JP2004341427A - Manufacturing method of polysilane optical activity reverse thin film - Google Patents

Manufacturing method of polysilane optical activity reverse thin film Download PDF

Info

Publication number
JP2004341427A
JP2004341427A JP2003140522A JP2003140522A JP2004341427A JP 2004341427 A JP2004341427 A JP 2004341427A JP 2003140522 A JP2003140522 A JP 2003140522A JP 2003140522 A JP2003140522 A JP 2003140522A JP 2004341427 A JP2004341427 A JP 2004341427A
Authority
JP
Japan
Prior art keywords
polysilane
thin film
formula
polarizing film
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003140522A
Other languages
Japanese (ja)
Other versions
JP3817718B2 (en
Inventor
Masao Motonaga
雅郎 本永
R Koe Julian
R コウ ジュリアン
Michiya Fujiki
道也 藤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2003140522A priority Critical patent/JP3817718B2/en
Publication of JP2004341427A publication Critical patent/JP2004341427A/en
Application granted granted Critical
Publication of JP3817718B2 publication Critical patent/JP3817718B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)
  • Silicon Polymers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simple manufacturing method of an industrially useful light polarizing film, which can manufacture a film having a light polarizing function only by forming a film by spin coating the solution of the polysilane expressed by formula 1. <P>SOLUTION: The surface of an optically isotropic transparent substrate spun-coated with a uniform solution of polysilane polymer of 10-100,000 in polimerization n in formula 1 or polysilane random copolymer. In the formula, R<SP>1</SP>-R<SP>4</SP>are the alkyl groups which may have asymmetric carbon of the carbon number 22 replaced at least to para (p-) or meta (m-), and these can be all the same or different one another, and m is 0 or larger but 1 or smaller. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、偏光薄膜を、均一なポリシランの溶液を等方性透明な基体上にスピン塗布するという簡易な方法により製造する方法に関する。
前記偏光薄膜は90°の回転により円二色信号の符号を反転し、かつ強度がほぼ等しいスペクトルが得られる特性を有する。
【0002】
【従来技術】
従来、偏光膜の形成には、光学的に活性な化合物、例えばヨウ素を配列させて光学的異方性を持たない透明な基板表面に固定してコーティングすることが必要であった。従って、前記配向薄膜形成のためのコーティング手段および装置に工夫が必要であった。また他の方法では、PVAに配合されたヨウ素をPVAの一軸延伸に伴って配列させることにより偏光フィルムが製造されていた。
スピンコーティング技術は、厚さが均一な薄膜を簡易に形成できる技術として知られているが、該コーティング技術は、前記偏光薄膜形成に必要な光学的異方性を持つように配向させる工夫が必要な原料を用いる限り、偏光膜の形成には適さないものであった。
【0003】
【非特許文献1】
桜井英樹監修 有機ケイ素材料科学の新展開 シーエムシー刊、p141−143、2001年9月発行
【非特許文献2】
Macromolecules,Vol.34,No.4、p1082−1089
【0004】
本発明者は、光学活性スイッチ、光学活性メモリ、分子キラリティセンシング機能を有するポリシラン類の分子設計および前記設計に基づく化合物の合成の技術を発表している(前記非特許文献1,2)。また、らせん状ポリアルキルシラン誘導体では温度に応答して巻き性がスイッチするヘリックス−ヘリックス転移を示し、巻き性とCD特性が迅速に反転してスイッチすること、アルキルアリルポリシラン誘導体では遠隔位置にあるキラル置換基の位置制御と凝集体構造の形成により温度依存型CDスイッチとメモリー機能を示すこと、アキラル置換体のみからなる光学不活性アルキルアリルポリシラン誘導体では、溶液中に共存するキラル低分子との凝集体形成過程において、分子のキラリティと構造を精密に認識することができることなどを発表している。更に、新規合成のジアリルポリシラン誘導体では、側鎖キラル置換基位置、数、含有量などはCD特性の変化をもたらし、また、温度依存型のCDスイッチを示し、高ホール移動度や高効率発光特性を有する温度応答性発光材料などへの応用が期待できることにも言及している。
特に、前記非特許文献2の第141頁−第143頁では、m−位やp−位に(S)−2−メチルブチル基、またはp−位にn−ブチル基を有するジアリルポリシランホモポリマー、コポリマーを新規に創成し、そのCDスペクトル特性などを検討した結果について記載している。その中で、Si原子当たりの(S)−2−メチルブチル基の数によりCDスペクトルが反転すること、主鎖Si当たり1個のキラル基を持つホモポリマーは負のコットン効果を与えること、および側鎖キラリティを変えることなく、キラル置換基の数のみでらせん巻き性の制御が可能であるあることを説明している。更に、外部信号として温度を変化させることにより、CD符号が正負に変化し、光学活性スイッチとして機能することも説明されている。
しかしながら、前記新規合成ホモポリマーおよびコポリマーの溶液から、スピンコートして形成した薄膜の光学特性については全く触れていない。
【0005】
【発明が解決しようとする課題】
本発明の課題は、前記一般式1で表される新規合成ホモポリマーおよびコポリマーの溶液からスピンコートして形成した薄膜の光学特性を検討することであり、それにより有用な光学特性をもつ光学材料を製造する方法を提供することである。
そこで、前記ポリマーの良溶媒であるトルエンを用いて、前記溶液に1×10−2モル/L(Si繰り返し単位)の濃度で溶解し、これを等方性の分光測定用に研磨した厚さ1mmの石英ガラス基板(株式会社タイセー製)表面に、スピンコート、例えば3000回転/分でスピンコートして薄膜、例えば0.05μmの薄膜を形成し、光学特性検討用の試料を作成した。薄膜は、外見的には、ミクロ結晶の発生による散乱体の生成は観察されない平滑でムラのない透明なものであった。
【0006】
前記薄膜を形成した試料について、円二色性分散計(日本分光株式会社製、機種名;J−820F型)を用いて円二色性(CD)スペクトルおよび紫外−可視(UV−Vis)吸収スペクトルを測定し、前記各特性を測定した。光軸に対して回転させたときの各々の角度とCDスペクトルを検討したところ、角度を90゜回転する毎に円二色信号の符号が反転し、強度がほぼ等しいスペクトルが観察され、スピンコートして形成した薄膜がそのまま偏光膜として有効であることを見出し、前記光学活性材料の提供の課題を解決することができた。なお、UV−Vis吸収スペクトルは薄膜を回転させても変化がなかった。
【0007】
【課題を解決するための手段】
本発明は、(1)一般構造式1の重合度nが10〜100,000のポリシラン重合体またはポリシランランダム共重合体の均一溶液を光学的等方性透明基体表面にスピン塗布することにより偏光膜を製造する方法である。
【0008】
【化2】

