JP2004341394A - Scanning optical microscope - Google Patents

Scanning optical microscope Download PDF

Info

Publication number
JP2004341394A
JP2004341394A JP2003140033A JP2003140033A JP2004341394A JP 2004341394 A JP2004341394 A JP 2004341394A JP 2003140033 A JP2003140033 A JP 2003140033A JP 2003140033 A JP2003140033 A JP 2003140033A JP 2004341394 A JP2004341394 A JP 2004341394A
Authority
JP
Japan
Prior art keywords
lens
objective lens
conversion element
shape
wavefront conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003140033A
Other languages
Japanese (ja)
Other versions
JP4149309B2 (en
Inventor
Ikutoshi Fukushima
郁俊 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2003140033A priority Critical patent/JP4149309B2/en
Publication of JP2004341394A publication Critical patent/JP2004341394A/en
Application granted granted Critical
Publication of JP4149309B2 publication Critical patent/JP4149309B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Microscoopes, Condenser (AREA)
  • Lenses (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a scanning optical microscope which employs a wave front converting element, has little off-axis performance deterioration and exerts little influence on an object to be observed. <P>SOLUTION: The scanning optical microscope is equipped with a light source 11, the wave front converting element 2 which optionally converts the wave front of the illumination light emitted by the light source, a luminous flux scanning means 3 which makes a scan with the wave front-converted illumination light from the wave front converting element 2 in mutually orthogonal directions, an objective lens 4 which converges the illumination light whose direction is changed by the luminous flux scanning means 3 on the object O, and a detector 53 which detects signal light emitted by the object O; and the optical element which is closest to the object among the objective lens 4 has its position fixed with respect to the object, the objective lens 4 includes a lens moving toward and away from the object, and the wave front converting element 2 is modulated in synchronism with the movement. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、走査型光学顕微鏡に関し、特に、波面変換素子を用いたレーザー走査型顕微鏡等の走査型光学顕微鏡に関するものである。
【0002】
【従来の技術】
従来、例えばLSM(レーザー走査型顕微鏡)において、観測する物体の三次元像を得るためには、その物体又は対物レンズを機械的に光軸方向に移動させて、物体内部の各面における光学像を順次取り込んでいく必要があった。しかし、この方法は機械的駆動を必要とするために、位置制御を高い精度と再現性で実現することは困難である。また、物体を移動させる方法においては、物体が大きい場合には高速走査ができない等の問題があった。
【0003】
さらに、生体物体を観察する際に、対物レンズを物体に直接接触させるか、あるいは、物体を培養液に浸した状態で対物レンズを走査すると、その振動による悪影響を観察する物体に与えることになり、好ましくない。
【0004】
これらの問題点を解決する方法として、特許文献1記載のアダプティブ光学装置がある。特許文献1のアダプティブ光学装置は、パワーを変化させることのできる光学素子(波面変換素子)を備えた顕微鏡であって、図16、図17にその構成図を示す。この先行例では、観察光路及び/又は照明光路内に波面変換素子を有し、その波面変換素子を用いて光学系の焦点距離を変化させると共に、この焦点距離変化に伴って生じる収差も補正するものである。こうすることによって、対物レンズと物体との距離を変えることなく、物体空間での焦点の形成と移動、さらに収差補正を行うことができる。
【0005】
【特許文献1】
特開平11−101942号公報
【0006】
【発明が解決しようとする課題】
上記の従来技術において、物体で焦点移動を行い、さらに収差補正を行う場合に、対物レンズの軸上での収差を補正するように波面変換素子を変調すると、対物レンズの軸外では収差が生じてしまう。焦点移動を行わない場合には、対物レンズが軸外の光束に対しても、ある程度収差が補正されるように設計されているので、軸上と軸外の光束に対しても収差が補正される場合もある。しかし、焦点の移動が行われると、その移動量に応じて軸上の収差と軸外の収差の違いが大きくなるために、対物レンズの軸上の光束を補正するために変調していると、軸外の収差を十分に補正できず、軸から離れた位置、つまり、物体高が高い所では十分な性能が確保できない場合が多い。
【0007】
本発明は従来技術のこのような問題点を解決するためになされたものであり、その目的は、軸外での性能劣化が少なく、観察する物体に影響を及ぼすことの少ない、波面変換素子を用いたレーザー走査型顕微鏡(LSM)等の走査型光学顕微鏡を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成する本発明の走査型光学顕微鏡は、光源と、前記光源から発する照明光に任意の波面変換を与える波面変換素子と、前記波面変換素子から発する波面変換後の照明光を互いに直交する方向に走査する光束走査手段と、前記光束走査手段によって進行方向を変えた照明光を物体に集光する対物レンズと、前記物体から発する信号光を検出する検出器とを備え、前記対物レンズの中で最も物体側にある光学素子が物体に対して位置を固定され、前記対物レンズは物体に対して移動するレンズを含み、その移動と同期して、前記波面変換素子を変調するように構成したことを特徴とするものである。
【0009】
この場合、光束走査手段が、対物レンズの瞳と共役な位置に配置されていることが望ましい。
【0010】
また、波面変換素子と光束走査手段とが互いに共役の位置に配置されていることが望ましい。
【0011】
