . As a result, the temperature rise of the heat radiator 10 and the heat generator 30 is suppressed.
[0021]
When the temperature is low, the heat deformable plate 40 has a bent shape as shown in FIG. 1, but deforms in the direction of the arrow as the temperature of the radiator 10 rises. Therefore, when the heat generation amount of the heat generating body 30 is small and the temperature of the heat radiating body 10 is lower than a predetermined temperature, the heat storage body 20 is located at a position separated from the heat radiating body 10 as shown in FIG. The heat conduction path from the air to the heat storage body 20 is opened, and the heat conduction is cut off. When the amount of heat generated by the heating element 10 increases and the temperature of the heat radiating element 10 becomes higher than a predetermined temperature, the heat deformation plate 40 is deformed, and the heat storage element 20 is moved in the direction of the arrow, as shown in FIG. 10 side. Thereby, the heat conduction path from the heat radiator 10 to the heat storage body 20 is closed.
[0022]
When the heat storage body 20 is thermally conductively connected to the heat radiator 10, a part of the heat generated by the heat radiator 10 is transmitted to the heat storage body 20 and absorbed and stored therein, so that the temperature rise of the heat radiator 10 is suppressed. Then, the heating element 30 is cooled to a temperature lower than the allowable temperature.
[0023]
When the amount of heat generated by the heating element 30 decreases, the amount of heat transmitted from the heating element 30 to the heat storage element 20 decreases, so that the heat stored in the heat storage element 20 is transmitted to the radiator 10 by that much, The heat is radiated from the heat radiator 10 to the atmosphere, and the amount of heat stored in the heat storage 20 gradually decreases.
[0024]
The cooling device of this embodiment combines a heat radiator and a heat accumulator, and temporarily accumulates and absorbs a part of the heat generated by the heat generator 30 when the calorific value of the heat generator 30 increases. Thus, the cooling capacity is increased while keeping the size of the heat radiator 10 constant. However, while the heat generated by the heat radiator 30 is small and the temperature of the heat radiator 10 is low due to the action of the heat deformable plate 40, The heat accumulator 20 is separated from the heat radiator 10 and is thermally conductively cut off, and the heat generation amount of the heat radiator 30 is increased and the temperature of the heat radiator 10 exceeds the predetermined temperature. Since the connection is made conductively, the heating element 20 and the heat radiator 10 are directly connected in a heat conductive manner, the thermal resistance therebetween is reduced, and the heat conduction from the heating element 30 to the heat radiator 10 is efficiently performed. The cooling effect of the heat radiator 10 is increased. Further, since the heat storage body 20 is thermally conductively coupled to the heat radiator 10 only when the heat generation amount of the heat generator 30 requiring a large cooling capacity becomes large, the cooling capacity of the heat radiator 10 may be impaired. Can be effectively assisted without.
[0025]
3 to 8 show a second embodiment of the present invention.
[0026]
In these figures, 10, 20, and 30 are a heat radiator, a heat storage, and a heat generator, respectively, as in the case of the first embodiment. In this embodiment, a rod-shaped member 12 having a circular cross section is integrally formed on a side surface of the heat radiator 10 as an opening / closing means for thermally conductive connection between the heat radiator 10 and the heat storage body 20 (see FIGS. 5 and 6). On the side of the heat storage body 20, a fitting hole 21 having a circular cross section into which the rod-shaped member 12 is inserted is provided (see FIGS. 7 and 8), and as shown in FIG. Into the fitting holes 21 of the first and second portions to join each other.
[0027]
At this time, the following relationship is established between the diameter D1 of the rod-shaped member and the inner diameter D2 of the fitting hole.
[0028]
That is, when the temperature of the heat radiator 10 is low, that is, when the thermal expansion of the rod-shaped member is small, the diameter D1 of the rod-shaped member is slightly smaller than the diameter D2 of the fitting hole as shown in FIG. When the rod member 12 is selected and inserted into the fitting hole 21 and fitted therein, a slight gap g is formed between them.
[0029]
With this configuration, while the heat generation amount of the heating element 30 is small, the generated heat is sufficiently dissipated by the radiator 10, and the temperature of the radiator 10 is maintained at a value lower than the predetermined temperature. Since the temperature of the member 12 is low and the thermal expansion is also small, a gap g is formed between the member 12 and the inner peripheral surface of the fitting hole 21 of the heat storage body 20 fitted with the rod-shaped member 12. The heat conductive connection between the two is interrupted. Therefore, in this state, the heat generated by the heating element 30 is radiated only by the radiator 10.
[0030]
However, when the amount of heat generated by the heating element 30 increases, the temperature of the radiating element 10 gradually increases, and the temperature of the rod-shaped member 12 also increases because the heat radiating ability of the heat radiating element 10 is defined. When the temperature of the heat radiator 10 becomes equal to or higher than a predetermined temperature, the outer diameter of the rod-shaped member 12 of the heat radiator 10 expands due to thermal expansion until it comes into contact with the inner peripheral surface of the fitting hole 21, and the gap g between the two disappears. Since the heat radiator 10 and the heat storage element 20 are thermally connected, a part of the heat generated by the heat generator 30 is transmitted to the heat storage element 20 via the heat radiator 10 and absorbed and stored therein. . Therefore, the temperature of the heat radiator 10 does not further rise, and the temperature rise of the heat generator 30 is also suppressed.
[0031]
When the calorific value of the heating element 30 decreases, the amount of heat transferred from the heating element 30 to the heat radiator 20 decreases, and the accumulated heat is transferred from the heat storage element 20 to the heat radiator 10 and radiated to the atmosphere. . When the amount of heat stored in the heat storage body 20 decreases, the temperature of the heat radiator 10 gradually decreases, and when the temperature becomes lower than a predetermined temperature, the expansion of the rod-shaped member 12 contracts, and a gap g is formed in the fitting hole 21 again. The heat conduction path with the heat radiator 10 is opened, the heat conduction from the heat radiator 10 to the heat storage body 20 is cut off, and the state returns to the original state.
[0032]
In any of the cooling devices of the first and second embodiments, when the amount of heat generated by the heating element exceeds the heat storage capacity of the heat storage element 20, the heat storage capacity of the heat storage element 20 is lost. However, in the case where the period during which the heating element 10 increases the calorific value is limited as in the case of the electronic device constituting the power converter of the uninterruptible power supply, the heating element 10 has the risk of increasing. If the heat storage capacity of the heat storage body 20 is selected together, such a danger is eliminated. If a phase change material that requires a large latent heat at the time of phase change is used for the heat storage material of the heat storage body 20, more heat can be stored with a small capacity of the heat storage material. Can be.
[0033]
The operating temperature of the heat conductive connection switching means, that is, the temperature at which the heat conductive connection between the heat storage element and the heat radiator is opened and closed is selected to be a temperature near the maximum allowable temperature of the heating element. Since the temperature is kept below the maximum allowable temperature, the heating element does not burn out due to overheating.
[0034]
【The invention's effect】
A cooling device according to the present invention includes a heat radiator thermally conductively coupled to a heat radiator, a heat accumulator provided in close proximity to the heat radiator, and sensing the temperature of the heat radiator to determine the temperature to be a predetermined temperature. As described above, the heat storage element is thermally connected to the heat radiator, and the heat storage element is provided with a heat conduction opening / closing unit that thermally disconnects the heat storage element from the heat radiator at a predetermined temperature or less. While the heat is large, a part of the calorific value can be transferred to the heat accumulator and the temperature rise of the heat radiator can be suppressed, so the heat radiation efficiency of the heat radiator improves and the heat radiator can be downsized. It becomes. In addition, since the heat storage element is connected to the heat radiator only when the heat generation amount of the heating element increases, the heat radiator can be optimized by the heat radiation design when the heat generation amount of the heating element is small. The size and cost of the device can be reduced.
[0035]
Furthermore, the temperature difference between the heating elements when the heating value of the heating element is small is small, and there is an effect that the life of the semiconductor element or the like serving as the heating element can be extended.
[Brief description of the drawings]
FIG. 1 is a front view showing a low heat generation state of a cooling device according to a first embodiment of the present invention.
FIG. 2 is a front view showing a high heat generation state of the cooling device according to the first embodiment of the present invention.
FIG. 3 is a front view showing a cooling device according to a second embodiment of the present invention.
FIG. 4 is a side view showing a cooling device according to a second embodiment of the present invention.
FIG. 5 is a front view of a radiator in a cooling device according to a second embodiment of the present invention.
FIG. 6 is a side view of a radiator in a cooling device according to a second embodiment of the present invention.
FIG. 7 is a front view of a heat storage unit in a cooling device according to a second embodiment of the present invention.
FIG. 8 is a side view of a heat storage body in the cooling device according to the second embodiment of the present invention.
FIG. 9 is a front sectional view showing a conventional cooling device.
[Explanation of symbols]
10: heat radiator, 11: heat radiation fin, 12: rod-like member, 20: heat storage, 21: fitting hole, 30: heat generator, 40: heat deformable plate.

Claims (4)

発熱体に熱伝導的に結合された放熱体と、この放熱体に近接して設けられた蓄熱体と、前記放熱体の温度を感知し、その温度が所定の温度以上で前記蓄熱体を前記放熱体に熱伝導的に接続し、所定温度以下で蓄熱体を放熱体から熱伝導的に遮断する熱伝導開閉手段とを備えることを特徴とする冷却装置。A heat radiator thermally conductively coupled to the heat radiator, a heat accumulator provided in the vicinity of the heat radiator, and senses the temperature of the heat radiator, and detects the temperature of the heat accumulator at a predetermined temperature or higher. A cooling device, comprising: a heat conduction switching device that is thermally conductively connected to a heat radiator and that thermally disconnects the heat storage body from the heat radiator at a predetermined temperature or lower. 請求項1記載の冷却装置において、前記熱伝導開閉手段として、加熱によって変形する熱変形板により構成した手段を用いることを特徴とする冷却装置。2. The cooling device according to claim 1, wherein said heat conduction switching means comprises means constituted by a heat deformable plate deformed by heating. 請求項1記載の冷却装置において、前記熱伝導開閉手段として、放熱体に熱的に結合され、加熱により熱膨張を起こす材料で形成された棒状部材と、この棒状部材が低温状態で僅かな隙間をもって挿入可能な大きさの蓄熱体に設けられた嵌合穴とにより構成した手段を用いることを特徴とする冷却装置。2. The cooling device according to claim 1, wherein said heat conducting switching means is a rod-shaped member made of a material thermally coupled to a radiator and thermally expanded by heating, and said rod-shaped member has a small gap in a low temperature state. A cooling device characterized by using means constituted by a fitting hole provided in a heat storage element having a size that can be inserted into the cooling device. 請求項1ないし3の何れかに記載の冷却装置において、蓄熱体は、融解時に大きな融解潜熱を必要とする相変化物質により構成することを特徴とする冷却装置。4. The cooling device according to claim 1, wherein the heat storage body is made of a phase change material that requires a large latent heat of fusion during melting.
JP2003138467A 2003-05-16 2003-05-16 Cooling apparatus Pending JP2004342878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003138467A JP2004342878A (en) 2003-05-16 2003-05-16 Cooling apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003138467A JP2004342878A (en) 2003-05-16 2003-05-16 Cooling apparatus

Publications (1)

Publication Number Publication Date
JP2004342878A true JP2004342878A (en) 2004-12-02

Family

ID=33527830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003138467A Pending JP2004342878A (en) 2003-05-16 2003-05-16 Cooling apparatus

Country Status (1)

Country Link
JP (1) JP2004342878A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147761A (en) * 2004-11-18 2006-06-08 Fuji Electric Systems Co Ltd Cooling device
JP2015032743A (en) * 2013-08-05 2015-02-16 富士通株式会社 Electronic apparatus
KR101873059B1 (en) 2011-12-07 2018-07-03 한국전자통신연구원 Apparatus for heat dissipation of non-powered in a mobile equipment
CN108601101A (en) * 2018-07-25 2018-09-28 中山赛特奥日用科技有限公司 A kind of heating control apparatus and heater of heater
JP2019169664A (en) * 2018-03-26 2019-10-03 株式会社デンソー Integrated circuit device and electronic device
CN110676237A (en) * 2019-09-15 2020-01-10 天水华天电子集团股份有限公司 Heat dissipation intelligent power semiconductor module based on micro-scale SSOP packaging and preparation method and application thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147761A (en) * 2004-11-18 2006-06-08 Fuji Electric Systems Co Ltd Cooling device
KR101873059B1 (en) 2011-12-07 2018-07-03 한국전자통신연구원 Apparatus for heat dissipation of non-powered in a mobile equipment
JP2015032743A (en) * 2013-08-05 2015-02-16 富士通株式会社 Electronic apparatus
JP2019169664A (en) * 2018-03-26 2019-10-03 株式会社デンソー Integrated circuit device and electronic device
JP7043918B2 (en) 2018-03-26 2022-03-30 株式会社デンソー Integrated circuit equipment and electronic equipment
CN108601101A (en) * 2018-07-25 2018-09-28 中山赛特奥日用科技有限公司 A kind of heating control apparatus and heater of heater
CN110676237A (en) * 2019-09-15 2020-01-10 天水华天电子集团股份有限公司 Heat dissipation intelligent power semiconductor module based on micro-scale SSOP packaging and preparation method and application thereof

Similar Documents

Publication Publication Date Title
US11527788B2 (en) Thermal management for electrical storage devices
US7974090B2 (en) Portable medical device cooling system
JP4849848B2 (en) Assembled battery
US7191820B2 (en) Phase-change heat reservoir device for transient thermal management
EP2495760A2 (en) Thermal spreader with phase change thermal capacitor for electrical cooling
JP5353577B2 (en) heatsink
JP2000294970A (en) Heat transfer of electronic apparatus
CN108780344B (en) In-plane active cooling device for mobile electronic devices
JP2004111370A (en) Thermal control apparatus of battery
JPWO2008126444A1 (en) Heat dissipation structure and portable device
TW201351108A (en) Phase change type heat dissipating device
JP2004071969A (en) Thermoelectric cooling apparatus
JP2004342878A (en) Cooling apparatus
JP2006196398A (en) Power backup device
JP4560834B2 (en) Power backup device
JP2005093848A (en) Cooling apparatus
JP2012079858A (en) Cooling device and power conditioner
CN218998629U (en) Heat radiation structure of intelligent cabin domain controller
JP2004200428A (en) Cooling device
JP3438582B2 (en) Portable personal computer
CN111554851B (en) Battery pack and heat dissipation method thereof
JP2006147761A (en) Cooling device
JP2004266145A (en) Cooling device
JP2003527753A (en) Cooling device for electronic components
CA2920323A1 (en) Passively cooled thermoelectric energy harvester