Figure 2004341427
【0009】
式中R〜Rは、パラ(p−)またはメタ(m−)位に置換した炭素数22までの不斉炭素を有していても良いアルキル基であり、これらは同一でも、異なっていても良い。mは0以上1以下である。
【0010】
(2)好ましくは、構造式1においてR及び/またはRが不斉炭素を有し、R及びRが不斉炭素を有しない前記(1)に記載の偏光膜を製造する方法であり、(3)より好ましくは、R及びRが同一の不斉炭素を有するアルキル基である前記(2)に記載の偏光膜を製造する方法であり、(4)一層好ましくは、R及びRが(S)−2−メチルブチル基である請求項3記載の偏光膜を製造する方法である。
スピンコートして形成した薄膜が、そのままで前記偏光特性を示したことは、前記ポリマーの化学構造からもたらされる特有の効果、すなわち、スピンコートの遠心力に対して打ち勝つ組織化力により、配位構造、換言すれば光学的に異方性の構造に組織化できることを示すもので、全く驚くべき現象である。
【0011】
【本発明の実施の態様】
本発明をより詳細に説明する。
I.本発明の目的は、基本的には前記一般式1の構想を持つポリマーを、1×10−6〜5×10−2モル/L(Si繰り返し単位)となるように溶解した溶液を、光学的に等方性の透明な基体表面に、スピンコートして膜厚0.01〜1μmの薄膜を形成する条件であれば達成することができる。
【0012】
II.より好ましくは、前記非特許文献1および2において言及している新規なポリシランホモポリマーまたはコポリマー下記化1〜化3から選択される。化合物の合成および確認データは前記非特許文献2を参照されたい。
【0013】
【化3】
Figure 2004341427
【0014】
化1および化2中XおよびYはそれぞれ0以上1以下である。nは10〜100,000の整数である。好ましくは、XおよびYが0.5のコポリマーである。
【0015】
III.前記溶液の形成の良溶媒としては、トルエン、テトラヒドロフラン、クロロホルムなどを挙げることができるが、トルエンが特に好ましい。
IV.薄膜を塗布する光学的に等方性の透明基体としては、石英ガラス、偏光フルムの支持体など公知のものを用いることができる。
【0016】
【実施例】
測定機器類;
UV−VisスペクトルおよびCDスペクトル;日本分光株式会社製 円二色性分散計 J−820F型
NMRスペクトル;Varian Unity 300 スペクトルメーター
分子量;SEC(size exclusion chromatography)(「株式会社島津製作所製 高速液体クロマトグラフィーシステム」に、「昭和電工株式会社製 SEC用カラム(KF−806L)」を取り付けて測定。)
以下、実施例により本発明を具体的に説明するが、これは本発明をより理解し易くすることを目的とするものであり、これにより本発明を限定的に解釈されないことは当然である。
【0017】
参考例
前記化1において、Xが0.2の化合物1,0.5の化合物2および0.8の化合物3,Yが0.2の化合物4,0.5の化合物5および0.8の化合物6の合成。特に、化合物2の合成方法を以下に示す。
ビス−(p−(S)−2−メチルブチルフェニル)ジクロロシラン(1.52g、3.86mmol)およびビス−(p−n−ブチルフェニル)ジクロロシラン(1.41g、3.86mmol)をあわせて1:1の比の混合物を調製し、次いでトルエン2mL中に加えた。これを2.5当量のナトリウム(0.44g、19.32mmol)を分散したトルエン(11mL)中に加え、ついでジグライム13μLで表面活性化する。
混合物を70℃においてゆっくり撹拌する。その間容器を光から遮蔽し、定期的にSECにより分子量をモニターする。
約3時間後、0.1当量のトリメチルクロロシラン(0.08g、0.77mmol)をターミネーターとして添加し、更に30分間撹拌を継続し、その後混合物を孔径40μmおよび10μmの2つのテフロン膜を通して加圧濾過した。高分子量の成分は、2−プロパノールとトルエンの混合溶液からなる分別沈澱、続く遠心分離、および80℃のオーブン中での真空乾燥により白色粉末または繊維状物として分離した。収量は0.24g(10.1%)である。表1に前記化合物1−6のNMRデータを示す。
【0018】
【表1】
Figure 2004341427
【0019】
実施例1
前記分子量102,000である化合物2を該コポリマーの良溶媒であるトルエン中に濃度が1×10−2モル/L(Si繰り返し単位)となるように溶解し、スピンコート溶液を調製した。光学的に等方性の基板として分光測定用途に研磨した平滑な厚さ1mmの石英ガラス基板(株式会社タイセーから購入、品名;石英ガラス基板 分光測定用両面研磨仕上)を用意した。次いで、約23℃の室温下で、回転数3000回転/分で30秒間の塗布条件で塗布した。形成された薄膜は、膜厚約0.05μmであった。前記石英ガラス基板に形成された薄膜は、前記基板ごと前記円二色性分散計を用いて測定した。
【0020】
前記測定において、前記薄膜を光軸に対して0゜(○)、90゜(□)、180゜(△)および270゜(×)回転したときのCD/(UV−Vis)スペクトルを測定した。測定結果を図1に示す。回転角に関係なく紫外−可視(UV−Vis)波長域の吸収スペクトルは同じであり、円二色性(CD)は回転角90゜毎に符号が反転し、強度はほぼ同一あることが分かった。図1の左縦軸は吸光度であり、右縦軸はCD(m・deg、ミリ・度)であり、そして横軸は波長(nm)である。
【0021】
図1の回転角度とCD特性との関連から、前記ポリシランコポリマーから形成された薄膜は基体面内の異方性があることが確認でき、偏光膜として有効であることが分かった。
【0022】
実施例2
前記化1の化合物においてXが0の分子量450,000のポリシランホモポリマーを用い、実施例1と同様の溶液濃度の溶液を調製し、該溶液を3000回転/分、30秒の条件でスピンコートして前記ポリシランホモポリマーの薄膜を、実施例1と同様の基板表面に形成した。得られた試料を実施例1と同様に円二色性(CD)および紫外−可視(UV−Vis)波長域の吸収スペクトルを測定した。
【0023】
前記測定において、前記薄膜を光軸に対して0゜(○)、90゜(□)、180゜(△)および270゜(×)回転したときのCD/(UV−Vis)スペクトルを測定した。測定結果を図2に示す。実施例1と同様に、回転角に関係なく紫外−可視(UV−Vis)波長域の吸収スペクトルは同じであり、円二色性(CD)は回転角90゜毎に符号が反転し、強度はほぼ同一あることが分かった。図1と同様に、図2の左縦軸は吸光度であり、右縦軸はCD(m・deg、ミリ・度)であり、そして横軸は波長(nm)である。
【0024】
図2の回転角度とCD特性との関連から、前記ポリシランホモポリマーから形成された薄膜は、実施例1と同様に基体面内の異方性があることが確認でき、偏光膜として有効であることが分かった。
【0025】
また、図1および図2の円二色性(CD)スペクトルを比較すると、吸収極大波長が図1では390nm付近であるのに対して、図2では320nm付近に観察された。つまり、実施例1および実施例2の測定で使用した化1において、Xの値を変えるのみで吸収極大波長を簡易に制御できることが確認できた。すなわち、偏光波長を選択・制御できることを示すもので、偏光膜に付加価値を与える偏光波長選択性の機能を見出した。
【0026】
【発明の効果】
以上のように、本発明は、前記一般構造式1のポリシランを用い、その溶液を光学的に等方性の基板にスピンコートして薄膜を形成するだけで偏光機能を有する偏光膜を製造できるという、工業的に有用な偏光膜の簡易な製造方法を提供するものである。また、前記偏光膜は、前記ポリシランが基板上に組織化し配列構造をとるために起こる現象で、該薄膜上にさらにスピンコートでは配列構造をとらない、本特許には掲載していないポリマーを配列させるための下地として応用の可能性がある。
【図面の簡単な説明】
【図1】実施例1の石英ガラス基板表面に形成した前記化1において、Xが0.5のポリシランコポリマーで形成した約0.05μmの薄膜を光軸に対して0゜(○)、90゜(□)、180゜(△)および270゜(×)回転したときのCD/(UV−Vis)スペクトル。
【図2】実施例2の石英ガラス基板表面に形成した前記化1において、Xが0のポリシランホモポリマーで形成した約0.05μmの薄膜を光軸に対して0゜(○)、90゜(□)、180゜(△)および270゜(×)回転したときのCD/(UV−Vis)スペクトル。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a polarizing thin film by a simple method of spin-coating a uniform solution of polysilane on an isotropic transparent substrate.
The polarizing thin film has a characteristic that the sign of the circular dichroic signal is inverted by a rotation of 90 °, and a spectrum having substantially the same intensity is obtained.
[0002]
[Prior art]
Conventionally, formation of a polarizing film has required aligning and coating an optically active compound such as iodine on a transparent substrate surface having no optical anisotropy. Therefore, it is necessary to devise a coating means and an apparatus for forming the oriented thin film. In another method, a polarizing film has been produced by arranging iodine mixed in PVA with uniaxial stretching of PVA.
The spin coating technique is known as a technique that can easily form a thin film having a uniform thickness, but the coating technique requires a device for orienting the film so as to have an optical anisotropy required for forming the polarizing thin film. As long as such raw materials were used, they were not suitable for forming a polarizing film.
[0003]
[Non-patent document 1]
Supervision of Hideki Sakurai New Development of Organic Silicon Material Science Published by CMC, pp. 141-143, September 2001 [Non-Patent Document 2]
Macromolecules, Vol. 34, no. 4, p1082-1089
[0004]
The present inventor has published a technique of molecular design of a polysilane having an optically active switch, an optically active memory, and a molecular chirality sensing function and a technique of synthesizing a compound based on the design (Non-Patent Documents 1 and 2). In addition, the helical polyalkylsilane derivative exhibits a helix-helix transition in which the winding property switches in response to temperature, and the winding property and the CD property are rapidly reversed and switched, and the alkylallylpolysilane derivative is located at a remote position. It shows temperature-dependent CD switch and memory function by controlling position of chiral substituent and formation of aggregate structure, and optically inactive alkylallylpolysilane derivative consisting only of achiral substituent has a problem with chiral small molecule coexisting in solution. He has announced that the chirality and structure of molecules can be precisely recognized during the formation of aggregates. Furthermore, in the newly synthesized diallylpolysilane derivative, the position, number, and content of the side-chain chiral substituents change the CD characteristics, show a temperature-dependent CD switch, and exhibit high hole mobility and high efficiency emission characteristics. It is also mentioned that application to temperature-responsive light-emitting materials and the like having this property can be expected.
In particular, in pages 141 to 143 of Non-Patent Document 2, diallyl polysilane homopolymer having (S) -2-methylbutyl group at m-position or p-position or n-butyl group at p-position, It describes the results of newly creating a copolymer and examining its CD spectral characteristics and the like. Among them, the CD spectrum is inverted by the number of (S) -2-methylbutyl groups per Si atom, the homopolymer having one chiral group per main chain Si gives a negative Cotton effect, and It explains that the helical control can be controlled only by the number of chiral substituents without changing the chain chirality. Further, it is also described that by changing the temperature as an external signal, the CD code changes to positive or negative and functions as an optically active switch.
However, there is no mention of the optical properties of thin films formed by spin coating from the solutions of the newly synthesized homopolymers and copolymers.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to examine the optical properties of a thin film formed by spin-coating from a solution of a newly synthesized homopolymer and copolymer represented by the general formula 1, and thereby an optical material having useful optical properties It is to provide a method for manufacturing.
Then, using toluene which is a good solvent for the polymer, the solution was dissolved in the solution at a concentration of 1 × 10 −2 mol / L (Si repeating unit), and this was polished for isotropic spectral measurement. A thin film, for example, a 0.05 μm thin film was formed on a surface of a 1 mm quartz glass substrate (manufactured by Taisei Co., Ltd.) by spin coating, for example, at 3000 rpm, to prepare a sample for studying optical characteristics. The thin film was apparently smooth, non-uniform, and transparent without generation of scatterers due to generation of microcrystals.
[0006]
For the sample on which the thin film was formed, a circular dichroism (CD) spectrum and an ultraviolet-visible (UV-Vis) absorption were measured using a circular dichroism dispersometer (manufactured by JASCO Corporation, model name: Model J-820F). The spectrum was measured, and each of the above characteristics was measured. When the angle and the CD spectrum were rotated with respect to the optical axis, the sign of the circular dichroic signal was inverted every time the angle was rotated by 90 °, and a spectrum with almost the same intensity was observed. The thin film formed as described above was found to be effective as a polarizing film as it was, and the problem of providing the optically active material could be solved. The UV-Vis absorption spectrum did not change even when the thin film was rotated.
[0007]
[Means for Solving the Problems]
The present invention provides (1) a method of spin-coating a homogeneous solution of a polysilane polymer or a random copolymer of polysilane having a degree of polymerization n of 10 to 100,000 represented by the general structural formula 1 on an optically isotropic transparent substrate surface by spin coating. This is a method for manufacturing a film.
[0008]
Embedded image
Figure 2004341427
[0009]
In the formula, R 1 to R 4 are alkyl groups which may have an asymmetric carbon atom having up to 22 carbon atoms and are substituted at the para (p-) or meta (m-) position. May be. m is 0 or more and 1 or less.
[0010]
(2) Preferably, in the structural formula 1, R 1 and / or R 2 has an asymmetric carbon, and R 3 and R 4 do not have an asymmetric carbon. (3) More preferably, the method for producing a polarizing film according to the above (2), wherein R 1 and R 2 are alkyl groups having the same asymmetric carbon, and (4) more preferably, R 1 and R 2 are (S) process for producing a polarizing film according to claim 3, wherein a 2-methylbutyl group.
The fact that the thin film formed by spin-coating exhibited the polarization characteristics as it is is a unique effect caused by the chemical structure of the polymer, that is, coordination due to the organizational force that overcomes the centrifugal force of spin-coating. This shows that the structure can be organized into an optically anisotropic structure, in other words, a completely surprising phenomenon.
[0011]
[Embodiment of the present invention]
The present invention will be described in more detail.
I. An object of the present invention is to provide a solution obtained by dissolving a polymer having the concept of the general formula 1 so as to have a concentration of 1 × 10 −6 to 5 × 10 −2 mol / L (Si repeating unit). This can be achieved under the condition that a thin film having a thickness of 0.01 to 1 μm is formed by spin-coating on the surface of an isotropic transparent substrate.
[0012]
II. More preferably, the polysilane is selected from the following polysilane homopolymers or copolymers described in Non-patent Documents 1 and 2 below. See Non-Patent Document 2 for synthesis and confirmation data of compounds.
[0013]
Embedded image
Figure 2004341427
[0014]
In Chemical Formulas 1 and 2, X and Y are each 0 or more and 1 or less. n is an integer of 10 to 100,000. Preferably, it is a copolymer wherein X and Y are 0.5.
[0015]
III. Examples of good solvents for forming the solution include toluene, tetrahydrofuran, and chloroform, and toluene is particularly preferable.
IV. As the optically isotropic transparent substrate on which the thin film is applied, a known substrate such as a quartz glass or a polarizing film support can be used.
[0016]
【Example】
Measuring instruments;
UV-Vis spectrum and CD spectrum; Circular dichroic dispersometer J-820F type NMR spectrum manufactured by JASCO Corporation; Varian Unity 300 spectrometer molecular weight; SEC (size exclusion chromatography) (“High performance liquid chromatography manufactured by Shimadzu Corporation”) The system is equipped with a SEC column (KF-806L) manufactured by Showa Denko KK for measurement.)
Hereinafter, the present invention will be described specifically with reference to Examples. However, the purpose of the present invention is to make the present invention easier to understand, and it is needless to say that the present invention is not limitedly interpreted.
[0017]
REFERENCE EXAMPLE In the above-mentioned Chemical Formula 1, the compound of X is 0.2, the compound of 0.5 and compound 2 of 0.8, the compound of Y is 0.2, the compound of 0.5 and the compound of 0.5 and 0.8 Synthesis of compound 6. In particular, a method for synthesizing Compound 2 is described below.
Combine bis- (p- (S) -2-methylbutylphenyl) dichlorosilane (1.52 g, 3.86 mmol) and bis- (pn-butylphenyl) dichlorosilane (1.41 g, 3.86 mmol) To prepare a 1: 1 ratio mixture, then added to 2 mL of toluene. This is added to toluene (11 mL) in which 2.5 equivalents of sodium (0.44 g, 19.32 mmol) are dispersed and then surface activated with 13 μL of diglyme.
The mixture is stirred slowly at 70 ° C. Meanwhile, the container is shielded from light and the molecular weight is monitored periodically by SEC.
After about 3 hours, 0.1 equivalent of trimethylchlorosilane (0.08 g, 0.77 mmol) is added as a terminator and stirring is continued for another 30 minutes, after which the mixture is pressed through two Teflon membranes with pore sizes of 40 μm and 10 μm. Filtered. The high molecular weight component was separated as a white powder or fibrous material by fractional precipitation consisting of a mixed solution of 2-propanol and toluene, followed by centrifugation and vacuum drying in an oven at 80 ° C. The yield is 0.24 g (10.1%). Table 1 shows NMR data of the compound 1-6.
[0018]
[Table 1]
Figure 2004341427
[0019]
Example 1
Compound 2 having a molecular weight of 102,000 was dissolved in toluene, which is a good solvent for the copolymer, at a concentration of 1 × 10 −2 mol / L (Si repeating unit) to prepare a spin coating solution. As an optically isotropic substrate, a quartz glass substrate having a smooth thickness of 1 mm (purchased from Taisei Co., Ltd., product name; quartz glass substrate, double-sided polishing finish for spectral measurement) polished for use in spectral measurement was prepared. Next, the coating was performed at room temperature of about 23 ° C. at a rotation speed of 3000 rpm for 30 seconds. The formed thin film had a thickness of about 0.05 μm. The thin film formed on the quartz glass substrate was measured for the whole substrate using the circular dichroism dispersometer.
[0020]
In the measurement, a CD / (UV-Vis) spectrum was measured when the thin film was rotated by 0 ° ()), 90 ° (□), 180 ° (△), and 270 ° (×) with respect to the optical axis. . FIG. 1 shows the measurement results. Regardless of the rotation angle, the absorption spectrum in the ultraviolet-visible (UV-Vis) wavelength region is the same, and the sign of circular dichroism (CD) is inverted at every rotation angle of 90 °, and the intensity is almost the same. Was. The left vertical axis of FIG. 1 is absorbance, the right vertical axis is CD (m · deg, milli · degree), and the horizontal axis is wavelength (nm).
[0021]
From the relationship between the rotation angle and the CD characteristics shown in FIG. 1, it was confirmed that the thin film formed from the polysilane copolymer had anisotropy in the substrate surface, and was found to be effective as a polarizing film.
[0022]
Example 2
A solution having the same solution concentration as in Example 1 was prepared using a polysilane homopolymer having a molecular weight of 450,000 in which X was 0 in the compound of Formula 1, and the solution was spin-coated at 3000 rpm for 30 seconds. Then, a thin film of the polysilane homopolymer was formed on the same substrate surface as in Example 1. The obtained sample was measured for the circular dichroism (CD) and the absorption spectrum in the ultraviolet-visible (UV-Vis) wavelength region in the same manner as in Example 1.
[0023]
In the measurement, a CD / (UV-Vis) spectrum was measured when the thin film was rotated by 0 ° ()), 90 ° (□), 180 ° (△), and 270 ° (×) with respect to the optical axis. . FIG. 2 shows the measurement results. As in Example 1, the absorption spectrum in the ultraviolet-visible (UV-Vis) wavelength region is the same regardless of the rotation angle, and the sign of circular dichroism (CD) is inverted every rotation angle of 90 °, and the intensity is changed. Turned out to be almost identical. As in FIG. 1, the left vertical axis of FIG. 2 is the absorbance, the right vertical axis is the CD (m · deg, milli · degree), and the horizontal axis is the wavelength (nm).
[0024]
From the relationship between the rotation angle and the CD characteristics in FIG. 2, it can be confirmed that the thin film formed from the polysilane homopolymer has anisotropy in the substrate surface as in Example 1, and is effective as a polarizing film. I found out.
[0025]
In addition, comparing the circular dichroism (CD) spectra of FIG. 1 and FIG. 2, the absorption maximum wavelength was observed at around 390 nm in FIG. 1, whereas it was observed at around 320 nm in FIG. That is, in Chemical Formula 1 used in the measurements of Example 1 and Example 2, it was confirmed that the absorption maximum wavelength could be easily controlled only by changing the value of X. In other words, they show that the polarization wavelength can be selected and controlled, and have found a function of the polarization wavelength selectivity that adds value to the polarizing film.
[0026]
【The invention's effect】
As described above, according to the present invention, a polarizing film having a polarizing function can be manufactured simply by forming a thin film by spin-coating a solution of the polysilane of the general structural formula 1 on an optically isotropic substrate. That is, the present invention provides a simple method for producing an industrially useful polarizing film. In addition, the polarizing film is a phenomenon that occurs because the polysilane is organized on a substrate to form an arrayed structure, and a polymer not described in this patent, which does not have an arrayed structure by spin coating on the thin film, is arrayed. There is a possibility of application as a groundwork for making it work.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a thin film of about 0.05 μm formed of a polysilane copolymer in which X is 0.5 formed on the quartz glass substrate surface of Example 1 with respect to the optical axis at 0 ° (゜), 90 °; CD / (UV-Vis) spectra at ゜ (□), 180 ° (△), and 270 ° (×) rotation.
FIG. 2 is a cross-sectional view of a thin film of about 0.05 μm formed of a polysilane homopolymer in which X is 0 according to the formula 1 formed on the surface of the quartz glass substrate of Example 2; (□), CD / (UV-Vis) spectra at 180 ° (△) and 270 ° (×) rotation.

Claims (4)

一般構造式1の重合度nが10〜100,000のポリシラン重合体またはポリシランランダム共重合体の均一溶液を光学的等方性透明基体表面にスピン塗布することにより偏光膜を製造する方法。
Figure 2004341427
式中R〜Rは、パラ(p−)またはメタ(m−)位に置換した炭素数22までの不斉炭素を有していても良いアルキル基であり、これらは同一でも、異なっていても良い。mは0以上1以下である。
A method for producing a polarizing film by spin-coating a uniform solution of a polysilane polymer or a random copolymer of a polysilane having a polymerization degree n of 10 to 100,000 of the general structural formula 1 on the surface of an optically isotropic transparent substrate.
Figure 2004341427
In the formula, R 1 to R 4 are alkyl groups which may have an asymmetric carbon atom having up to 22 carbon atoms and are substituted at the para (p-) or meta (m-) position. May be. m is 0 or more and 1 or less.
構造式1においてR及び/またはRが不斉炭素を有し、R及びRが不斉炭素を有しない請求項1に記載の偏光膜を製造する方法。The method for producing a polarizing film according to claim 1, wherein in Formula 1, R 1 and / or R 2 has an asymmetric carbon, and R 3 and R 4 do not have an asymmetric carbon. 及びRが同一の不斉炭素を有するアルキル基である請求項2記載の偏光膜を製造する方法。 3. The method for producing a polarizing film according to claim 2, wherein R 1 and R 2 are alkyl groups having the same asymmetric carbon. 及びRが(S)−2−メチルブチル基である請求項3記載の偏光膜を製造する方法。How R 1 and R 2 to produce a polarizing film according to claim 3, wherein the (S) -2- methylbutyl group.
JP2003140522A 2003-05-19 2003-05-19 Method for producing polysilane optically active inversion thin film Expired - Fee Related JP3817718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003140522A JP3817718B2 (en) 2003-05-19 2003-05-19 Method for producing polysilane optically active inversion thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003140522A JP3817718B2 (en) 2003-05-19 2003-05-19 Method for producing polysilane optically active inversion thin film

Publications (2)

Publication Number Publication Date
JP2004341427A true JP2004341427A (en) 2004-12-02
JP3817718B2 JP3817718B2 (en) 2006-09-06

Family

ID=33529230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003140522A Expired - Fee Related JP3817718B2 (en) 2003-05-19 2003-05-19 Method for producing polysilane optically active inversion thin film

Country Status (1)

Country Link
JP (1) JP3817718B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0973083A (en) * 1995-09-05 1997-03-18 Toshiba Corp Illuminator and liquid crystal display device
JPH10226727A (en) * 1997-02-14 1998-08-25 Nippon Telegr & Teleph Corp <Ntt> Optically active organosilicon copolymer
JP2000248068A (en) * 1999-03-01 2000-09-12 Nippon Telegr & Teleph Corp <Ntt> Organic silicon homo- and copolymer having chiral substituent
JP2001146519A (en) * 1999-11-19 2001-05-29 Japan Science & Technology Corp Optically active organosilicon polymer
JP2001164251A (en) * 1999-12-10 2001-06-19 Japan Science & Technology Corp CHOLESTERIC LIQUID CRYSTAL MATERIAL COMPRISING OPTICALLY ACTIVE HOMO- OR COPOLYMER POLYSILANES HAVING OPTICALLY ACTIVE ALKYL GROUP HAVING BRANCHED STRUCTURE AT beta- POSITION AND IN RIGID ROD-LIKE HELICAL STRUCTURE

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0973083A (en) * 1995-09-05 1997-03-18 Toshiba Corp Illuminator and liquid crystal display device
JPH10226727A (en) * 1997-02-14 1998-08-25 Nippon Telegr & Teleph Corp <Ntt> Optically active organosilicon copolymer
JP2000248068A (en) * 1999-03-01 2000-09-12 Nippon Telegr & Teleph Corp <Ntt> Organic silicon homo- and copolymer having chiral substituent
JP2001146519A (en) * 1999-11-19 2001-05-29 Japan Science & Technology Corp Optically active organosilicon polymer
JP2001164251A (en) * 1999-12-10 2001-06-19 Japan Science & Technology Corp CHOLESTERIC LIQUID CRYSTAL MATERIAL COMPRISING OPTICALLY ACTIVE HOMO- OR COPOLYMER POLYSILANES HAVING OPTICALLY ACTIVE ALKYL GROUP HAVING BRANCHED STRUCTURE AT beta- POSITION AND IN RIGID ROD-LIKE HELICAL STRUCTURE

Also Published As

Publication number Publication date
JP3817718B2 (en) 2006-09-06

Similar Documents

Publication Publication Date Title
Rodriguez et al. Architecture of chiral poly (phenylacetylene) s: from compressed/highly dynamic to stretched/quasi-static helices
Nakashima et al. Solvent and temperature effects on the chiral aggregation of poly (alkylarylsilane) s bearing remote chiral groups
Percec et al. Steric communication of chiral information observed in dendronized polyacetylenes
CN1340592A (en) Material for light-oriented film, light-oriented film and its manufacture method
Zhang et al. A facile synthetic route to functional poly (phenylacetylene) s with tunable structures and properties
EP2332942B1 (en) Polymerizable chiral compound, polymerizable liquid crystalline composition, liquid crystalline polymer, and optical isomer
JPH09278890A (en) Photosensitive substance for liquid crystal alignment and liquid crystal device using the same
CN1396947A (en) Polymerizable liquid crystalline dioxetanes, their preparation and use
EP2708524B1 (en) Polyisocyanide derivative having controlled helical main chain structure
JP4534107B2 (en) Photoalignment material and method for producing photoalignment film using the same
Deng et al. Variation of helical pitches driven by the composition of N-propargylamide copolymers
JP4429268B2 (en) Novel pyrrole derivative and light-sensitive film using the same
Wang et al. Synthesis of core cross-linked star polymers carrying helical poly (phenyl isocyanide) arms via “core-first” strategy and their surface chiral recognition ability
JP2003066460A (en) Photo-alignment material for liquid crystal alignment layer
WO2022109959A1 (en) Chiral azobenzene polymer crosslinked thin film and preparation method therefor and application thereof
Lehmann et al. Star-shaped oligobenzoates with a naphthalene chromophore as potential semiconducting liquid crystal materials?
Si et al. Novel UV-sensitive bis-chalcone derivatives: synthesis and photocrosslinking properties in solution and solid PMMA film
EP2554557B1 (en) Polymerizable chiral compound, polymerizable liquid crystal composition, liquid crystal polymer, and optically anisotropic material
JP2004341427A (en) Manufacturing method of polysilane optical activity reverse thin film
KR100332459B1 (en) A polymer film for smart window
Dai et al. Synthesis and stereochemistry of helical polyurethanes based on 2, 2′-dihydroxy-1, 1′-binaphthyl and diisocyanatobenzenes
JP3926662B2 (en) Polyarylacetylene derivative and chiral sensor using the same
JP2000119652A (en) Optically anisotropic material, anisotropic conductive material, manufacture thereof and discotic liquid crystalline molecule
JP3687040B2 (en) Method for producing polysilane circular dichroic dispersion
JP2007238510A (en) Optically active compound, optical recording material, optical film and information recording medium

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060602

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees