JP2004340894A - Diagnostic device for gas insulation - Google Patents

Diagnostic device for gas insulation Download PDF

Info

Publication number
JP2004340894A
JP2004340894A JP2003140854A JP2003140854A JP2004340894A JP 2004340894 A JP2004340894 A JP 2004340894A JP 2003140854 A JP2003140854 A JP 2003140854A JP 2003140854 A JP2003140854 A JP 2003140854A JP 2004340894 A JP2004340894 A JP 2004340894A
Authority
JP
Japan
Prior art keywords
discharge
partial discharge
signal
gas insulation
foreign matter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003140854A
Other languages
Japanese (ja)
Inventor
Manabu Yoshimura
学 吉村
Masafumi Doi
雅史 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003140854A priority Critical patent/JP2004340894A/en
Publication of JP2004340894A publication Critical patent/JP2004340894A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas insulation diagnostic device which is simple in constitution, and can detect a position of a metal foreign substance existing inside gas insulation equipment. <P>SOLUTION: In the gas insulation diagnostic device which detects the position of a partial discharge generated in a metal tank 1 of the gas insulation equipment, in which electrical equipment 2 is supported by the insulated spacers 3, 4 and is contained in the metal tank 1, the gas insulation diagnostic device comprises a sensor 8 which outputs the partial discharge signal detecting an electromagnetic wave generated by the partial discharge; a partial discharge detecting means 9 which outputs a discharge amount detection signal, corresponding to the magnitude of the partial discharge signal and a discharge number signal for portion corresponding to one period, in the voltage phase of the applied voltage of the electrical equipment 2; and a foreign substance position deciding means 10 which detects the partial discharge generating position, comparing with the reference data capable of specifying the partial discharge position which store previously the discharge number signal to the discharge amount detection signal for the plural periods in the voltage phase. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、ガス絶縁機器内に存在する金属異物の位置を検出するガス絶縁診断装置に関するものである。
【0002】
【従来の技術】
従来のガス絶縁診断装置においては、高圧導体に高電圧が印加されたときにガス絶縁機器内に存在する金属異物により発生した部分放電を部分放電検出器で検出する。そして、部分放電検出器で検出された検出信号から部分放電測定器で放電電荷量が測定される。さらに、印加電圧の何点かの瞬時値の電圧に対する部分放電電荷量が、部分放電測定器により測定される。このとき、印加電圧の瞬時値も同時に測定される。この結果、印加電圧と部分放電電荷量との関係から金属異物の位置を判別する(例えば、特許文献1)。
【0003】
【特許文献1】
特開平2−71170号公報(第2頁、第3図)
【0004】
【発明が解決しようとする課題】
従来のガス絶縁診断装置では、高電圧の印加電圧を測定するのに計器用変成器(PT)等を使用する必要があるため、構成が複雑になるという問題点があった。
【0005】
この発明は、以上のような問題を解決するためになされたもので、部分放電による放電個数信号と部分放電信号の大きさに対応した放電量検出信号とから部分放電の位置を検出することにより、構成を簡単にすることを目的としたものである。
【0006】
【課題を解決するための手段】
この発明に係わるガス絶縁診断装置は、電気機器が絶縁スペーサで支持されて金属製タンクに収納されたガス絶縁機器の上記タンク内の異物によって発生した部分放電の位置を検出するガス絶縁診断装置において、上記部分放電により発生する電磁波を検出して部分放電信号を出力するセンサと、上記部分放電信号から上記電気機器に印加された電圧の一周期分の放電個数信号及び上記部分放電信号の大きさに対応した放電量検出信号を出力する部分放電検出手段と、上記電気機器に印加された電圧の複数周期分の上記放電量検出信号と上記放電個数信号の関係を、予め測定によって記憶させている上記電気機器に印加された電圧の複数周期分の放電量検出信号と放電個数信号の関係から部分放電の位置が特定可能な参照データと比較して部分放電が発生している上記異物の位置を検出する異物位置判定手段とを備えたものである。
【0007】
【発明の実施の形態】
実施の形態1.
図1は、この発明の実施の形態1におけるガス絶縁診断装置を示す構成図である。図1において、SF等の絶縁ガスが封入された円筒状の金属製タンク1内にタンク1と同軸上に中心導体の電気機器2が配置されている。さらに、電気機器2はタンク1の各端部を密閉したスペーサ3,4で絶縁支持されている。なお、タンク1の各端にはそれぞれ絶縁スペーサ3,4を介して隣接のタンク5,6が配置されている。
そして、タンク1と連通した枝管7内にはタンク1内の金属異物によって発生した部分放電により発生する電磁波を検出するセンサ8が配置されている。続いて、センサ8で検出された部分放電信号8aは部分放電検出手段9に入力される。さらに、部分放電検出手段9から出力された放電個数信号9a及び部分放電信号8aの大きさに対応した放電量検出信号9bが異物位置判定手段10に入力される。
【0008】
次に動作について説明する。図1において、金属異物11〜14がタンク1内に存在するとガス絶縁耐力が低下して絶縁破壊を招く恐れがある。金属異物11〜14は電荷をもつと電界が存在するタンク1内では、電気機器2に付着した金属異物11、絶縁スペーサ4の沿面に付着した金属異物12、タンク1の底面に付着した金属異物13及び自由運動状態の金属異物14のいずれかの状態で存在する。
【0009】
図2は放電量検出信号9bと放電個数信号9aとの関係を示す説明図である。電気機器2に金属異物11が付着した場合、金属異物11の先端の電界が放電開始電界を越えると部分放電が始まる。従って、放電頻度(放電個数)は金属異物11の先端電界に依存する。このため、電気機器2は電界が高いので図2の特性15に示すように部分放電の発生頻度が増える。
絶縁スペーサ4の沿面に金属異物12が付着した場合、電気機器2やタンク1の底面に付着した状態と同様に金属異物12の先端の電界が放電開始電界を越えると部分放電が始まるので、部分放電の発生頻度(放電個数)と放電量検出信号の大きさとの関係は電気機器2に付着した状態と類似している。しかし、金属異物12の先端近傍の電界分布は、金属異物12が絶縁部材の沿面に接しているので接点部の電界が非常に高くなる。絶縁部材の沿面がない電気機器2に付着した金属異物11の先端に比べて、金属異物12の先端近傍の電界分布は高く、電界の高い空間も大きい。従って、ストリーマの進展が長くなり部分放電が大きくなる。その結果、絶縁スペーサ4に金属異物11が付着した状態の放電量検出信号は、図2の特性16に示すように電気機器2に金属異物11が付着した状態よりも大きくなる。
【0010】
タンク1の底面に金属異物13が付着した場合は電気機器2に金属異物11が付着した場合と同様に、金属異物13の先端の電界が放電開始電界を越えると部分放電が始まる。従って、放電頻度(放電個数)は金属異物13の先端電界に依存する。しかし、タンク1の底面近傍は電気機器2より電界が低いので、図2の特性17に示すように放電量検出信号9b及び放電個数信号9aが特性15より低くなる。
【0011】
金属異物14がタンク1内で自由運動状態の場合、金属異物14の帯電が放電する形態となる。このため放電量は帯電量で決まる。また、放電は電気機器2やタンク1に接触する瞬間に発生するため、放電発生頻度(放電個数)は金属異物14の上下運動で決まる。そして、帯電している金属異物14の運動はタンク1の内部の電界に支配される。従って、電気機器2に電圧が印加されていると電圧周期に連動して、タンク1の底面や電気機器2に接触する頻度が一定になる。このため、部分放電の発生頻度はほぼ一定となる。また、部分放電の大きさは金属異物14の帯電量で決まる。そして、金属異物14の浮上力として働く静電力が重力に勝るときに金属異物14が浮上するので、図2の特性18に示すように金属異物14の帯電量は金属異物14の大きさにより上下する。
【0012】
このように挙動する金属異物11〜14により発生した部分放電をセンサ8が検出してパルス状の部分放電信号8aを出力する。部分放電信号8aを受信した部分放電検出手段9は、電気機器2に印加された電圧の一周期分の放電個数信号9aを検出すると共に、部分放電信号8aの大きさに対応した放電量検出信号9bを出力する。そして、異物位置判定手段10に電気機器2に印加された電圧の複数周期分の放電個数信号9a及び放電量検出信号9bが入力される。異物位置判定手段10では予め測定によって得られた電気機器に印加された電圧の複数周期分の放電量検出信号と放電個数の関係を参照データとして記憶されている図2の各特性15〜18と入力された各信号9a,9bとの相関関係分布を比較し、放電個数信号9aに対する放電量検出信号9bの分布状態から金属異物11〜14がどの位置に存在するかを判定する。
【0013】
以上のように、電気機器2の印加電圧の電圧位相で複数周期分の放電個数信号9aに対する放電量検出信号9bと予め記憶されている参照データとを異物位置判定手段10で比較して部分放電の位置を特定することにより、電気機器2に印加されている高電圧を測定する必要がないので、構成の簡素化を図ることができる。
実施の形態1において、電気機器2は中心導体について説明したが、開閉器等のようにタンク1内に配置されて高電圧が印加されるものについても同様の効果を期待することができる。
【0014】
【発明の効果】
この発明によれば、電気機器に印加された電圧の複数周期分の放電個数信号に対する放電量検出信号と予め記憶されている参照データとを異物位置判定手段で比較して部分放電の位置を特定することにより、電気機器に印加されている高電圧を測定する必要がないので、構成の簡素化を図ることができる。
【図面の簡単な説明】
【図1】この発明の実施の形態1におけるガス絶縁診断装置を示す構成図である。
【図2】図1の放電量検出信号と放電個数信号との関係を示す説明図である。
【符号の説明】
1 タンク、2 電気機器、3,4 絶縁スペーサ、8 センサ、
9 部分放電検出手段、10 異物位置判定手段、11〜14 金属異物。
[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas insulation diagnostic device for detecting a position of a foreign metal present in a gas insulation device.
[0002]
[Prior art]
2. Description of the Related Art In a conventional gas insulation diagnostic device, a partial discharge generated by a metal foreign substance present in a gas insulating device when a high voltage is applied to a high-voltage conductor is detected by a partial discharge detector. Then, a discharge charge amount is measured by the partial discharge measuring device from the detection signal detected by the partial discharge detector. Further, the partial discharge charge amount with respect to the voltage of some instantaneous values of the applied voltage is measured by the partial discharge measuring device. At this time, the instantaneous value of the applied voltage is also measured at the same time. As a result, the position of the metallic foreign matter is determined from the relationship between the applied voltage and the partial discharge charge amount (for example, Patent Document 1).
[0003]
[Patent Document 1]
JP-A-2-71170 (page 2, FIG. 3)
[0004]
[Problems to be solved by the invention]
The conventional gas insulation diagnostic apparatus has a problem that the configuration is complicated because it is necessary to use an instrument transformer (PT) or the like to measure a high applied voltage.
[0005]
The present invention has been made to solve the above-described problems, and detects the position of a partial discharge from a discharge number signal due to partial discharge and a discharge amount detection signal corresponding to the magnitude of the partial discharge signal. The purpose is to simplify the configuration.
[0006]
[Means for Solving the Problems]
A gas insulation diagnostic apparatus according to the present invention is directed to a gas insulation diagnostic apparatus for detecting a position of a partial discharge generated by a foreign substance in a tank of a gas insulated apparatus housed in a metal tank with an electric device supported by an insulating spacer. A sensor for detecting an electromagnetic wave generated by the partial discharge and outputting a partial discharge signal; a discharge number signal for one cycle of a voltage applied to the electric device from the partial discharge signal; and a magnitude of the partial discharge signal. And a relationship between the discharge amount detection signal and the number-of-discharges signal for a plurality of cycles of the voltage applied to the electric device, which is stored in advance by measurement. From the relationship between the discharge amount detection signal for a plurality of cycles of the voltage applied to the electric device and the discharge number signal, the position of the partial discharge is compared with reference data that can be specified. Discharge is that a foreign object position determining means for detecting the position of the foreign matter has occurred.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
FIG. 1 is a configuration diagram showing a gas insulation diagnostic apparatus according to Embodiment 1 of the present invention. In FIG. 1, a central conductor electric device 2 is arranged coaxially with a tank 1 in a cylindrical metal tank 1 in which an insulating gas such as SF 6 is sealed. Further, the electric device 2 is insulated and supported by spacers 3 and 4 that seal each end of the tank 1. In addition, adjacent tanks 5 and 6 are arranged at each end of the tank 1 via insulating spacers 3 and 4, respectively.
Further, a sensor 8 for detecting an electromagnetic wave generated by a partial discharge generated by a metal foreign matter in the tank 1 is disposed in the branch pipe 7 communicating with the tank 1. Subsequently, the partial discharge signal 8a detected by the sensor 8 is input to the partial discharge detection means 9. Further, a discharge amount detection signal 9b corresponding to the magnitude of the discharge number signal 9a and the partial discharge signal 8a output from the partial discharge detection means 9 is input to the foreign matter position determination means 10.
[0008]
Next, the operation will be described. In FIG. 1, if metal foreign substances 11 to 14 are present in the tank 1, the gas dielectric strength may be reduced and dielectric breakdown may be caused. In the tank 1 where the electric field exists when it has an electric charge, the metal foreign substances 11 to 14 are the metal foreign substances 11 attached to the electric device 2, the metal foreign substances 12 attached to the surface of the insulating spacer 4, and the metal foreign substances attached to the bottom surface of the tank 1. 13 and the metal foreign matter 14 in a free motion state.
[0009]
FIG. 2 is an explanatory diagram showing the relationship between the discharge amount detection signal 9b and the discharge number signal 9a. When the metallic foreign matter 11 adheres to the electric device 2, the partial discharge starts when the electric field at the tip of the metallic foreign matter 11 exceeds the discharge starting electric field. Therefore, the discharge frequency (the number of discharges) depends on the electric field at the tip of the metal foreign matter 11. For this reason, since the electric device 2 has a high electric field, the frequency of occurrence of partial discharge increases as indicated by the characteristic 15 in FIG.
When the metal foreign matter 12 adheres to the surface of the insulating spacer 4, the partial discharge starts when the electric field at the tip of the metal foreign matter 12 exceeds the discharge starting electric field, similarly to the state where the metal foreign matter 12 adheres to the bottom surface of the electric device 2 or the tank 1. The relationship between the frequency of occurrence of discharge (the number of discharges) and the magnitude of the discharge amount detection signal is similar to the state in which the discharge amount is attached to the electric device 2. However, the electric field distribution in the vicinity of the tip of the metallic foreign matter 12 is very high at the contact portion because the metallic foreign matter 12 is in contact with the surface of the insulating member. The electric field distribution near the tip of the metallic foreign matter 12 is higher than the tip of the metallic foreign matter 11 attached to the electric device 2 without the creepage of the insulating member, and the space where the electric field is high is large. Therefore, the progress of the streamer becomes longer and the partial discharge becomes larger. As a result, the discharge amount detection signal in a state in which the metal foreign matter 11 adheres to the insulating spacer 4 becomes larger than the state in which the metal foreign matter 11 adheres to the electric device 2 as shown by a characteristic 16 in FIG.
[0010]
When the metallic foreign matter 13 adheres to the bottom surface of the tank 1, as in the case where the metallic foreign matter 11 adheres to the electric device 2, the partial discharge starts when the electric field at the tip of the metallic foreign matter 13 exceeds the discharge starting electric field. Therefore, the discharge frequency (the number of discharges) depends on the electric field at the tip of the metal foreign matter 13. However, since the electric field near the bottom surface of the tank 1 is lower than that of the electric device 2, the discharge amount detection signal 9b and the discharge number signal 9a are lower than the characteristic 15 as shown by the characteristic 17 in FIG.
[0011]
When the metal foreign matter 14 is in a free motion state in the tank 1, the metal foreign matter 14 is discharged. Therefore, the amount of discharge is determined by the amount of charge. Further, since the discharge occurs at the moment of contact with the electric device 2 or the tank 1, the frequency of the discharge (the number of discharges) is determined by the vertical movement of the metal foreign matter 14. The movement of the charged metallic foreign matter 14 is governed by the electric field inside the tank 1. Therefore, when a voltage is applied to the electric device 2, the frequency of contact with the bottom surface of the tank 1 and the electric device 2 becomes constant in conjunction with the voltage cycle. For this reason, the frequency of occurrence of partial discharge is substantially constant. Further, the magnitude of the partial discharge is determined by the charge amount of the metal foreign matter 14. Since the metal foreign matter 14 floats when the electrostatic force acting as the floating force of the metal foreign matter 14 exceeds the gravity, the charge amount of the metal foreign matter 14 varies depending on the size of the metal foreign matter 14 as shown by the characteristic 18 in FIG. I do.
[0012]
The sensor 8 detects a partial discharge generated by the metallic foreign substances 11 to 14 which behaves in this way, and outputs a pulse-like partial discharge signal 8a. Upon receiving the partial discharge signal 8a, the partial discharge detection means 9 detects the number-of-discharges signal 9a for one cycle of the voltage applied to the electric device 2, and detects the amount-of-discharge signal corresponding to the magnitude of the partial discharge signal 8a. 9b is output. Then, the discharge number signal 9a and the discharge amount detection signal 9b for a plurality of cycles of the voltage applied to the electric device 2 are input to the foreign matter position determination means 10. The foreign matter position determination means 10 stores, as reference data, a relationship between a discharge amount detection signal for a plurality of cycles of a voltage applied to the electric device and a discharge number obtained by measurement in advance as reference data. By comparing the correlation distribution with the input signals 9a and 9b, it is determined from the distribution state of the discharge amount detection signal 9b with respect to the discharge number signal 9a where the metal foreign substances 11 to 14 are located.
[0013]
As described above, the foreign matter position determination means 10 compares the discharge amount detection signal 9b for the discharge number signal 9a for a plurality of cycles with the reference data stored in advance in the voltage phase of the voltage applied to the electric device 2 and performs partial discharge. By specifying the position, there is no need to measure the high voltage applied to the electric device 2, so that the configuration can be simplified.
In the first embodiment, the electric device 2 has been described with respect to the center conductor. However, similar effects can be expected for a device such as a switch that is disposed in the tank 1 and to which a high voltage is applied.
[0014]
【The invention's effect】
According to the present invention, the position of the partial discharge is specified by comparing the discharge amount detection signal corresponding to the discharge number signal for a plurality of cycles of the voltage applied to the electric device with the reference data stored in advance by the foreign object position determination means. By doing so, it is not necessary to measure the high voltage applied to the electric device, so that the configuration can be simplified.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a gas insulation diagnostic apparatus according to Embodiment 1 of the present invention.
FIG. 2 is an explanatory diagram showing a relationship between a discharge amount detection signal and a discharge number signal in FIG. 1;
[Explanation of symbols]
1 tank, 2 electric devices, 3 and 4 insulating spacers, 8 sensors,
9 Partial discharge detecting means, 10 Foreign matter position determining means, 11 to 14 Metallic foreign matter.

Claims (1)

電気機器が絶縁スペーサで支持されて金属製タンクに収納されたガス絶縁機器の上記タンク内の異物によって発生した部分放電の位置を検出するガス絶縁診断装置において、上記部分放電により発生する電磁波を検出して部分放電信号を出力するセンサと、上記部分放電信号から上記電気機器に印加された電圧の一周期分の放電個数信号及び上記部分放電信号の大きさに対応した放電量検出信号を出力する部分放電検出手段と、上記電気機器に印加された電圧の複数周期分の上記放電量検出信号と上記放電個数信号の関係を、予め測定によって記憶させている上記電気機器に印加された電圧の複数周期分の放電量検出信号と放電個数信号の関係から部分放電の位置が特定可能な参照データと比較して部分放電が発生している上記異物の位置を検出する異物位置判定手段とを備えたことを特徴とするガス絶縁診断装置。In a gas insulation diagnostic device for detecting the position of a partial discharge caused by a foreign substance in a tank of a gas insulated device housed in a metal tank supported by an insulating spacer with an electric device, an electromagnetic wave generated by the partial discharge is detected. A sensor that outputs a partial discharge signal, and outputs a discharge number signal for one cycle of a voltage applied to the electrical device from the partial discharge signal and a discharge amount detection signal corresponding to the magnitude of the partial discharge signal. Partial discharge detection means, and a plurality of voltages applied to the electric device, wherein the relationship between the discharge amount detection signal and the discharge number signal for a plurality of cycles of the voltage applied to the electric device is stored in advance by measurement. The position of the foreign substance in which the partial discharge is occurring is compared with reference data that can specify the position of the partial discharge from the relationship between the discharge amount detection signal and the discharge number signal for the cycle. Gas insulated diagnostic apparatus characterized by comprising a foreign matter position determining means for output.
JP2003140854A 2003-05-19 2003-05-19 Diagnostic device for gas insulation Pending JP2004340894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003140854A JP2004340894A (en) 2003-05-19 2003-05-19 Diagnostic device for gas insulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003140854A JP2004340894A (en) 2003-05-19 2003-05-19 Diagnostic device for gas insulation

Publications (1)

Publication Number Publication Date
JP2004340894A true JP2004340894A (en) 2004-12-02

Family

ID=33529449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003140854A Pending JP2004340894A (en) 2003-05-19 2003-05-19 Diagnostic device for gas insulation

Country Status (1)

Country Link
JP (1) JP2004340894A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104251960A (en) * 2013-06-27 2014-12-31 国家电网公司 Ultrahigh-frequency signal detection device and partial discharge detection device
CN105242181A (en) * 2015-09-10 2016-01-13 广州供电局有限公司 Bushing insulation impurity detect simulation device and manufacturing method thereof
JP2022530066A (en) * 2019-04-25 2022-06-27 ヒタチ・エナジー・スウィツァーランド・アクチェンゲゼルシャフト Diagnosis of dark discharge
CN115718053A (en) * 2022-11-19 2023-02-28 沈阳工业大学 Particle discharge experiment platform foreign matter release device and GIL test system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104251960A (en) * 2013-06-27 2014-12-31 国家电网公司 Ultrahigh-frequency signal detection device and partial discharge detection device
CN105242181A (en) * 2015-09-10 2016-01-13 广州供电局有限公司 Bushing insulation impurity detect simulation device and manufacturing method thereof
CN105242181B (en) * 2015-09-10 2018-06-08 广州供电局有限公司 Casing insulating impurities defects simulation device and preparation method thereof
JP2022530066A (en) * 2019-04-25 2022-06-27 ヒタチ・エナジー・スウィツァーランド・アクチェンゲゼルシャフト Diagnosis of dark discharge
JP7292419B2 (en) 2019-04-25 2023-06-16 ヒタチ・エナジー・スウィツァーランド・アクチェンゲゼルシャフト Diagnosis of dark discharge
CN115718053A (en) * 2022-11-19 2023-02-28 沈阳工业大学 Particle discharge experiment platform foreign matter release device and GIL test system

Similar Documents

Publication Publication Date Title
KR101105747B1 (en) Partial discharge measurement method and system
KR101303082B1 (en) Apparatus for detecting partial discharge of portable
US20120268139A1 (en) Device for detecting a level
KR101290294B1 (en) Partial discharge diagnostic system of power apparatus using contactless phase measurement sensor
CN107677939A (en) A kind of localization method of electric power GIS Partial Discharge Sources
JPH03209180A (en) Method and device for inspecting insulating system condition
JP2018151345A (en) Partial discharge detection method and partial discharge detection device
JP2004340894A (en) Diagnostic device for gas insulation
Kasten et al. Partial discharge measurements in air and argon at low pressures with and without a dielectric barrier
JP2006208017A (en) Partial discharge detector device in gas insulation equipment
JP2009250847A (en) Accident-point standardizing device of gas insulation power apparatus
JP2004328810A (en) Method and device for partial discharge diagnosis of gas insulated switch
KR101763347B1 (en) Device for detection of fault location
JP2005156452A (en) Partial discharge diagnosis method for gas insulation electric device
Okubo et al. Partial discharge detection techniques under the condition of metallic particle adhering to solid spacer in SF6
JPH02147970A (en) Method for diagnosing partial discharge of gas insulating apparatus
Yao et al. Measurement and analysis of partial discharge on floating electrode defect in GIS
JP4216920B2 (en) Partial discharge occurrence position detection device for conductive device
JP6269556B2 (en) Sensor and partial discharge detection device
JP2001242212A (en) Kind determination method and device of partial discharge of gas insulated electrical machinery and apparatus
KR100772508B1 (en) Apparatus of measuring the partial discharge and measuring system having the same
JP2002323533A (en) Partial discharge testing method for electric power equipment
CN102998360B (en) Online testing method for aging of transformer insulating oil based on electric field induction
Sun et al. A method to monitor vacuum degree using capacitive partial discharge coupler
SE438734B (en) SET TO DETECT THE EXISTENCE OF FOREIGN PARTICLES IN A GUEST, ELECTRICAL DEVICE