本発明においては、対物レンズの中で最も物体側にある光学素子が物体に対して位置を固定され、対物レンズは物体に対して移動するレンズを含み、その移動と同期して、波面変換素子を変調するように構成したので、焦点調節と収差補正を移動するレンズと波面変換素子に分担させることができ、補正能力が高まると共に、波面変換素子の変調量が少なくてすむようになり、軸外での性能劣化が少なく、観察する物体に影響を及ぼすことの少ない走査型光学顕微鏡を提供することができる。
【0012】
【発明の実施の形態】
以下に、本発明の走査型光学顕微鏡の実施形態を示す。なお、以下の説明に用いる図中において、繰り返し用いられる同一の要素には同一の記号を付し、重複する説明は行わない。また、光束が入射してくる方向を前側、出射していく方向を後側とし、光源としてレーザー発振器を用いたレーザ走査型顕微鏡(LSM)を用いて説明する。
【0013】
図1〜図15を参照して本発明の1実施形態を説明する。
【0014】
図1はこの実施形態のLSMの全体の構成を示す図であり、この図において、光源としてのレーザー光源11は照明光を発し、その照明光はコリメータレンズ12によって平面波に変換される。次に、この照明光はダイクロイックミラー51を透過した後に、波面変換素子2に入射する。この波面変換素子2は、ミラーの反射面が電気的制御によって制御可能な形状可変ミラー22で構成され、この形状可変ミラー22では、後述する所定の波面変換が行われる。波面変換素子2によって波面変換が施された照明光は、その前側焦平面が波面変換素子2と略一致するように配置されている第三のリレー光学系71に入射する。第三のリレー光学系71を透過した照明光は、次に第二のリレー光学系72を透過し、その後側焦平面に配置してある光束走査手段3に入射する。ここで、第三のリレー光学系71の後側焦平面と第二のリレー光学径72の前側焦平面が略一致するように配置されているので、光束走査手段3と波面変換素子2とは共役な面となる。
【0015】
光束走査手段3は互いに直交する2つの軸で回転が可能なジンバルミラーからなり、ジンバルミラーで適切に照明光の向きを変えることで、物体面で互いに直行するx方向及びy方向に入射する照明光を走査できるようにする。
【0016】
光束走査手段3で特定の角度に反射された照明光は、第一のリレーレンズ73に入射し、次に結像レンズ74に入射し、最後に対物レンズ4を透過することで、物体Oに集光する。この対物レンズ4では、対物レンズ4中のレンズの一部が波面変換素子2と連動して移動することで、集光する位置を変化させる。ここで、第一のリレーレンズ73、結像レンズ74、対物レンズ4はテレセントリックな光学系で形成され、それぞれの前側焦平面と後側焦平面が略同一となるようになっている。
【0017】
照明光が集光した物体Oからは測定すべき反射光束が発生し、その光束は照明光が通ってきたのと逆向きの光路を進み、対物レンズ4、結像レンズ74、第一のリレーレンズ73、光束走査手段3、第二のリレーレンズ72、第三のリレーレンズ71と通過し、波面変換素子2で反射される。波面変換素子2で反射された光束は、次にダイクロイックミラー51で検出すべき特定の波長のみが反射され、集光レンズ52に入射する。集光レンズ52の後側焦平面には検出器53が配置され、目的とする波長が検出される。
【0018】
本実施形態で用いた第三のリレーレンズ71、第二のリレーレンズ72、第一のリレーレンズ73及び結像レンズ74、対物レンズ4の具体例の数値データを後記の表1に、さらに、それらの光学系の詳細を図2、特に対物レンズ4については図3に示す。
【0019】
表1において、波面変換素子2位置での光軸に垂直な面S1から第三のリレー光学系71、第二のリレー光学系72、光束走査手段3、第一のリレーレンズ73、結像レンズ74、対物レンズ4、物体Oに至る順の光学面の曲率半径をr、r、r、…、各光学面間の間隔をd、d、d、…、各光学面間の空気以外の媒体(レンズ及び液体)のd線の屈折率をnd1、nd2、nd3、…、各光学面間の空気以外の媒体(レンズ及び液体)のアッベ数をνd1、νd2、νd3、…としている。なお、図2では区別しやすいように、いくつかの光学面をその面の上記曲率半径を示す記号r、r、r、…で示しており、また、いくつかの光学面間の間隔を上記間隔d、d、d、…で示しており、図3では全ての光学面と光学面間の間隔を同様に示してある。
【0020】
本実施形態では、図3に示す対物レンズ4中のレンズ間隔d39とd41が変化し、その間隔間に位置するレンズ41が移動する。したがって、物体Oと直接接しているレンズは移動しないので、レンズ41の移動に伴う物体Oへの影響はほとんどない。
【0021】
また、本実施形態では、波面変換素子2として電気的に反射面が制御可能な形状可変ミラー22で、その光軸上の中心が固定されている。反射面の直交座標を(x’,y’,z’)とした場合に、反射面の形状Z’(x’,y’)は次の(1)式に示すような自由曲面とし、その係数Cにおいて、jは15以内とする。
【0022】
Z’(x’,y’)=c(x’+y’)÷[1+√{1−(1+k)c(x’+y’)}]+Σ Cx’y’j={(m+n)+m+3n}/2+1・・・(1)
ここで、(1)式の第1項は球面項、第2項は自由曲面項である。球面項中、
c:頂点の曲率
k:コーニック定数(円錐定数)
である。
【0023】
ここで、ΔZの符号は対物レンズ4の焦平面より、対物レンズ4に近い方をマイナス、遠ざかる方向をプラスにとることにする(図3)。また、照明光はz’、y’平面内でz’軸に対して−45°の方向から入射するものとする(図2)。また、使用波長は488nmとしている。
【0024】
ΔZ=0の位置が対物レンズ4の焦点位置であるために、ΔZ=0の位置に照明光を集光させるには、波面変換素子2を平面にしておき、平面波が第三のリレーレンズ71に入射すればよい。しかし、ΔZが0でない場合には、第三リレーレンズ71に入射させる照明光は平面波でなく、補正した波面を入射させる必要がある。波面変換素子2のみを変調して、ΔZ=−25μmの物体面で、y=0.0mm(yは物体高となる。)の位置に照明光を収差なく集光させる場合を考える。この場合に、図2に示すS1面(波面変換素子2と45°をなす平面)における仮想的な波面形状のy方向の断面は図4(a)のようになる。同様に、ΔZ=−25μmの物体面でy=0.0mmの位置に照明光を収差なく集光させるときに、対物レンズ4中のレンズ41を、後記の表2に示す値で移動させた場合では、S1面において必要になる仮想的な波面の形状は図5(a)となる。図4(a)、図5(a)から明らかなように、必要となる波面の光路差が波面変換素子2のみを用いる場合には9μmである。一方、本実施形態で用いている対物レンズ4中のレンズ41を移動させる場合には、デフォーカス成分をレンズ移動で補っているため、必要となる波面の光路差は0.5μmと大変小さくなっている。したがって、波面変換素子2(本実施形態では、形状可変ミラー22)に大きな変調量が必要ではなくなることが分かる。
【0025】
次に、物体面でy=0.0mmの位置に収差なく集光させる波面と、それ以外のy(物体高)の位置で収差なく集光させるための波面との違いについて、S1面のy方向での違いを平方和として求めた。その結果、波面変換素子2のみを用いた場合を図4(b)に、対物レンズ4中のレンズ41を移動させた場合を図5(b)に示す。これらのグラフから、波面変換素子2のみを用いて変調を行う場合には、yが0から離れる程y=0.0mmで必要な波面との間の光路差が生じることが分かる。例えばy=0.08mmでは、波面変換素子2のみの場合には、y=0.0mmとの平行和は、0.74×10−6mmに対して、対物レンズ4中のレンズ41を移動させた場合には、0.41×10−6mmと小さくなっている。これは、対物レンズ4中のレンズ41を用いてデフォーカス成分を取り除いているので、焦点の位置ずれに伴うその他の収差も小さくすることができるからである。
【0026】
ΔZ=25μmの物体面で、y=0.0mmの位置に照明光を集光させる場合について、波面変換素子2のみを用いて変調するときに、S1面で必要とされる波面形状のy方向の断面を図6(a)に、対物レンズ4中のレンズ41を移動させた場合にS1面で必要な波面形状の断面図を図7(a)に示す。さらに、y=0.0mmで必要な波面とその他の領域で必要な波面の違いをぞれぞれ図6(b)、図7(b)に示す。これら、図6、図7からも、対物レンズ4中のレンズ41を移動させた場合の方が、補正すべき波面の光路差が小さく、補正すべき波面の量も小さいことが分かる。
【0027】
したがって、対物レンズ4中のレンズ41の移動と連動して波面変換素子2の変調を適切に行うことで、物体面で広い範囲にわたって収差の補正が可能であることが分かる。また、波面変換素子2の変調と対物レンズ4中のレンズ41の移動が連動しているので、波面変換素子2に必要とされる変調量が小さく、当然その制御も容易となる。
【0028】
次に、本実施形態として、波面変換素子2の形状可変ミラー22を、上述した4次の自由曲面で変形させて最適化を行った場合について説明する。図8(a1)〜(a3)に対物レンズ4中のレンズ41を移動させずに、波面変換素子2である形状可変ミラー22を変調し、ΔZ=−25μmの位置に照明光を集光するように最適化を行った場合の、形状可変ミラー22の形状を示す。(a1)は形状を示す斜視図、(a2)はx方向の断面図、(a3)はy方向の断面図である。形状可変ミラー22のみを変形させて性能を保とうとすると、上述した理由より、照明光が入射する領域において8.8μm程度と大きなミラーの変位が必要となる。一方、対物レンズ4中のレンズ41を移動させた場合の形状を示す同様の図を図8(b1)〜(b3)に示す。この場合には、形状可変ミラー22の変位量は0.4μm程度と非常に小さくすることが可能となる。
【0029】
次に、性能の評価として、Strehl比を用いて行う。Strehl比は、収差が全くない理想的な状態で瞳強度一定、円形開口における点像強度分布の最大強度を1として、現在の点像における最大強度値の比率を表したもので、1より値が下がるに従って収差による影響が生じていることを示している。ΔZ=−25μmの物体面におけるy軸方向の収差の変化としてStrehl比を図9に示す。図9から分かるように、形状可変ミラー22のみを用いて補正を行ったものに対して、y軸方向の広い範囲にわたってStrehl比の低下が少なく、つまり、物体面での広い領域にわたって良好に収差を補正することが可能なことが分かる。
【0030】
同様に、ΔZ=25μmの位置に焦点を合わせた場合について説明する。対物レンズ4中のレンズ41を移動せずに、波面変換素子2である形状可変ミラー22を最適化した場合の形状可変ミラー22の形状を同様の図である図10(a1)〜(a3)に示す。また、対物レンズ中4のレンズ41を連動して移動する場合のミラー形状を同様の図である図10(b1)〜(b3)に示す。さらに、物体面でのy軸方向におけるStrehl比を図11に示す。図10を見れば明らかなように、ΔZ=−25μmの場合と同様で、対物レンズ4中のレンズ41を移動させない場合には、形状可変ミラー22の変位量が少なくとも10μm程度必要となる。対物レンズ4の中のレンズ41を形状可変ミラー22の変調と連動させて移動する場合には、ミラーの変位量は3.5μm程度ですむことが分かる。Strehl比に関しては、対物レンズ4の中のレンズ41を移動させない場合と移動させた場合では、物体面でのy軸方向全域にわたって常にレンズ41の移動を行った方の性能が上であることが分かる。これは、形状可変ミラー22の変形面として、上述したような自由曲面の関数としているので、補正できる収差についても限界がある。対物レンズ4中のレンズ41を移動させない場合だと、ΔZ=25μmの位置に焦点位置を合わせるための形状可変ミラー22の変形が難しく、その他の収差補正まで十分にできないためである。一方、対物レンズ4中のレンズ41を連動して移動させると、焦点位置も移動する。したがて、形状可変ミラー22では主に他の収差について補正を行えばよいことになり、補正能力がレンズ41を移動させない場合より上回る。
【0031】
なお、本実施形態における対物レンズ4中のレンズ41の移動量、及び、形状可変ミラー22の変形に関する係数は表2に示しておく。
【0032】
次に、対物レンズ4中の移動するレンズ41と形状可変ミラー22の駆動方法について説明する。
【0033】
図1において、初めに、物体Oとして蛍光ビーズを配置しておく。形状可変ミラー22を平面にし、次に、予め計測に必要な焦平面の位置に物体Oである蛍光ビーズを移動させ、検出器53で検出される光量が最大となるように対物レンズ4中のレンズ41を移動させる。次に、形状可変ミラー22を用いて検出器53で検出される光量が最大となるように形状可変ミラー22の形状を最適化する。このようにして、観測に必要なΔZに対する対物レンズ4中のレンズ41の移動量と、形状可変ミラー22の形状データ(パラメータC)をコントローラ61にテーブルとして記憶させておく。実際の計測の際には、このテーブルに従ってレンズ41の移動量と形状可変ミラー22の形状を同期させて変調を行う。
【0034】
また、別な調整方法について、図12を用いて説明する。図12では、図1と比較すると、明視野観察を行うための白色光源81と、ハーフミラー82と、結像レンズ83と、明視野観察像を撮影するCCDカメラ84とが配置されている。初めに、Zスキャンを行いながら観測する物体Oを配置し、形状可変ミラー22を平面に設定して、白色光源81を用いて物体Oを照明し、その画像をハーフミラー82及び結像レンズ83を介してCCDカメラ84で撮像する。物体Oを移動させながら、同様に撮像を行い、観測したい物体中のZ方向の位置ΔZを特定する。次に、物体OをΔZ=0の位置に戻し、対物レンズ4中のレンズ41を移動させながら、事前に獲得したΔZの位置における物体Oの画像と比較する。対物レンズ4中のレンズ41を移動させて最も近いと思われる位置になるまで、対物レンズ4中のレンズ41の移動量の調整を行う。次に、形状可変ミラー22を用いて、最も画質が良くなるように形状可変ミラー22の最適化を行い、形状可変ミラー22の形状を決定する。これら決定した対物レンズ4中のレンズ41の移動量と、形状可変ミラー22の形状に関する係数(C)をコントローラー61に記憶させておく。最終的にレーザを用いた観測を行う際には、作成したテーブルに従ってレンズ41の移動量と形状可変ミラー22の形状を同期させて変調を行い、高速で光学性能の高いZスキャンを実現することが可能となる。
【0035】
本実施形態では、波面変換素子2として、光軸の中心、つまり、形状可変ミラー22面のx’−y’平面の中心では、変位量は常に0.0mmで、周辺が変形するものを示した。しかし、波面変換素子2である形状可変ミラー22として、凹面のみあるいは凸面のみ等の制限がある場合もある。例えば、静電タイプのように凹面のみで、変位量を正にできない場合には、図8(b1)〜(b3)や図10(a1)〜(b3)のような変調が不可能となり、Zスキャンができない領域が生じてしまう。このような場合には、第三のリレーレンズ71と第二のリレーレンズ72との距離を調整することで、形状可変ミラー22の形状を凹面に保ちつつ、Zスキャンが可能となる。
【0036】
例えば、形状可変ミラー22として、x’ 方向の半径が0.9mmでy’ 方向の半径が1.2mm程度の楕円領域が凹面にのみ変形する静電ミラーの場合を説明する。この場合には、形状可変ミラー22のx’=0,y’=0の点が0ではなく、負の方向にのみ移動し、x’方向の半径0.9mm、y’方向の半径1.2mm程度の周辺では変位が略0.0mmとする。上述した例では、第三のリレーレンズ71と第二のリレーレンズ72はテレセントリックな配置となっているが、そのレンズの間隔80mm(d)を40mm短くする。この配置にすると、ΔZ=0における最適な形状は、図13(a1)〜(a3)に図8(a1)〜(a3)と同様の図を示すように、凹面形状となる。さらに、ΔZ=−25μmの場合に形状可変ミラー22の変調を行うと、図14(a1)〜(a3)に示すようになり、一方、ΔZ=25μmの場合に対して形状可変ミラー22の最適化を行うと、図15(a1)〜(a3)に示すようになる。つまり、常にミラー全体が凹形状のままで、ΔZが−25μm〜25μmの範囲をスキャンすることが可能となる。
【0037】
このように、静電タイプで凹面形状のみの変形しかできない場合については、第三のリレーレンズ71と第二のリレーレンズ72の間隔を短くし、テレセントリックな配置をずらすようにするとよい。
【0038】
なお、本実施形態での形状可変ミラーの形状に関する係数を表3に示す。
【0039】
本発明の上記実施形態では、光束走査手段3と対物レンズ4の瞳とは共役な面に配置されている。光束走査手段3をこの瞳と共役な面に配置しなくとも、本実施形態は実現可能である。しかし、本実施形態のように、瞳と共役な面でx,y方向のスキャンを行う方が、光束のケラレもないので、より好ましい。
【0040】
なお、本実施形態では、波面変換素子2として、電気的な信号でその反射面の形状が制御可能な形状可変ミラーを用いているが、その他の液晶やフォトリフラクティブ結晶等の位相変調可能な素子も適用可能であることは明らかである。
【0041】

Figure 2004341394
Figure 2004341394
【0042】
Figure 2004341394

【0043】
Figure 2004341394

【0044】
以上、本発明の走査型光学顕微鏡を実施形態に基づいて説明してきたが、本発明はこれら実施形態に限定されず種々の変形が可能である。
【0045】
【発明の効果】
以上の説明から明らかなように、本発明の走査型光学顕微鏡によると、対物レンズの中で最も物体側にある光学素子が物体に対して位置を固定され、対物レンズは物体に対して移動するレンズを含み、その移動と同期して、波面変換素子を変調するように構成したので、焦点調節と収差補正を移動するレンズと波面変換素子に分担させることができ、補正能力が高まると共に、波面変換素子の変調量が少なくてすむようになり、軸外での性能劣化が少なく、観察する物体に影響を及ぼすことの少ない走査型光学顕微鏡を提供することができる。
【図面の簡単な説明】
【図1】本発明の1実施形態のレーザー走査型顕微鏡の全体の構成を示す図である。
【図2】図1の本実施形態の光学系の詳細を示す光路図である。
【図3】図1の本実施形態の対物レンズを示す光路図である。
【図4】ΔZ=−25μmの物体面に対して波面変換素子のみを変調する場合の図2のS1面における仮想的な波面形状のy方向の断面(a)と異なる像高における波面の差を示す図(b)である。
【図5】ΔZ=−25μmの物体面に対して対物レンズ中のレンズも移動させた場合の図4と同様の図である。
【図6】ΔZ=25μmの物体面に対して波面変換素子のみを変調する場合の図4と同様の図である。
【図7】ΔZ=25μmの物体面に対して対物レンズ中のレンズも移動させた場合の図4と同様の図である。
【図8】対物レンズ中のレンズを移動させずにΔZ=−25μmの位置に照明光を集光するように最適化を行った場合の形状可変ミラーの形状と、対物レンズ中のレンズを移動させた場合の形状可変ミラーの形状とを示す図である。
【図9】図8に対応するStrehl比を示す図である。
【図10】対物レンズ中のレンズを移動させずにΔZ=25μmの位置に照明光を集光するように最適化を行った場合の形状可変ミラーの形状と、対物レンズ中のレンズを移動させた場合の形状可変ミラーの形状とを示す図である。
【図11】図10に対応するStrehl比を示す図である。
【図12】対物レンズ中の移動するレンズと形状可変ミラーの別な調整方法を説明するための図である。
【図13】周辺固定の形状可変ミラーを用いて第三のリレーレンズと第二のリレーレンズの間隔を短くする場合のΔZ=0における形状可変ミラーの形状を示す図である。
【図14】ΔZ=−25μmの場合の図13と同様の図である。
【図15】ΔZ=25μmの場合の図13と同様の図である。
【図16】ビームスプリッターによって光路分割をする従来の顕微鏡の構成を示す図である。
【図17】ビームスプリッターによって光路分割をする従来の2光子顕微鏡の構成を示す図である。
【符号の説明】
O…物体
2…波面変換素子
3…光束走査手段
4…対物レンズ
11…レーザー光源
12…コリメータレンズ
22…形状可変ミラー
41…移動可能なレンズ
51…ダイクロイックミラー
52…集光レンズ
53…検出器
61…コントローラ
71…第三のリレー光学系
72…第二のリレー光学系
73…第一のリレーレンズ
74…結像レンズ
81…白色光源
82…ハーフミラー
83…結像レンズ
84…CCDカメラ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a scanning optical microscope, and particularly to a scanning optical microscope such as a laser scanning microscope using a wavefront conversion element.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in order to obtain a three-dimensional image of an object to be observed in, for example, an LSM (laser scanning microscope), the object or an objective lens is mechanically moved in an optical axis direction to form an optical image on each surface inside the object. It was necessary to take in sequentially. However, since this method requires mechanical driving, it is difficult to realize position control with high accuracy and reproducibility. In addition, the method of moving an object has a problem that high-speed scanning cannot be performed when the object is large.
[0003]
Furthermore, when observing a biological object, if the objective lens is brought into direct contact with the object, or if the object is scanned while the object is immersed in the culture solution, the adverse effects of the vibration will be exerted on the observed object. Is not preferred.
[0004]
As a method for solving these problems, there is an adaptive optical device described in Patent Document 1. The adaptive optical device disclosed in Patent Document 1 is a microscope provided with an optical element (wavefront conversion element) capable of changing power. FIGS. 16 and 17 show configuration diagrams of the microscope. In this prior example, a wavefront converting element is provided in the observation optical path and / or the illumination optical path, and the focal length of the optical system is changed using the wavefront converting element, and the aberration caused by the focal length change is also corrected. Things. By doing so, it is possible to form and move the focal point in the object space and to perform aberration correction without changing the distance between the objective lens and the object.
[0005]
[Patent Document 1]
JP-A-11-101942
[Problems to be solved by the invention]
In the above prior art, when the focal point is moved by the object and the aberration is further corrected, if the wavefront conversion element is modulated so as to correct the aberration on the axis of the objective lens, aberration occurs outside the axis of the objective lens. Would. When the focal point is not moved, the objective lens is designed to correct aberrations to some extent even for off-axis light beams, so that aberrations are corrected for both on-axis and off-axis light beams. In some cases. However, when the focal point is moved, the difference between the on-axis aberration and the off-axis aberration increases according to the amount of the movement, so that the modulation is performed to correct the on-axis light flux of the objective lens. In addition, off-axis aberrations cannot be sufficiently corrected, and in many cases, sufficient performance cannot be secured at a position distant from the axis, that is, at a place where the object height is high.
[0007]
The present invention has been made in order to solve such problems of the prior art, and an object of the present invention is to provide a wavefront conversion element that has little off-axis performance degradation and has little influence on an object to be observed. An object of the present invention is to provide a scanning optical microscope such as a laser scanning microscope (LSM) used.
[0008]
[Means for Solving the Problems]
A scanning optical microscope according to the present invention that achieves the above object includes a light source, a wavefront conversion element that performs arbitrary wavefront conversion on illumination light emitted from the light source, and an illumination light after wavefront conversion emitted from the wavefront conversion element that is orthogonal to each other. A light beam scanning unit that scans in a direction in which the light beam travels, an objective lens that converges illumination light whose traveling direction has been changed by the light beam scanning unit onto an object, and a detector that detects signal light emitted from the object. The optical element closest to the object side is fixed in position with respect to the object, and the objective lens includes a lens that moves with respect to the object, and modulates the wavefront conversion element in synchronization with the movement. It is characterized by comprising.
[0009]
In this case, it is desirable that the light beam scanning means is arranged at a position conjugate with the pupil of the objective lens.
[0010]
Further, it is desirable that the wavefront conversion element and the light beam scanning means are arranged at positions conjugate with each other.
[0011]
In the present invention, the optical element closest to the object in the objective lens is fixed in position with respect to the object, the objective lens includes a lens that moves with respect to the object, and the wavefront converting element is synchronized with the movement. Is modulated, the focus adjustment and aberration correction can be shared between the moving lens and the wavefront conversion element, and the correction capability is increased, and the modulation amount of the wavefront conversion element can be reduced, and the off-axis can be reduced. It is possible to provide a scanning optical microscope in which the performance of the scanning optical microscope is small and the object to be observed is hardly affected.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the scanning optical microscope of the present invention will be described. In the drawings used in the following description, the same elements that are repeatedly used will be denoted by the same reference symbols, without redundant description. Also, a description will be given using a laser scanning microscope (LSM) using a laser oscillator as a light source, with the direction in which the light beam enters is the front side and the direction in which the light beam exits is the rear side.
[0013]
One embodiment of the present invention will be described with reference to FIGS.
[0014]
FIG. 1 is a diagram showing the overall configuration of an LSM according to this embodiment. In this figure, a laser light source 11 as a light source emits illumination light, and the illumination light is converted into a plane wave by a collimator lens 12. Next, this illumination light enters the wavefront conversion element 2 after passing through the dichroic mirror 51. The wavefront conversion element 2 is constituted by a variable shape mirror 22 whose reflection surface can be controlled by electrical control. The variable shape mirror 22 performs a predetermined wavefront conversion described later. The illumination light subjected to the wavefront conversion by the wavefront conversion element 2 is incident on a third relay optical system 71 arranged such that the front focal plane thereof substantially coincides with the wavefront conversion element 2. The illumination light transmitted through the third relay optical system 71 then transmits through the second relay optical system 72, and is incident on the light beam scanning means 3 disposed on the rear focal plane. Here, since the rear focal plane of the third relay optical system 71 and the front focal plane of the second relay optical diameter 72 are substantially aligned, the light beam scanning means 3 and the wavefront conversion element 2 It becomes a conjugate surface.
[0015]
The light beam scanning means 3 is composed of a gimbal mirror rotatable about two axes orthogonal to each other. By appropriately changing the direction of the illumination light with the gimbal mirror, the illumination light is incident on the object plane in the x and y directions perpendicular to each other. Enable light scanning.
[0016]
The illumination light reflected by the light beam scanning means 3 at a specific angle enters the first relay lens 73, then enters the imaging lens 74, and finally passes through the objective lens 4, so that the object O Collect light. In the objective lens 4, a part of the lens in the objective lens 4 moves in conjunction with the wavefront conversion element 2, thereby changing the position where light is collected. Here, the first relay lens 73, the imaging lens 74, and the objective lens 4 are formed of a telecentric optical system, and the front focal plane and the rear focal plane are substantially the same.
[0017]
A reflected light beam to be measured is generated from the object O on which the illumination light is condensed, and the light beam travels in an optical path in a direction opposite to that through which the illumination light has passed, and the objective lens 4, the imaging lens 74, and the first relay The light passes through the lens 73, the light beam scanning unit 3, the second relay lens 72, and the third relay lens 71, and is reflected by the wavefront conversion element 2. In the light beam reflected by the wavefront conversion element 2, only a specific wavelength to be detected next by the dichroic mirror 51 is reflected and enters the condenser lens 52. A detector 53 is arranged on the rear focal plane of the condenser lens 52, and detects a target wavelength.
[0018]
Table 1 below shows numerical data of specific examples of the third relay lens 71, the second relay lens 72, the first relay lens 73, the imaging lens 74, and the objective lens 4 used in the present embodiment. Details of these optical systems are shown in FIG. 2, and in particular, the objective lens 4 is shown in FIG.
[0019]
In Table 1, from the surface S1 perpendicular to the optical axis at the position of the wavefront conversion element 2, the third relay optical system 71, the second relay optical system 72, the light beam scanning means 3, the first relay lens 73, and the imaging lens 74, the radius of curvature of the optical surface in the order of reaching the object lens 4 and the object O is r 1 , r 2 , r 3 ,..., And the distance between the optical surfaces is d 1 , d 2 , d 3 ,. N d1 , n d2 , n d3 ,..., The Abbe number of the medium (lens and liquid) other than air between the optical surfaces is ν d1 , ν d2 , ν d3 ,... In FIG. 2, some optical surfaces are indicated by symbols r 1 , r 2 , r 3 ,... Indicating the radii of curvature of the surfaces for easy distinction. The intervals are indicated by the intervals d 1 , d 2 , d 3 ,..., And in FIG. 3, the intervals between all the optical surfaces are similarly shown.
[0020]
In the present embodiment, the lens distance d 39 and d 41 in the objective lens 4 is changed as shown in FIG. 3, a lens 41 positioned between the interval moves. Therefore, since the lens directly in contact with the object O does not move, the movement of the lens 41 hardly affects the object O.
[0021]
Further, in the present embodiment, the center on the optical axis of the deformable mirror 22 whose electrically reflecting surface is controllable as the wavefront conversion element 2 is fixed. When the orthogonal coordinates of the reflecting surface are (x ', y', z '), the shape Z' (x ', y') of the reflecting surface is a free-form surface as shown in the following equation (1). In the coefficient C j , j is set to 15 or less.
[0022]
Z '(x', y ' ) = c (x' 2 + y '2) ÷ [1 + √ {1- (1 + k) c 2 (x' 2 + y '2)}] + Σ C j x' m y 'n j = {(m + n) 2 + m + 3n} / 2 + 1 (1)
Here, the first term of the equation (1) is a spherical term, and the second term is a free-form surface term. In the spherical term,
c: curvature of vertex k: conic constant (cone constant)
It is.
[0023]
Here, the sign of ΔZ is set such that the direction closer to the objective lens 4 is minus and the direction away from the focal plane is plus from the focal plane of the objective lens 4 (FIG. 3). It is assumed that the illumination light is incident on the z ′ and y ′ planes at a direction of −45 ° with respect to the z ′ axis (FIG. 2). The wavelength used is 488 nm.
[0024]
Since the position of ΔZ = 0 is the focal position of the objective lens 4, in order to converge the illumination light at the position of ΔZ = 0, the wavefront conversion element 2 is set to be flat, and the plane wave is generated by the third relay lens 71. May be incident on the surface. However, when ΔZ is not 0, the illumination light to be incident on the third relay lens 71 is not a plane wave, but needs to enter a corrected wavefront. Consider a case in which only the wavefront conversion element 2 is modulated and the illumination light is condensed without aberration at the position of y = 0.0 mm (y is the object height) on the object plane of ΔZ = −25 μm. In this case, a cross section in the y direction of the virtual wavefront shape on the S1 plane (a plane forming 45 ° with the wavefront conversion element 2) shown in FIG. 2 is as shown in FIG. Similarly, when illuminating light is condensed without aberration at the position of y = 0.0 mm on the object plane of ΔZ = −25 μm, the lens 41 in the objective lens 4 is moved by the values shown in Table 2 below. In this case, the virtual wavefront shape required on the S1 plane is as shown in FIG. As is clear from FIGS. 4A and 5A, the required optical path difference of the wavefront is 9 μm when only the wavefront conversion element 2 is used. On the other hand, when the lens 41 in the objective lens 4 used in the present embodiment is moved, since the defocus component is compensated for by the movement of the lens, the required optical path difference of the wavefront is as small as 0.5 μm. ing. Therefore, it is understood that a large modulation amount is not required for the wavefront conversion element 2 (in the present embodiment, the variable shape mirror 22).
[0025]
Next, the difference between the wavefront for converging without aberration at the position of y = 0.0 mm on the object plane and the wavefront for converging without aberration at other y (object height) positions will be described. The difference in direction was calculated as the sum of squares. As a result, FIG. 4B shows a case where only the wavefront conversion element 2 is used, and FIG. 5B shows a case where the lens 41 in the objective lens 4 is moved. From these graphs, it can be seen that when modulation is performed using only the wavefront conversion element 2, as y departs from 0, the optical path difference from the required wavefront occurs at y = 0.0 mm. For example, when y = 0.08 mm, if only the wavefront conversion element 2 is used, the parallel sum with y = 0.0 mm is 0.74 × 10 −6 mm 2 and the lens 41 in the objective lens 4 is When moved, it is as small as 0.41 × 10 −6 mm 2 . This is because, since the defocus component is removed by using the lens 41 in the objective lens 4, other aberrations due to the displacement of the focal point can be reduced.
[0026]
In the case where the illumination light is condensed at the position of y = 0.0 mm on the object plane of ΔZ = 25 μm, when modulating using only the wavefront conversion element 2, the y direction of the wavefront shape required on the S1 plane 6A is a cross-sectional view of FIG. 6A, and FIG. 7A is a cross-sectional view of a wavefront shape required on the S1 surface when the lens 41 in the objective lens 4 is moved. Further, the difference between the wavefront required at y = 0.0 mm and the wavefront required in other regions is shown in FIGS. 6 (b) and 7 (b), respectively. These FIGS. 6 and 7 also show that when the lens 41 in the objective lens 4 is moved, the optical path difference of the wavefront to be corrected is smaller and the amount of the wavefront to be corrected is smaller.
[0027]
Therefore, it is understood that the aberration can be corrected over a wide range on the object plane by appropriately performing modulation of the wavefront conversion element 2 in conjunction with the movement of the lens 41 in the objective lens 4. Further, since the modulation of the wavefront conversion element 2 and the movement of the lens 41 in the objective lens 4 are linked, the amount of modulation required for the wavefront conversion element 2 is small, and the control thereof is naturally easy.
[0028]
Next, as the present embodiment, a case where the shape variable mirror 22 of the wavefront conversion element 2 is deformed with the above-described fourth-order free-form surface and optimization is performed will be described. 8A1 to 8A3, the shape variable mirror 22, which is the wavefront conversion element 2, is modulated without moving the lens 41 in the objective lens 4, and the illumination light is condensed at a position of ΔZ = −25 μm. The shape of the shape variable mirror 22 when the optimization is performed as described above is shown. (A1) is a perspective view showing the shape, (a2) is a sectional view in the x direction, and (a3) is a sectional view in the y direction. In order to maintain the performance by deforming only the deformable mirror 22, a large mirror displacement of about 8.8 μm is required in the region where the illumination light is incident for the reason described above. On the other hand, FIGS. 8 (b1) to 8 (b3) show similar views showing the shape when the lens 41 in the objective lens 4 is moved. In this case, the amount of displacement of the deformable mirror 22 can be extremely small, about 0.4 μm.
[0029]
Next, the performance is evaluated using the Strehl ratio. The Strehl ratio is a ratio of the maximum intensity value in the current point image, assuming that the pupil intensity is constant in an ideal state with no aberration and the maximum intensity of the point image intensity distribution at the circular aperture is 1, and is greater than 1. This indicates that the influence of aberrations is increasing as the value decreases. The Strehl ratio is shown in FIG. 9 as a change in aberration in the y-axis direction on the object plane where ΔZ = −25 μm. As can be seen from FIG. 9, the reduction in the Strehl ratio is small over a wide range in the y-axis direction as compared with the case where the correction is performed using only the deformable mirror 22, that is, the aberration is excellent over a wide area on the object plane. Can be corrected.
[0030]
Similarly, a case where the focus is on the position of ΔZ = 25 μm will be described. FIGS. 10 (a1) to 10 (a3) show similar shapes of the shape variable mirror 22 when the shape variable mirror 22 as the wavefront conversion element 2 is optimized without moving the lens 41 in the objective lens 4. Shown in 10 (b1) to 10 (b3) are similar views showing mirror shapes when the lens 41 of the four objective lenses is moved in conjunction with each other. FIG. 11 shows the Strehl ratio in the y-axis direction on the object plane. As is apparent from FIG. 10, as in the case of ΔZ = −25 μm, when the lens 41 in the objective lens 4 is not moved, the displacement amount of the shape variable mirror 22 is required to be at least about 10 μm. When the lens 41 in the objective lens 4 is moved in conjunction with the modulation of the deformable mirror 22, it can be seen that the displacement of the mirror is only about 3.5 μm. Regarding the Strehl ratio, in the case where the lens 41 in the objective lens 4 is not moved and in the case where the lens 41 is moved, the performance of the case where the lens 41 is always moved over the entire y-axis direction on the object plane may be higher. I understand. Since this is a function of the free-form surface as described above as the deformed surface of the deformable mirror 22, there is a limit to the aberration that can be corrected. If the lens 41 in the objective lens 4 is not moved, the deformable mirror 22 for adjusting the focal position to the position of ΔZ = 25 μm is difficult to deform, and other aberrations cannot be corrected sufficiently. On the other hand, when the lens 41 in the objective lens 4 is moved in conjunction with it, the focal position also moves. Therefore, the shape-variable mirror 22 only needs to mainly correct other aberrations, and the correction capability is higher than when the lens 41 is not moved.
[0031]
Table 2 shows the amount of movement of the lens 41 in the objective lens 4 and the coefficient relating to the deformation of the deformable mirror 22 in the present embodiment.
[0032]
Next, a method of driving the moving lens 41 and the deformable mirror 22 in the objective lens 4 will be described.
[0033]
In FIG. 1, first, fluorescent beads are arranged as the object O. The deformable mirror 22 is flattened, and then the fluorescent beads, which are the object O, are moved to the position of the focal plane required for measurement in advance, so that the amount of light detected by the detector 53 in the objective lens 4 is maximized. The lens 41 is moved. Next, the shape of the deformable mirror 22 is optimized using the deformable mirror 22 so that the amount of light detected by the detector 53 is maximized. In this way, the controller 61 stores the amount of movement of the lens 41 in the objective lens 4 with respect to ΔZ required for observation and the shape data (parameter C j ) of the shape-variable mirror 22 as a table. At the time of actual measurement, modulation is performed by synchronizing the movement amount of the lens 41 and the shape of the shape variable mirror 22 according to this table.
[0034]
Another adjustment method will be described with reference to FIG. 12, a white light source 81 for performing bright-field observation, a half mirror 82, an imaging lens 83, and a CCD camera 84 for photographing a bright-field observation image are arranged as compared with FIG. First, the object O to be observed is arranged while performing the Z scan, the shape variable mirror 22 is set to a plane, the object O is illuminated using the white light source 81, and the image is formed by the half mirror 82 and the imaging lens 83. Through the CCD camera 84 via the. While moving the object O, an image is captured in the same manner, and the position ΔZ in the Z direction in the object to be observed is specified. Next, the object O is returned to the position of ΔZ = 0, and is compared with the image of the object O at the position of ΔZ acquired in advance while moving the lens 41 in the objective lens 4. The movement amount of the lens 41 in the objective lens 4 is adjusted until the lens 41 in the objective lens 4 is moved to a position considered to be the closest. Next, the shape of the variable shape mirror 22 is optimized by using the variable shape mirror 22 so as to obtain the best image quality, and the shape of the variable shape mirror 22 is determined. The determined moving amount of the lens 41 in the objective lens 4 and the coefficient (C j ) relating to the shape of the shape variable mirror 22 are stored in the controller 61. When finally performing observation using a laser, modulation is performed by synchronizing the movement amount of the lens 41 and the shape of the shape variable mirror 22 in accordance with the created table, thereby realizing high-speed, high-performance Z-scan. Becomes possible.
[0035]
In the present embodiment, as the wavefront conversion element 2, the displacement amount is always 0.0 mm at the center of the optical axis, that is, at the center of the x′-y ′ plane of the deformable mirror 22, and the periphery is deformed. Was. However, there is a case where the shape variable mirror 22 as the wavefront conversion element 2 has a limitation such as only a concave surface or only a convex surface. For example, when the displacement amount cannot be made positive only by the concave surface as in the electrostatic type, the modulation shown in FIGS. 8B1 to 8B3 and FIGS. 10A1 to 10B3 becomes impossible. An area where Z scanning cannot be performed occurs. In such a case, by adjusting the distance between the third relay lens 71 and the second relay lens 72, the Z scan can be performed while the shape of the shape variable mirror 22 is kept concave.
[0036]
For example, a case will be described where the shape variable mirror 22 is an electrostatic mirror in which an elliptical area having a radius in the x 'direction of about 0.9 mm and a radius in the y' direction of about 1.2 mm is deformed only to a concave surface. In this case, the point of x '= 0, y' = 0 of the deformable mirror 22 is not 0, but moves only in the negative direction, the radius in the x 'direction is 0.9 mm, and the radius in the y' direction is 1.. The displacement is about 0.0 mm around about 2 mm. In the example described above, the third relay lens 71 and the second relay lens 72 are telecentric, but the distance between the lenses is reduced by 40 mm by 80 mm (d 4 ). With this arrangement, the optimum shape at ΔZ = 0 is a concave shape as shown in FIGS. 13 (a1) to (a3) similar to FIGS. 8 (a1) to (a3). Further, when the modulation of the shape variable mirror 22 is performed when ΔZ = −25 μm, the results are as shown in FIGS. 14A to 14A. On the other hand, when the shape of the shape variable mirror 22 is optimal when ΔZ = 25 μm, When the conversion is performed, the results are as shown in FIGS. 15 (a1) to 15 (a3). In other words, it is possible to scan a range of ΔZ in a range of −25 μm to 25 μm while always keeping the entire mirror concave.
[0037]
As described above, when only the concave shape can be deformed by the electrostatic type, the distance between the third relay lens 71 and the second relay lens 72 may be shortened to shift the telecentric arrangement.
[0038]
Table 3 shows coefficients relating to the shape of the deformable mirror in this embodiment.
[0039]
In the above embodiment of the present invention, the light beam scanning means 3 and the pupil of the objective lens 4 are arranged on a conjugate plane. The present embodiment can be realized without arranging the light beam scanning means 3 on a plane conjugate with the pupil. However, it is more preferable to perform scanning in the x and y directions on a plane conjugate with the pupil, as in this embodiment, since there is no vignetting of the light beam.
[0040]
In this embodiment, as the wavefront conversion element 2, a shape-variable mirror whose shape of the reflection surface can be controlled by an electric signal is used. However, other phase-modulating elements such as liquid crystal and photorefractive crystal can be used. It is clear that is also applicable.
[0041]
Figure 2004341394
Figure 2004341394
[0042]
Figure 2004341394
.
[0043]
Figure 2004341394
.
[0044]
As described above, the scanning optical microscope of the present invention has been described based on the embodiments. However, the present invention is not limited to these embodiments, and various modifications are possible.
[0045]
【The invention's effect】
As apparent from the above description, according to the scanning optical microscope of the present invention, the optical element closest to the object in the objective lens is fixed in position with respect to the object, and the objective lens moves with respect to the object. The lens and the wavefront conversion element are configured to modulate the wavefront conversion element in synchronization with the movement thereof, so that the focus adjustment and the aberration correction can be shared by the moving lens and the wavefront conversion element, thereby increasing the correction capability and increasing the wavefront. It is possible to provide a scanning optical microscope in which the amount of modulation of the conversion element can be reduced, the performance deterioration outside the axis is small, and the object to be observed is hardly affected.
[Brief description of the drawings]
FIG. 1 is a diagram showing an overall configuration of a laser scanning microscope according to one embodiment of the present invention.
FIG. 2 is an optical path diagram showing details of an optical system according to the embodiment of FIG. 1;
FIG. 3 is an optical path diagram showing the objective lens of the present embodiment in FIG. 1;
FIG. 4 is a diagram showing a difference between a wavefront at a different image height from the cross section (a) of the virtual wavefront shape in the S1 plane in FIG. (B) of FIG.
FIG. 5 is a view similar to FIG. 4 when a lens in an objective lens is also moved with respect to an object plane of ΔZ = −25 μm.
FIG. 6 is a diagram similar to FIG. 4 in a case where only a wavefront conversion element is modulated with respect to an object plane of ΔZ = 25 μm.
FIG. 7 is a view similar to FIG. 4 when a lens in an objective lens is also moved with respect to an object plane of ΔZ = 25 μm.
FIG. 8 shows the shape of a shape-variable mirror when optimization is performed so as to collect illumination light at a position of ΔZ = −25 μm without moving a lens in an objective lens, and moving a lens in the objective lens. It is a figure which shows the shape of the variable shape mirror in the case of having made it.
FIG. 9 is a diagram showing a Strehl ratio corresponding to FIG. 8;
FIG. 10 shows the shape of a shape-variable mirror when optimization is performed so as to converge illumination light at a position of ΔZ = 25 μm without moving a lens in an objective lens, and moving a lens in the objective lens. FIG. 7 is a diagram showing the shape of a shape-variable mirror in a case where the shape is changed.
FIG. 11 is a diagram showing a Strehl ratio corresponding to FIG. 10;
FIG. 12 is a diagram for explaining another method of adjusting a moving lens and a deformable mirror in an objective lens.
FIG. 13 is a diagram illustrating the shape of the shape-variable mirror when ΔZ = 0 when the distance between the third relay lens and the second relay lens is reduced using a shape-variable mirror fixed around the periphery.
FIG. 14 is a diagram similar to FIG. 13 when ΔZ = -25 μm;
FIG. 15 is a view similar to FIG. 13 when ΔZ = 25 μm;
FIG. 16 is a diagram showing a configuration of a conventional microscope that splits an optical path by a beam splitter.
FIG. 17 is a diagram showing a configuration of a conventional two-photon microscope that splits an optical path by a beam splitter.
[Explanation of symbols]
O Object 2 Wavefront conversion element 3 Beam scanning means 4 Objective lens 11 Laser light source 12 Collimator lens 22 Variable shape mirror 41 Movable lens 51 Dichroic mirror 52 Condenser lens 53 Detector 61 Controller 71 Third relay optical system 72 Second relay optical system 73 First relay lens 74 Image forming lens 81 White light source 82 Half mirror 83 Image forming lens 84 CCD camera

Claims (3)

光源と、前記光源から発する照明光に任意の波面変換を与える波面変換素子と、前記波面変換素子から発する波面変換後の照明光を互いに直交する方向に走査する光束走査手段と、前記光束走査手段によって進行方向を変えた照明光を物体に集光する対物レンズと、前記物体から発する信号光を検出する検出器とを備え、前記対物レンズの中で最も物体側にある光学素子が物体に対して位置を固定され、前記対物レンズは物体に対して移動するレンズを含み、その移動と同期して、前記波面変換素子を変調するように構成したことを特徴とする走査型光学顕微鏡。A light source, a wavefront conversion element that applies arbitrary wavefront conversion to illumination light emitted from the light source, a light beam scanning unit that scans the illumination light after wavefront conversion emitted from the wavefront conversion element in directions orthogonal to each other, and the light beam scanning unit An objective lens that condenses the illumination light whose traveling direction has been changed by an object, and a detector that detects a signal light emitted from the object, wherein an optical element closest to the object side of the objective lens is located on the object. A scanning optical microscope characterized in that the objective lens includes a lens fixed in position with respect to the object, and the objective lens includes a lens that moves with respect to an object, and modulates the wavefront conversion element in synchronization with the movement. 前記光束走査手段が、前記対物レンズの瞳と共役な位置に配置されていることを特徴とする請求項1記載の走査型光学顕微鏡。2. A scanning optical microscope according to claim 1, wherein said light beam scanning means is arranged at a position conjugate with a pupil of said objective lens. 前記波面変換素子と前記光束走査手段とが互いに共役の位置に配置されていることを特徴とする請求項1又は2記載の走査型光学顕微鏡。The scanning optical microscope according to claim 1, wherein the wavefront conversion element and the light beam scanning unit are arranged at positions conjugate with each other.
JP2003140033A 2003-05-19 2003-05-19 Scanning optical microscope Expired - Fee Related JP4149309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003140033A JP4149309B2 (en) 2003-05-19 2003-05-19 Scanning optical microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003140033A JP4149309B2 (en) 2003-05-19 2003-05-19 Scanning optical microscope

Publications (2)

Publication Number Publication Date
JP2004341394A true JP2004341394A (en) 2004-12-02
JP4149309B2 JP4149309B2 (en) 2008-09-10

Family

ID=33528880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003140033A Expired - Fee Related JP4149309B2 (en) 2003-05-19 2003-05-19 Scanning optical microscope

Country Status (1)

Country Link
JP (1) JP4149309B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006221150A (en) * 2005-01-11 2006-08-24 Olympus Corp Optical microscope
JP2008026643A (en) * 2006-07-21 2008-02-07 Olympus Corp Laser scanning microscope
WO2009057666A1 (en) * 2007-11-02 2009-05-07 Nikon Corporation Immersion microscope objective
EP2146235A1 (en) 2008-07-17 2010-01-20 Olympus Corporation Laser scanning microscope
JP2012123385A (en) * 2010-11-16 2012-06-28 Olympus Corp Illumination optical device
JP2013109080A (en) * 2011-11-18 2013-06-06 Olympus Corp Microscope device
WO2015178338A1 (en) * 2014-05-21 2015-11-26 浜松ホトニクス株式会社 Microscope device and image acquisition method
US9415461B2 (en) 2008-09-01 2016-08-16 Hamamatsu Photonics K.K. Aberration-correcting method, laser processing method using said aberration-correcting method, laser irradiation method using said aberration-correction method, aberration-correction device and aberration-correcting program
JPWO2014163114A1 (en) * 2013-04-03 2017-02-16 オリンパス株式会社 Imaging optical system, illumination device and observation device
EP3839595A2 (en) 2019-11-29 2021-06-23 Abberior Instruments GmbH Fluorescence microscope with stabilized adjustment and group of components and module for upgrading a fluorescence microscope
CN113917773A (en) * 2021-10-19 2022-01-11 韩潮伟 Multi-axis turning projector with liquid lens
WO2023106222A1 (en) * 2021-12-08 2023-06-15 株式会社ニコン Scanning microscope
US12001000B2 (en) 2019-06-18 2024-06-04 Carl Zeiss Microscopy Gmbh Illumination unit for microscopes

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6157364B2 (en) 2012-02-03 2017-07-05 シチズン時計株式会社 Phase modulation device and laser microscope
CN104303090B (en) 2012-05-17 2017-08-15 西铁城时计株式会社 aberration correcting device and laser microscope
WO2014027694A1 (en) 2012-08-16 2014-02-20 シチズンホールディングス株式会社 Aberration-correcting optical unit and laser microscope

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11326860A (en) * 1998-05-18 1999-11-26 Olympus Optical Co Ltd Wave front converting element and laser scanner using it
JP2001166213A (en) * 1999-12-06 2001-06-22 Olympus Optical Co Ltd Laser condensing optical system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11326860A (en) * 1998-05-18 1999-11-26 Olympus Optical Co Ltd Wave front converting element and laser scanner using it
JP2001166213A (en) * 1999-12-06 2001-06-22 Olympus Optical Co Ltd Laser condensing optical system

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006221150A (en) * 2005-01-11 2006-08-24 Olympus Corp Optical microscope
JP2008026643A (en) * 2006-07-21 2008-02-07 Olympus Corp Laser scanning microscope
EP2211220A4 (en) * 2007-11-02 2013-11-06 Nikon Corp Immersion microscope objective
WO2009057666A1 (en) * 2007-11-02 2009-05-07 Nikon Corporation Immersion microscope objective
JP2009134250A (en) * 2007-11-02 2009-06-18 Nikon Corp Immersion microscope objective lens
EP2211220A1 (en) * 2007-11-02 2010-07-28 Nikon Corporation Immersion microscope objective
US7889433B2 (en) 2007-11-02 2011-02-15 Nikon Corporation Immersion type microscope objective lens
EP2146235A1 (en) 2008-07-17 2010-01-20 Olympus Corporation Laser scanning microscope
KR20160128435A (en) * 2008-09-01 2016-11-07 하마마츠 포토닉스 가부시키가이샤 Laser irradiation device and laser processing device
EP2325689B1 (en) * 2008-09-01 2018-03-28 Hamamatsu Photonics K.K. Aberration-correcting method
US10324285B2 (en) 2008-09-01 2019-06-18 Hamamatsu Photonics K.K. Aberration-correction method, laser processing method using said aberration-correcting method, laser irradiation method using said aberration-correcting method, aberration-correcting device and aberration-correcting program
US9415461B2 (en) 2008-09-01 2016-08-16 Hamamatsu Photonics K.K. Aberration-correcting method, laser processing method using said aberration-correcting method, laser irradiation method using said aberration-correction method, aberration-correction device and aberration-correcting program
EP3358398A1 (en) * 2008-09-01 2018-08-08 Hamamatsu Photonics K.K. Laser processing method, laser irradiation method, aberration-correcting method, aberration-correcting device and aberration-correcting program
US9488831B2 (en) 2008-09-01 2016-11-08 Hamamatsu Photonics K.K. Aberration-correcting method, laser processing method using said aberration-correcting method, laser irradiation method using said aberration-correcting method, aberration-correcting device and aberration-correcting program
KR101708161B1 (en) 2008-09-01 2017-02-17 하마마츠 포토닉스 가부시키가이샤 Laser irradiation device and laser processing device
JP2012123385A (en) * 2010-11-16 2012-06-28 Olympus Corp Illumination optical device
JP2013109080A (en) * 2011-11-18 2013-06-06 Olympus Corp Microscope device
JPWO2014163114A1 (en) * 2013-04-03 2017-02-16 オリンパス株式会社 Imaging optical system, illumination device and observation device
US10108008B2 (en) 2013-04-03 2018-10-23 Olympus Corporation Image-forming optical system, illumination apparatus, and observation apparatus
US9891172B2 (en) 2014-05-21 2018-02-13 Hamamatsu Photonics K.K. Microscope device and image acquisition method
US10302569B2 (en) 2014-05-21 2019-05-28 Hamamatsu Photonics K.K. Microscope device and image acquisition method
WO2015178338A1 (en) * 2014-05-21 2015-11-26 浜松ホトニクス株式会社 Microscope device and image acquisition method
US12001000B2 (en) 2019-06-18 2024-06-04 Carl Zeiss Microscopy Gmbh Illumination unit for microscopes
EP3839595A2 (en) 2019-11-29 2021-06-23 Abberior Instruments GmbH Fluorescence microscope with stabilized adjustment and group of components and module for upgrading a fluorescence microscope
US11598943B2 (en) 2019-11-29 2023-03-07 Abberior Instruments Gmbh Fluorescence microscope with stabilized adjustment and group of components and module for upgrading a fluorescence microscope
CN113917773A (en) * 2021-10-19 2022-01-11 韩潮伟 Multi-axis turning projector with liquid lens
WO2023106222A1 (en) * 2021-12-08 2023-06-15 株式会社ニコン Scanning microscope

Also Published As

Publication number Publication date
JP4149309B2 (en) 2008-09-10

Similar Documents

Publication Publication Date Title
CN109477956B (en) Three-dimensional imaging using swept, confocal aligned planar excitation
JP4149309B2 (en) Scanning optical microscope
JP7003065B2 (en) How to image an optical sheet microscope and a sample with an optical microscope
US7439477B2 (en) Laser condensing optical system
JP4544904B2 (en) Optical system
JP5220172B2 (en) Image acquisition device, image acquisition system, and objective optical system
JP4576137B2 (en) microscope
JP6090607B2 (en) Confocal scanner, confocal microscope
US20160363752A1 (en) Sheet illumination microscope and illumination method for sheet illumination microscope
CN110192141A (en) For microscopical image conversion module and microscope
JP2014163976A (en) Image acquisition device and image acquisition system
JPH11326860A (en) Wave front converting element and laser scanner using it
JP4082075B2 (en) Image display device
JP5626367B2 (en) Focus position maintaining device and microscope
JP2014108212A (en) Imaging device
JP5929204B2 (en) Scanning microscope
JP2004109219A (en) Scanning optical microscope
JP2008026643A (en) Laser scanning microscope
JP4997834B2 (en) microscope
JP2008082781A (en) Interference tyep surface shape measuring apparatus
JP4723842B2 (en) Scanning optical microscope
JP4391806B2 (en) Optical microscope
KR102655817B1 (en) Flying-over beam pattern scanning hologram microscopy using spatial modulation scan
KR102655822B1 (en) Flying-over beam pattern scanning hologram microscopy using spatial modulation scanner and translation stage
JP2003324057A (en) Aligner and alignment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080618

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees