JP2004342359A - Vacuum switching device - Google Patents

Vacuum switching device Download PDF

Info

Publication number
JP2004342359A
JP2004342359A JP2003134317A JP2003134317A JP2004342359A JP 2004342359 A JP2004342359 A JP 2004342359A JP 2003134317 A JP2003134317 A JP 2003134317A JP 2003134317 A JP2003134317 A JP 2003134317A JP 2004342359 A JP2004342359 A JP 2004342359A
Authority
JP
Japan
Prior art keywords
spring
movable electrode
contact pressure
vacuum
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003134317A
Other languages
Japanese (ja)
Inventor
Hiroshi Totori
洋 十鳥
Hideo Nojiri
秀夫 野尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003134317A priority Critical patent/JP2004342359A/en
Publication of JP2004342359A publication Critical patent/JP2004342359A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum switching device reduced in required operation force in closing it by reducing load variation of the operation force. <P>SOLUTION: This vacuum switching device is equipped with an insulation lever supported to an insulation mold frame, connected to a moving electrode of a vacuum valve at one end, and connectable to an operation mechanism at the other end; a contact pressure spring is installed between the insulation lever and the moving electrode to provide contact pressure; a release spring is installed between the moving electrode and the vacuum valve to keep the moving electrode opened; and spring action force of the release spring provided for the moving electrode is set smaller than that of the contact pressure spring. The release spring is so structured as to be extended and contracted only between opening dimensions, and closing operation force after contact touch in closing can be reduced. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は例えば電力用高圧送配電線路に使用される真空開閉装置に関するものである。
【0002】
【従来の技術】
VCB(高圧真空遮断器)に代表される真空開閉装置は高電圧化、大電流化にともない開閉操作力が増大する傾向にあるが、市場要求としてはこれに相反して小型化および操作力の小勢力化などの要求がある。従来の真空開閉装置に於いては、絶縁フレームに支持された真空容器内で固定電極に離接し、真空容器を貫通して可動に延びた可動電極を有する真空バルブを備えている。この可動電極は、操作機構に連結された変換レバーにより、ワイプばねを介して駆動されて開閉動作をする。ワイプばねは変換レバーと可動電極との間に設けられ、電極間に接圧を与えるためのものである。真空開閉装置はまた、変換レバーと絶縁フレームとの間に設けられて、電極を開極保持する開放ばねをも備えている。(例えば特許文献1参照)
【0003】
このような従来の真空開閉装置に於いては、開極位置から閉極するときには、操作機構の駆動操作力により開放ばねを伸張させながら蓄勢し、変換レバー等のリンクを介してワイプばねと共に可動電極を閉成方向に駆動する。可動電極が固定電極に接触し接点タッチ状態となった後も更に操作機構が作動するが、この駆動力はワイプばねの圧縮として蓄勢され電極の接点間に接触圧力を与えて閉極動作が完了する。閉極位置から開極するときには、操作機構により変換レバー等のリンクを介して可動電極が固定電極から離間させられ、開放ばねにより開極位置に保持される。従って、このようなリンク機構に於いては、可動電極は開放ばねおよびワイプばねを介して閉極位置に駆動されてその位置に保持されているため、操作機構に必要な駆動力は、ワイプばねの力と開放ばねの力との合計である。
【0004】
従来の真空開閉装置のリンク機構に於いては、可動電極は開放ばねおよびワイプばねの両者を介して閉極位置に駆動されてその位置に保持されている。従って、可動電極を操作機構によって閉極位置に駆動するのに必要な合計ストロークは、開放ばねを圧縮して接点タッチ状態にするためのストロークと接触圧力を加えた閉極状態にするためのストロークとの合計であり、このとき必要な駆動力は、開放ばねだけを合計ストロークだけ圧縮させる力と、ワイプばねをワイプ距離だけ圧縮させる力との合計である。換言すれば、接点タッチ状態に達した後には、開放ばねを圧縮するのに要する力の他に、ワイプばねを圧縮する力も必要になり、操作機構にはこの力に応じた比較的大きな駆動力が要求される。
【0005】
【特許文献1】
特開平9−198976号公報(図1)
【0006】
【発明が解決しようとする課題】
従来の真空開閉装置における主回路単極部の構造では、開放ばねが絶縁レバーを介して可動電極を開極保持しているため真空開閉装置の閉極時全域に渡り圧縮されつづける必要があり、接点タッチ位置から閉極完了位置の間において操作機構から必要な閉極時の駆動力は開放ばね荷重+接圧ばね荷重の加算された荷重となり大きな駆動操作力が必要となる。このため操作機構が大きくなり強靭に作る必要がある。また接点タッチ時から急激にばね荷重が増える負荷特性の変局点があるため操作機構を構成する上で出力効率が良く構成部品が少なく小型軽量で安価な操作機構を構成する障害となり、結果として真空開閉装置そのものを小型軽量で安価に製作するのが困難となっていた。
【0007】
この発明は、上述のような問題点を解決するためになされたもので、閉極時における接点タッチ以降の負荷を低減し操作機構の操作力を低減することにより小型化かつ安価にできる操作機構を備えた真空開閉装置を得ることを目的とする。
【0008】
【課題を解決するための手段】
この発明の真空開閉装置は、絶縁モールドフレームと、絶縁モールドフレームに支持され、真空容器、真空容器内に設けられた固定電極および上記真空容器内で上記固定電極に離接し、上記真空容器を貫通して可動に延びた可動電極を有する真空バルブと、上記絶縁モールドフレームに枢着され、一端で上記可動電極に連結され、他端で操作機構に連結され得る絶縁レバーと、上記絶縁レバーおよび上記可動電極間に設けられ、上記固定および可動電極間に接触圧力を与える接圧ばねと、上記可動電極および上記モールドフレーム間に設けられ、上記固定および可動電極を開極保持する開放ばねとを備え、上記開放ばねが上記可動電極に与えるばね作用力は、上記接圧ばねが上記可動電極に与えるばね作用力よりも小さいことを特徴とする真空開閉装置である。
【0009】
【発明の実施の形態】
図1はこの発明の一実施形態に係わる真空開閉装置の開極状態を示す主回路単極部の断面図である。
【0010】
この発明の真空開閉装置は、絶縁モールドフレーム1と、この絶縁モールドフレーム1に支持された真空バルブ2とを備えている。真空バルブ2は、真空容器3と、真空容器3内に設けられた固定電極4と、真空容器3内で固定電極4に離接できるように真空容器3を貫通して可動に延びた可動電極5とを備えている。固定電極4の外端は、ボルト6により上部端子7と共にモールドフレーム1に支持されており、可動電極5の真空容器3から外に出た部分である外端部8は、その中間部分で可撓導体9を介してモールドフレーム1に取り付けられた下部端子10に接続されている。
【0011】
この発明の真空開閉装置に於いては、真空容器3の端板11の一部である電極ガイドから外部に突出している可動電極5の外端部8の下端には連結ロッド12がねじ込まれていて、可動電極5の延長部分を形成している。可動電極5の外端部8と連結ロッド12との間には、連結ロッド12に嵌められたナット13により上述の可撓導体9が固着されて接続されており、可撓導体9と下端部8との間にばね座14が設けられている。
【0012】
ばね座14と真空容器3の端板11との間には、圧縮コイルばねである開放ばね15が設けられている。開放ばね15の上端は、端板11の下面に可動電極5を囲むように形成された環状溝11a内に受け入れられて支持されており、開放ばね15が可動電極5に対して径方向に移動するのを防いで安定させている。この意味で、環状溝11aは開放ばね15の可動電極に対する径方向の移動を阻止する手段であり、環状溝の代わりに凹部あるいは凸部を設けたり、可動電極ガイドの外周部を開放ばね15の内周に当接させるようにしたりして同等の横ずれ防止機能を持たせることができる。
【0013】
開放ばね15は、一端でモールドフレーム1に固定された真空容器3の端板11に当接しており、他端で可動電極5に設けられたばね座14に当接しているので、モールドフレーム1と可動電極5との間に設けられていると言うことができ、また開放ばね15が真空容器を介してモールドフレーム1に設けられていると言うこともできる。開放ばね15の一端を真空容器3でなく、他の適当な固定部材を介してあるいは直接モールドフレーム1により支持することもできる。ばね座14は可動電極5に対して移動しない。圧縮コイルばねである開放ばね15は、開極動作時に可動電極5を固定電極4に対して引き外し、図示の開極位置に保持(開極保持)するためのものである。
【0014】
可動電極5上の連結ロッド12上のナット13の更に先端側(図で下方)には第2のナット16が固定されていて、固定ワッシャ17を支持している。固定ワッシャ17には圧縮コイルばねである接圧ばね18の一端が当接しており、接圧ばね18の他端は可動電極5上を軸方向に摺動できる可動ワッシャ19に当接している。可動電極5の一部である連結ロッド12の先端にはフランジ状の端板20が固着されていて、可動ワッシャ19との間に空間が形成されている。可動電極5のこの部分には、絶縁モールドフレーム1に軸21によって回動自在に支持された絶縁レバー22の作動端23が可動に受け入れて連結されている。絶縁レバー22には軸21を介して操作レバー24が一体に結合されており、操作レバー24の先端には操作機構25のリンク26を連結することができる。
【0015】
このように、接圧ばね18は、可動電極5と絶縁レバー22との間に設けられ、固定電極4と可動電極5との間に接触圧力を与える圧縮コイルばねであり、絶縁レバー22は、絶縁モールドフレーム1に枢着され、一端で可動電極5に連結され、他端で後に説明する操作機構25に連結され得るレバーである。また、開放ばね15は、可動電極5の外周に嵌められた圧縮コイルばねであり、接圧ばね18に対して軸整列配置されている。これらの開放ばね15および接圧ばね18は、操作機構25あるいは操作機構25の駆動力を可動電極5に伝達するリンク機構によっては引っ張りばねとすることもある。
【0016】
開放ばね15および接圧ばね18は、開放ばね15が可動電極5に与えるばね作用力が、接圧ばね18が可動電極5に与えるばね作用力よりも小さいように設定してあり、図示の例では、開放ばね15および接圧ばね18のばね定数がこの関係を満たすように設定されている。
【0017】
図示の開極状態に於いては、連結ロッド12に連結された絶縁レバー22が操作機構25によって図示の位置に保持され、可動電極5が開極位置にある。このとき、開放ばね15および接圧ばね18は共に初期圧縮状態(初荷重)にあるがいずれもそれらの最大伸張状態にある。
【0018】
閉極時には操作機構25からの駆動操作力がリンク26を介してレバー24を押し下げ、絶縁レバー22が軸21を中心に時計方向に回動して、可動ワッシャ19を図で上方に押す。可動ワッシャ19に加えられた力は接圧ばね18、固定ワッシャ17ナット16を介して可動電極5に伝達されて、可動電極5を閉極位置に押し上げようとする。可動電極5が押し上げられるときには、可動電極5に固着されたばね座14と真空バルブ2の端板11との間に設けられた開放ばね15が圧縮(蓄勢)され、やがて、可動電極5と固定電極4とが接触し接点タッチ状態となる。この状態では開放ばね15よりも強い接圧ばね18の圧縮状態は変化していない。
【0019】
圧縮接点タッチ状態以後は、可動電極5がそれ以上上方に移動することがなく、また、開放ばね15もそれ以上圧縮されることがない。絶縁レバー22はその後も更に操作機構25により時計方向に回動させられて、可動ワッシャ19を押し上げ、今まで圧縮されなかった接圧ばね18が圧縮(蓄勢)され、閉極位置にある接点間に接圧が与えられて閉極動作が完了する。適正な接圧(ワイプ)寸法に達したところで操作機構25からの駆動操作力を停止し操作機構25内の図示しないラッチ機構により閉極完了位置を保持し閉極動作が完了する。
【0020】
図2には、操作機構25に要求される駆動力の変化を表した負荷特性をグラフで示し、図2は本発明の真空開閉装置の閉極時における操作機構25での負荷特性を、一般的従来技術による閉極時における操作機構での負荷特性と比較して示してある。図2のグラフに於いて、横軸は開極位置から閉極完了位置までの可動電極の位置をし、縦軸は操作機構に要求される駆動力である負荷力(発生するばね荷重)を表すものである。
【0021】
開極位置に於いては開放ばね15が図1に示すように圧縮(蓄勢)されていて、例えば5kgの初荷重が発生している。閉極動作が開始されると、開極寸法の間開放ばね15が次第に圧縮されて接点タッチ位置で例えば10kgの終荷重になる。閉極動作が更に進んでも接圧(ワイプ)寸法の間開放ばね15の荷重はそれ以上増大しないで閉極完了位置まで一定である。
【0022】
一方、接圧ばね18は、接点タッチ位置に於いて始めて例えば20kgの接圧ばね初荷重として発生する。この接圧ばね初荷重(例えば20kg)は開放ばね終荷重(例えば10kg)に加算されて、操作機構25に対して例えば30kgの負荷力(ばね荷重)として作用する。接圧ばね荷重は、接点タッチ位置から閉極完了位置までの接圧(ワイプ)寸法の間、次第に増大して閉極完了位置では例えば30kgの接圧ばね終荷重となり、閉極完了位置に於ける操作機構25に対する合計の負荷力(ばね荷重)は例えば40kgとなる。このように、操作機構25に要求される最大の負荷力は、開放ばね終荷重と接圧ばね終荷重との合計荷重であり、この例では40kgである。
【0023】
図2のグラフに於いて、破線で示す部分は、従来の真空開閉装置に於ける荷重を示すグラフである。即ち、従来の真空開閉装置に於いては、先に述べた通り、接点間に必要な接圧を与えるためには、接点タッチ位置を過ぎて接圧(ワイプ)寸法の期間に入ってもなお開放ばね15が圧縮され続ける必要がある。このため、開放ばね15の荷重は破線Aでしめすように次第に増大し続けて閉極完了位置では、ワイプ寸法とばね定数に比例してXkgとなり、開放ばねの終荷重はこの例では(10+X)kgとなってしまう。従って、このような従来の真空開閉装置の操作機構に於ける負荷力(ばね荷重)は、この開放ばね15の終荷重(10+X)kgに接圧ばね終荷重30kgを加算した(40+X)kgである。
【0024】
このように、本発明の真空開閉装置に於いては、開放ばね15の圧縮が開極寸法の区間だけ行なわれ、接圧ばね18が圧縮される区間であるワイプ寸法の区間では、それ以上の圧縮が行われないようにしてある。そのために、固定電極4と可動電極5との間に接触圧力を与える接圧ばね18を絶縁レバー22と可動電極5との間に設け、固定電極4に対して可動電極5を開極保持する開放ばね15を可動電極5とモールドフレーム1との間に設けてある。開放ばね15が可動電極5に与えるばね作用力(開極保持力)は、接圧ばね18が可動電極5に与えるばね作用力(接圧)よりも小さくしてある。
【0025】
開放ばね15を可動電極5と同軸上に配置し可動電極5と同じ変位の移動すなわち開極寸法区間のみで圧縮(ばね蓄勢)するようにすることで、接点タッチ位置から閉極完了位置までの間の接圧寸法区間に於いては、開放ばね10の荷重は増大せず接圧ばね18の荷重だけが増大することになり、最大ばね荷重を不必要に増大させることがない。このため操作機構25の操作駆動力を小さくすることができ操作機構12を小型軽量化できる。また接点タッチ時から接圧ばね荷重が加わり始める負荷特性の変化が小さくなり操作機構25を構成する上で駆動操作力の出力効率が良く小型軽量で安価な操作機構25を構成することができる。
【0026】
なお、可動電極5を図3に示すような部品構成とすることで、引外しばねおよび接圧ばねのばね装着作業(ばねを圧縮しつつ所定位置に装着すること)の困難性を解消することができる。すなわち、連結ロッド12にその肩部12aまで可動ワッシャ19を嵌め、可動ワッシャ19の上に接圧ばね18を嵌め、次に固定ワッシャ17およびナット16を連結ロッド12のネジ部12cに嵌め、固定ワッシャ17が肩部12bで止まるまでナット16をネジ部12c上で締め付ける。このようなばね装着作業は比較的容易である。連結ロッド12のネジ部12cには更にナット16よりも外側にナット13と座金13aとをゆるく嵌めて、接圧ばねロッドである中間組立て品を準備して置く。次に、別途組立て治具(図示せず)にて真空バルブ3の可動電極5に開放ばね15と開放ばね支持ワッシャ14とを装着した状態で治具にて開放ばね15を圧縮し、この状態で開放ばね支持ワッシャ14の一端面に可撓導体9を置き、接圧ばねロッド12の一端のネジ部12cを真空バルブ電極棒(可動電極5)の一端に形勢しためねじ部5aにねじ込み、さらにナット13にて座金13aを介して可撓導体9を締め付けることで、容易に単極の組立てを行うことが出来る。
【0027】
【発明の効果】
この発明の真空開閉装置は、絶縁モールドフレームと、絶縁モールドフレームに支持され、真空容器、真空容器内に設けられた固定電極および上記真空容器内で上記固定電極に離接し、上記真空容器を貫通して可動に延びた可動電極を有する真空バルブと、上記絶縁モールドフレームに枢着され、一端で上記可動電極に連結され、他端で操作機構に連結され得る絶縁レバーと、上記絶縁レバーおよび上記可動電極間に設けられて上記固定および可動電極間に接触圧力を与える接圧ばねと、上記可動電極および上記モールドフレーム間に設けられて上記固定および可動電極を開極保持する開放ばねとを備え、上記開放ばねが上記可動電極に与えるばね作用力は、上記接圧ばねが上記可動電極に与えるばね作用力よりも小さくしてある。従って、閉極時における接点タッチ以降の負荷を低減し操作機構による操作力を低減することが出来、操作機構の小型軽量化、ならびに真空開閉装置全体を安価に構成することが出来る。
【図面の簡単な説明】
【図1】この発明の真空開閉装置の開極状態における断面図である。
【図2】この発明の真空開閉装置の操作機構に要求される駆動力の変化を表した負荷特性を従来のものと比較して示すグラフである。
【図3】この発明の真空開閉装置の連結ロッド組立体の分解図である。
【符号の説明】
1 絶縁モールドフレーム、2 真空容器、4 固定電極、5 可動電極、3真空バルブ、22 絶縁レバー、18 接圧ばね、15 開放ばね、11a 径方向の移動を阻止する手段(環状溝)。
[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum switchgear used for, for example, a high-voltage power transmission and distribution line for electric power.
[0002]
[Prior art]
A vacuum switchgear represented by a VCB (high-pressure vacuum circuit breaker) has a tendency to increase the switching operation force with a higher voltage and a larger current. There is a demand for smaller powers. A conventional vacuum switching device includes a vacuum valve having a movable electrode which is separated from and connected to a fixed electrode in a vacuum vessel supported by an insulating frame and extends movably through the vacuum vessel. The movable electrode is opened and closed by being driven via a wipe spring by a conversion lever connected to an operation mechanism. The wipe spring is provided between the conversion lever and the movable electrode, and applies a contact pressure between the electrodes. The vacuum switching device also includes an opening spring that is provided between the conversion lever and the insulating frame and holds the electrode in an open state. (For example, see Patent Document 1)
[0003]
In such a conventional vacuum switchgear, when closing the electrode from the open position, the opening spring is expanded by the driving operation force of the operation mechanism while accumulating the energy, and is stored together with the wipe spring through a link such as a conversion lever. The movable electrode is driven in the closing direction. Even after the movable electrode comes into contact with the fixed electrode and the contact is touched, the operation mechanism is further activated.However, this driving force is accumulated as compression of the wipe spring and applies contact pressure between the contacts of the electrode to close the electrode. Complete. When the electrode is opened from the closed position, the movable electrode is separated from the fixed electrode via a link such as a conversion lever by an operating mechanism, and is held at the opened position by an open spring. Accordingly, in such a link mechanism, the movable electrode is driven to the closed position via the opening spring and the wipe spring and is held at that position. And the force of the release spring.
[0004]
In a link mechanism of a conventional vacuum switch, the movable electrode is driven to a closed position via both an open spring and a wipe spring and is held at that position. Therefore, the total stroke required to drive the movable electrode to the closed position by the operating mechanism is a stroke for compressing the open spring to bring the contact into a contact state and a stroke for bringing the contact pressure into a closed state. The driving force required at this time is the sum of the force for compressing only the release spring by the total stroke and the force for compressing the wipe spring by the wipe distance. In other words, after the contact touch state is reached, in addition to the force required to compress the release spring, a force required to compress the wipe spring is also required, and the operating mechanism requires a relatively large driving force corresponding to this force. Is required.
[0005]
[Patent Document 1]
JP-A-9-198976 (FIG. 1)
[0006]
[Problems to be solved by the invention]
In the structure of the main circuit single pole part in the conventional vacuum switchgear, the opening spring holds the movable electrode open via the insulating lever, so that it is necessary to keep being compressed over the entire area when the vacuum switchgear is closed, The driving force at the time of closing required from the contact position to the closing position is a load obtained by adding the opening spring load and the contact pressure spring load, and a large driving operation force is required. For this reason, the operation mechanism becomes large and it is necessary to make it robust. In addition, there is an inflection point of the load characteristic where the spring load increases rapidly from the time of contact touch, so that when configuring the operating mechanism, output efficiency is good and there are few components and it becomes an obstacle to configure a small, lightweight and inexpensive operating mechanism. It has been difficult to manufacture the vacuum switchgear itself in a small, lightweight and inexpensive manner.
[0007]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and an operation mechanism that can be reduced in size and cost by reducing a load after a contact is touched when closing a pole and reducing an operation force of the operation mechanism. It is an object of the present invention to obtain a vacuum switchgear provided with:
[0008]
[Means for Solving the Problems]
The vacuum switchgear of the present invention is an insulating mold frame, a vacuum vessel supported by the insulating mold frame, a vacuum vessel, a fixed electrode provided in the vacuum vessel, and a contact with the fixed electrode in the vacuum vessel, and penetrates the vacuum vessel. A vacuum valve having a movable electrode movably extended, an insulating lever pivotally attached to the insulating mold frame, connected to the movable electrode at one end, and connected to an operating mechanism at the other end, and the insulating lever and the insulating lever. A contact pressure spring that is provided between the movable electrodes and applies a contact pressure between the fixed and movable electrodes; and an open spring that is provided between the movable electrode and the mold frame and holds the fixed and movable electrodes open. A spring acting force applied to the movable electrode by the release spring is smaller than a spring acting force applied to the movable electrode by the contact pressure spring. A switchgear.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a sectional view of a single pole portion of a main circuit showing an open state of a vacuum switchgear according to an embodiment of the present invention.
[0010]
The vacuum switchgear of the present invention includes an insulating mold frame 1 and a vacuum valve 2 supported by the insulating mold frame 1. The vacuum valve 2 includes a vacuum vessel 3, a fixed electrode 4 provided in the vacuum vessel 3, and a movable electrode movably extending through the vacuum vessel 3 so that the fixed electrode 4 can be separated from and connected to the vacuum vessel 3. 5 is provided. The outer end of the fixed electrode 4 is supported on the mold frame 1 together with the upper terminal 7 by bolts 6, and the outer end 8 of the movable electrode 5, which is outside the vacuum vessel 3, is an intermediate part. It is connected to a lower terminal 10 attached to the mold frame 1 via a flexible conductor 9.
[0011]
In the vacuum switchgear of the present invention, a connecting rod 12 is screwed into the lower end of the outer end 8 of the movable electrode 5 projecting outside from an electrode guide which is a part of the end plate 11 of the vacuum vessel 3. Thus, an extended portion of the movable electrode 5 is formed. The flexible conductor 9 is fixedly connected between the outer end 8 of the movable electrode 5 and the connecting rod 12 by a nut 13 fitted to the connecting rod 12, and is connected to the flexible conductor 9 and the lower end. 8, a spring seat 14 is provided.
[0012]
An open spring 15 which is a compression coil spring is provided between the spring seat 14 and the end plate 11 of the vacuum vessel 3. The upper end of the opening spring 15 is received and supported in an annular groove 11 a formed on the lower surface of the end plate 11 so as to surround the movable electrode 5, and the opening spring 15 moves in the radial direction with respect to the movable electrode 5. To prevent it from becoming stable. In this sense, the annular groove 11a is a means for preventing the opening spring 15 from moving in the radial direction with respect to the movable electrode, and providing a concave portion or a convex portion in place of the annular groove, or connecting the outer peripheral portion of the movable electrode guide to the opening spring 15. An equivalent side slip prevention function can be provided by contacting the inner circumference.
[0013]
The open spring 15 has one end in contact with the end plate 11 of the vacuum vessel 3 fixed to the mold frame 1 and the other end in contact with the spring seat 14 provided in the movable electrode 5. It can be said that it is provided between the movable electrode 5 and the release spring 15 is provided on the mold frame 1 via a vacuum container. One end of the opening spring 15 can be supported not by the vacuum container 3 but by another appropriate fixing member or directly by the mold frame 1. The spring seat 14 does not move with respect to the movable electrode 5. The opening spring 15, which is a compression coil spring, is for releasing the movable electrode 5 with respect to the fixed electrode 4 at the time of the opening operation and holding the electrode at the opening position shown in FIG.
[0014]
A second nut 16 is fixed on the distal end side (downward in the figure) of the nut 13 on the connecting rod 12 on the movable electrode 5, and supports a fixed washer 17. One end of a contact pressure spring 18, which is a compression coil spring, is in contact with the fixed washer 17, and the other end of the contact pressure spring 18 is in contact with a movable washer 19 that can slide on the movable electrode 5 in the axial direction. A flange-shaped end plate 20 is fixed to the distal end of the connecting rod 12 which is a part of the movable electrode 5, and a space is formed between the end plate 20 and the movable washer 19. An operating end 23 of an insulating lever 22 rotatably supported by the shaft 21 on the insulating mold frame 1 is movably received and connected to this portion of the movable electrode 5. An operation lever 24 is integrally connected to the insulating lever 22 via a shaft 21, and a link 26 of an operation mechanism 25 can be connected to a distal end of the operation lever 24.
[0015]
As described above, the contact pressure spring 18 is a compression coil spring that is provided between the movable electrode 5 and the insulating lever 22 and applies a contact pressure between the fixed electrode 4 and the movable electrode 5. It is a lever that is pivotally attached to the insulating mold frame 1, connected at one end to the movable electrode 5, and at the other end to an operation mechanism 25 described later. The release spring 15 is a compression coil spring fitted on the outer periphery of the movable electrode 5, and is axially aligned with the contact pressure spring 18. The release spring 15 and the contact pressure spring 18 may be tension springs depending on the operation mechanism 25 or a link mechanism that transmits the driving force of the operation mechanism 25 to the movable electrode 5.
[0016]
The opening spring 15 and the contact pressure spring 18 are set such that the spring acting force applied to the movable electrode 5 by the opening spring 15 is smaller than the spring acting force applied to the movable electrode 5 by the contact pressure spring 18. In, the spring constants of the release spring 15 and the contact pressure spring 18 are set so as to satisfy this relationship.
[0017]
In the illustrated open state, the insulating lever 22 connected to the connecting rod 12 is held at the illustrated position by the operating mechanism 25, and the movable electrode 5 is at the open position. At this time, the release spring 15 and the contact pressure spring 18 are both in an initial compression state (initial load), but both are in their maximum expansion state.
[0018]
When the pole is closed, the driving operation force from the operation mechanism 25 pushes down the lever 24 via the link 26, and the insulating lever 22 rotates clockwise about the shaft 21 to push the movable washer 19 upward in the figure. The force applied to the movable washer 19 is transmitted to the movable electrode 5 via the contact pressure spring 18 and the fixed washer 17 and the nut 16 to push the movable electrode 5 to the closed position. When the movable electrode 5 is pushed up, the opening spring 15 provided between the spring seat 14 fixed to the movable electrode 5 and the end plate 11 of the vacuum valve 2 is compressed (energized), and is fixed to the movable electrode 5 soon. The electrode 4 comes into contact with the electrode 4 and a contact state is established. In this state, the compression state of the contact pressure spring 18 stronger than the release spring 15 has not changed.
[0019]
After the compressed contact state, the movable electrode 5 does not move upward any more, and the open spring 15 is not further compressed. Thereafter, the insulating lever 22 is further rotated clockwise by the operating mechanism 25 to push up the movable washer 19, and the contact pressure spring 18, which has not been compressed, is compressed (energized), and the contact at the closed position is closed. A contact pressure is applied in between to complete the closing operation. When an appropriate contact pressure (wipe) dimension is reached, the driving operation force from the operation mechanism 25 is stopped, and the closing operation is completed by holding the closing completion position by a latch mechanism (not shown) in the operation mechanism 25.
[0020]
FIG. 2 is a graph showing a load characteristic representing a change in driving force required for the operation mechanism 25. FIG. 2 is a graph showing a load characteristic of the operation mechanism 25 when the vacuum switchgear of the present invention is closed. FIG. 2 shows a comparison with the load characteristic of the operating mechanism at the time of closing according to the conventional technique. In the graph of FIG. 2, the horizontal axis indicates the position of the movable electrode from the opening position to the closing position, and the vertical axis indicates the load force (spring load generated) which is the driving force required for the operating mechanism. It represents.
[0021]
At the opening position, the opening spring 15 is compressed (energized) as shown in FIG. 1, and an initial load of, for example, 5 kg is generated. When the closing operation is started, the opening spring 15 is gradually compressed during the opening dimension, and a final load of, for example, 10 kg is reached at the contact point. Even if the closing operation is further advanced, the load of the opening spring 15 does not increase any more during the contact pressure (wipe) dimension, and is constant until the closing completion position.
[0022]
On the other hand, the contact pressure spring 18 is generated as a contact pressure spring initial load of, for example, 20 kg only at the contact touch position. The initial load (for example, 20 kg) of the contact pressure spring is added to the final load of the open spring (for example, 10 kg), and acts on the operation mechanism 25 as a load (spring load) of, for example, 30 kg. The contact pressure spring load gradually increases during the contact pressure (wipe) dimension from the contact contact position to the closing position, and at the closing position the contact pressure spring final load becomes, for example, 30 kg. The total load force (spring load) on the operating mechanism 25 is, for example, 40 kg. As described above, the maximum load force required for the operation mechanism 25 is the total load of the final load of the release spring and the final load of the contact pressure spring, and is 40 kg in this example.
[0023]
In the graph of FIG. 2, a portion shown by a broken line is a graph showing a load in a conventional vacuum switchgear. That is, in the conventional vacuum switchgear, as described above, in order to apply the necessary contact pressure between the contacts, even after the contact pressure position is passed and the period of the contact pressure (wipe) is entered, The opening spring 15 needs to be kept compressed. For this reason, the load of the opening spring 15 continues to increase gradually as indicated by the broken line A, and at the closing position, becomes X kg in proportion to the wipe size and the spring constant, and the final load of the opening spring is (10 + X) in this example. kg. Accordingly, the load force (spring load) in the operation mechanism of such a conventional vacuum switchgear is (40 + X) kg obtained by adding the final load (10 + X) kg of the release spring 15 to the final load of the contact pressure spring 30 kg. is there.
[0024]
As described above, in the vacuum switchgear of the present invention, the compression of the release spring 15 is performed only in the section of the opening size, and in the section of the wipe size in which the contact pressure spring 18 is compressed, a further increase is performed. No compression is done. For this purpose, a contact pressure spring 18 for applying a contact pressure between the fixed electrode 4 and the movable electrode 5 is provided between the insulating lever 22 and the movable electrode 5, and the movable electrode 5 is held open with respect to the fixed electrode 4. An opening spring 15 is provided between the movable electrode 5 and the mold frame 1. The spring action force (opening holding force) applied to the movable electrode 5 by the opening spring 15 is smaller than the spring action force (contact pressure) applied to the movable electrode 5 by the contact pressure spring 18.
[0025]
By disposing the open spring 15 coaxially with the movable electrode 5 and moving the same displacement as the movable electrode 5, that is, compressing (spring energy storage) only in the opening dimension section, from the contact position to the closing position. In the contact pressure dimension section, the load of the release spring 10 does not increase and only the load of the contact pressure spring 18 increases, so that the maximum spring load does not increase unnecessarily. Therefore, the operation driving force of the operation mechanism 25 can be reduced, and the operation mechanism 12 can be reduced in size and weight. In addition, since the change in the load characteristic at which the contact pressure spring load starts to be applied from the time of touching the contact is reduced and the operation mechanism 25 is configured, it is possible to configure the operation mechanism 25 with high output efficiency of the driving operation force, small size, light weight, and low cost.
[0026]
By making the movable electrode 5 have a component configuration as shown in FIG. 3, it is possible to eliminate the difficulty of the spring mounting work of the tripping spring and the contact pressure spring (mounting the spring at a predetermined position while compressing the spring). Can be. That is, the movable washer 19 is fitted on the connecting rod 12 to its shoulder 12a, the contact pressure spring 18 is fitted on the movable washer 19, and then the fixed washer 17 and the nut 16 are fitted on the threaded portion 12c of the connecting rod 12 and fixed. The nut 16 is tightened on the threaded portion 12c until the washer 17 stops at the shoulder 12b. Such a spring mounting operation is relatively easy. The nut 13 and the washer 13a are further loosely fitted to the screw portion 12c of the connecting rod 12 outside the nut 16, and an intermediate assembly as a contact pressure spring rod is prepared and placed. Next, the open spring 15 and the open spring supporting washer 14 are attached to the movable electrode 5 of the vacuum valve 3 by a separately assembled jig (not shown), and the open spring 15 is compressed by the jig. Then, the flexible conductor 9 is placed on one end surface of the open spring support washer 14, and the screw portion 12c at one end of the contact pressure spring rod 12 is screwed into the screw portion 5a so as to urge it to one end of the vacuum valve electrode rod (movable electrode 5). Further, by fastening the flexible conductor 9 with the nut 13 via the washer 13a, it is possible to easily assemble a single pole.
[0027]
【The invention's effect】
The vacuum switchgear of the present invention is an insulating mold frame, a vacuum vessel supported by the insulating mold frame, a vacuum vessel, a fixed electrode provided in the vacuum vessel, and a contact with the fixed electrode in the vacuum vessel, and penetrates the vacuum vessel. A vacuum valve having a movable electrode movably extended, an insulating lever pivotally attached to the insulating mold frame, connected to the movable electrode at one end, and connected to an operating mechanism at the other end, and the insulating lever and the insulating lever. A contact pressure spring provided between the movable electrodes and applying a contact pressure between the fixed and movable electrodes; and an open spring provided between the movable electrode and the mold frame to hold the fixed and movable electrodes open. The spring acting force applied to the movable electrode by the opening spring is smaller than the spring acting force applied to the movable electrode by the contact pressure spring. Therefore, it is possible to reduce the load after the contact is touched at the time of closing the contact, to reduce the operation force by the operation mechanism, to reduce the size and weight of the operation mechanism, and to configure the entire vacuum switching device at low cost.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a vacuum switching device of the present invention in an opened state.
FIG. 2 is a graph showing a load characteristic representing a change in driving force required for an operation mechanism of the vacuum switching device according to the present invention, in comparison with a conventional one;
FIG. 3 is an exploded view of a connecting rod assembly of the vacuum switching device of the present invention.
[Explanation of symbols]
1 Insulation mold frame, 2 vacuum vessel, 4 fixed electrode, 5 movable electrode, 3 vacuum valve, 22 insulating lever, 18 contact pressure spring, 15 release spring, 11a Means for preventing radial movement (annular groove).

Claims (5)

絶縁モールドフレームと、
上記絶縁モールドフレームに支持され、真空容器、真空容器内に設けられた固定電極および上記真空容器内で上記固定電極に離接し、上記真空容器を貫通して可動に延びた可動電極を有する真空バルブと、
上記絶縁モールドフレームに枢着され、一端で上記可動電極に連結され、他端で操作機構に連結され得る絶縁レバーと、
上記絶縁レバーおよび上記可動電極間に設けられ、上記固定および可動電極間に接触圧力を与える接圧ばねと、
上記可動電極および上記モールドフレーム間に設けられ、上記固定および可動電極を開極保持する開放ばねとを備え、
上記開放ばねが上記可動電極に与えるばね作用力は、上記接圧ばねが上記可動電極に与えるばね作用力よりも小さいことを特徴とする真空開閉装置。
An insulating mold frame,
A vacuum vessel supported by the insulating mold frame and having a vacuum vessel, a fixed electrode provided in the vacuum vessel, and a movable electrode which is separated from and connected to the fixed electrode in the vacuum vessel and extends movably through the vacuum vessel. When,
An insulating lever pivotally attached to the insulating mold frame, connected to the movable electrode at one end, and connected to an operating mechanism at the other end;
A contact pressure spring that is provided between the insulating lever and the movable electrode and applies a contact pressure between the fixed and movable electrodes;
An open spring that is provided between the movable electrode and the mold frame and holds the fixed and movable electrodes in an open state,
A vacuum opening and closing device, wherein a spring action force applied to the movable electrode by the opening spring is smaller than a spring action force applied to the movable electrode by the contact pressure spring.
請求項1に記載の真空開閉装置に於いて、上記開放ばねが上記真空容器を介して上記モールドフレームに設けられたことを特徴とする真空開閉装置。2. The vacuum switchgear according to claim 1, wherein the opening spring is provided on the mold frame via the vacuum container. 請求項1あるいは2に記載の真空開閉装置に於いて、上記開放ばねが上記接圧ばねに対して軸整列配置されていることを特徴とする真空開閉装置。3. The vacuum switchgear according to claim 1, wherein the release spring is axially aligned with the contact pressure spring. 請求項1乃至3のいずれか一項に記載の真空開閉装置に於いて、上記開放ばねが上記可動電極の外周に嵌められた圧縮コイルばねであることを特徴とする真空開閉装置。The vacuum switchgear according to any one of claims 1 to 3, wherein the opening spring is a compression coil spring fitted on an outer periphery of the movable electrode. 請求項1乃至4のいずれか一項に記載の真空開閉装置に於いて、上記開放ばねの上記可動電極に対する径方向の移動を阻止する手段を有することを特徴とする真空開閉装置。The vacuum switchgear according to any one of claims 1 to 4, further comprising means for preventing the opening spring from moving in the radial direction with respect to the movable electrode.
JP2003134317A 2003-05-13 2003-05-13 Vacuum switching device Pending JP2004342359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003134317A JP2004342359A (en) 2003-05-13 2003-05-13 Vacuum switching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003134317A JP2004342359A (en) 2003-05-13 2003-05-13 Vacuum switching device

Publications (1)

Publication Number Publication Date
JP2004342359A true JP2004342359A (en) 2004-12-02

Family

ID=33524913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003134317A Pending JP2004342359A (en) 2003-05-13 2003-05-13 Vacuum switching device

Country Status (1)

Country Link
JP (1) JP2004342359A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100920540B1 (en) 2007-05-22 2009-10-08 미쓰비시덴키 가부시키가이샤 Insulation frame of vacuum open/close device
WO2009131238A1 (en) * 2008-04-24 2009-10-29 株式会社日本Aeパワーシステムズ Vacuum circuit breaker
CN101527223B (en) * 2009-04-24 2012-05-23 北京华东森源电气有限责任公司 High-voltage vacuum breaker
JP2013125717A (en) * 2011-12-16 2013-06-24 Mitsubishi Electric Corp Vacuum switching device
JP5418715B1 (en) * 2013-07-30 2014-02-19 株式会社安川電機 Switch
CN103700538A (en) * 2013-12-31 2014-04-02 北京交通大学长三角研究院 Vacuum circuit breaker
KR20140080435A (en) * 2012-12-20 2014-06-30 에이비비 테크놀로지 아게 Circuit-breaker pole part with a flexible conductor for connecting a movable electrical contact
CN107170633A (en) * 2017-06-02 2017-09-15 北京杰远电气有限公司 A kind of pole
KR102497759B1 (en) * 2022-04-18 2023-02-08 주식회사 동남 Gas insulation switchgear

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100920540B1 (en) 2007-05-22 2009-10-08 미쓰비시덴키 가부시키가이샤 Insulation frame of vacuum open/close device
KR101582205B1 (en) 2008-04-24 2016-01-04 가부시끼가이샤 메이덴샤 Vacuum circuit breaker
JP2009266511A (en) * 2008-04-24 2009-11-12 Japan Ae Power Systems Corp Vacuum circuit breaker
EP2270827A4 (en) * 2008-04-24 2013-11-20 Meidensha Electric Mfg Co Ltd Vacuum circuit breaker
KR20110013371A (en) * 2008-04-24 2011-02-09 가부시키가이샤 니혼 에이이 파워시스템즈 Vacuum circuit breaker
CN102017040A (en) * 2008-04-24 2011-04-13 日本Ae帕瓦株式会社 Vacuum circuit breaker
US8426759B2 (en) 2008-04-24 2013-04-23 Meiden T&D Corporation Vacuum circuit breaker
WO2009131238A1 (en) * 2008-04-24 2009-10-29 株式会社日本Aeパワーシステムズ Vacuum circuit breaker
EP2270827A1 (en) * 2008-04-24 2011-01-05 Japan AE Power Systems Corporation Vacuum circuit breaker
CN101527223B (en) * 2009-04-24 2012-05-23 北京华东森源电气有限责任公司 High-voltage vacuum breaker
JP2013125717A (en) * 2011-12-16 2013-06-24 Mitsubishi Electric Corp Vacuum switching device
KR20140080435A (en) * 2012-12-20 2014-06-30 에이비비 테크놀로지 아게 Circuit-breaker pole part with a flexible conductor for connecting a movable electrical contact
KR101715318B1 (en) 2012-12-20 2017-03-13 에이비비 슈바이쯔 아게 Circuit-breaker pole part with a flexible conductor for connecting a movable electrical contact
US8916790B1 (en) 2013-07-30 2014-12-23 Kabushiki Kaisha Yaskawa Denki Switchgear
JP5418715B1 (en) * 2013-07-30 2014-02-19 株式会社安川電機 Switch
CN103700538B (en) * 2013-12-31 2015-12-23 北京交通大学长三角研究院 Vacuum circuit-breaker
CN103700538A (en) * 2013-12-31 2014-04-02 北京交通大学长三角研究院 Vacuum circuit breaker
CN107170633A (en) * 2017-06-02 2017-09-15 北京杰远电气有限公司 A kind of pole
CN107170633B (en) * 2017-06-02 2020-03-31 北京杰远电气有限公司 Solid-sealed polar pole
KR102497759B1 (en) * 2022-04-18 2023-02-08 주식회사 동남 Gas insulation switchgear

Similar Documents

Publication Publication Date Title
KR101582205B1 (en) Vacuum circuit breaker
JP3861832B2 (en) Switch
JP2004342359A (en) Vacuum switching device
RU2578208C2 (en) Electric contactor with flywheel drive and method of electric contactor switching on/off
US20120199456A1 (en) Spring actuator for circuit breaker
KR101627891B1 (en) A spring operated actuator for an electrical switching apparatus
KR20100036168A (en) Gas circuit breaker for electric power
US8807547B2 (en) Spring housing unit connected with spring actuator for switchgear
JP2003157752A (en) Hybrid electric power breaker with power transmission mechanism
WO2008043665A1 (en) Switching device for electric power system
GB2095475A (en) Electric vacuum switch
JPH1140013A (en) Pressure contact mechanism of switchgear
EP1914772B1 (en) Air circuit breaker, breaking spring of air circuit breaker and connection method thereof
KR200489833Y1 (en) Vacuum circuit breaker
CN2671110Y (en) Arc eliminating chamber actuator for vacuum isolating load switch
JP5791486B2 (en) Vacuum switchgear
EP0924728B1 (en) High-voltage circuit breaker for high currents
JP2005209554A (en) Power breaker
CN111403226A (en) Energy storage spring structure of isolating switch
KR100522463B1 (en) Main circuit in vacuum circuit breaker
SU1735932A1 (en) High-voltage vacuum switch
KR200492868Y1 (en) Mechanical spring operating device of circuit breaker of gas insulated switchgear
JP7309567B2 (en) gas circuit breaker
CN103247456A (en) Electrical switching device, especially circuit breaker
CN212783126U (en) Electrical switch