JP2004340796A - Pressure sensitive sensor and opening/closing mechanism - Google Patents

Pressure sensitive sensor and opening/closing mechanism Download PDF

Info

Publication number
JP2004340796A
JP2004340796A JP2003138832A JP2003138832A JP2004340796A JP 2004340796 A JP2004340796 A JP 2004340796A JP 2003138832 A JP2003138832 A JP 2003138832A JP 2003138832 A JP2003138832 A JP 2003138832A JP 2004340796 A JP2004340796 A JP 2004340796A
Authority
JP
Japan
Prior art keywords
pressure
contact
sensitive
sensitive sensor
load absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003138832A
Other languages
Japanese (ja)
Inventor
Hiroyuki Ogino
弘之 荻野
Shigeki Ueda
茂樹 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003138832A priority Critical patent/JP2004340796A/en
Publication of JP2004340796A publication Critical patent/JP2004340796A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Power-Operated Mechanisms For Wings (AREA)
  • Window Of Vehicle (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pressure sensitive sensor, capable of surely detecting a contact even when an object comes in contact from an oblique direction and reducing a load applied to the object when contacting. <P>SOLUTION: At least a part of horizontal width of a load absorbing part 19 is enlarged than the horizontal width of a position at which a piezoelectric sensor 17 (a pressure sensing means). Thereby, the strength holding force of the load absorbing part 19 to the contact of the object from the oblique direction is enhanced; therefore, the contact of the object from the oblique direction can be surely detected without buckling of the load absorbing part 19 when the object comes into contact from an oblique direction; also the load applied to the object can be reduced by the load absorbing part 19 when contacting. Thus, the strength holding force of the load absorbing part 19 to the contact of the object from the oblique direction is enhanced; therefore, unuseful size-reducing of the transformation of the pressure sensing means 17 by buckling of the wide range around the center in the load absorbing part 19 when the object contacts from the oblique direction, is prevented, and then the contact of the object from the oblique direction can be surely detected; the load applied to the object can be reduced by the load absorbing part 19 when contacting. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、物体の接触を検出する感圧センサに関するものである。
【0002】
【従来の技術】
従来の感圧センサを図9〜図12を用いて説明する。
【0003】
図9は従来の感圧センサが配設された開閉装置として自動車のスライドドアの外観図で、1は自動車の開口部としてのボディー、2はボディー1を開閉する開閉部としてのスライドドアで、モータ(図示せず)により電動で開閉する。スライドドア2の端部には感圧センサとしてのタッチセンサ3が配設されている。図10(a)、(b)は図9のA−A線における断面図である。図10(a)はボディー1とスライドドア2との間に物体の挟み込みがない状態でスライドドア2が閉止した場合、図10(b)はボディー1とスライドドア2との間に物体の挟み込みがある場合を示している。図10(a)、(b)において、タッチセンサ3は空隙部4を挟んで対抗する2つの電極5を有している。タッチセンサ3はフランジ部7に近接して配設され、取付け金具6を介してスライドドア2に固定されている。
【0004】
上記構成により、スライドドア2が閉動作中に図10(b)のように物体Mが挟み込まれると、挟み込みの衝撃荷重によりタッチセンサ3の前端がフランジ部7の前端と同じ位置までつぶれた時、タッチセンサ3の電極4同士が接触し挟み込みが検出され、スライドドア2の閉動作が停止されて反転後退させられる(特許文献1参照)。
【0005】
しかしながら、前記従来の構成では、タッチセンサ3が挟み込みを検出してからモータが反転を開始しようとしても、スライドドア2の重量により慣性力が働き、瞬時に反転はしない。すなわち、タッチセンサ3が挟み込みを検出してからも暫時、スライドドア2は閉止方向に移動してしまい、フランジ部7の前端が物体に当たってもさらに押圧するため、物体に不要に過大な荷重が印加されてしまうといった課題があったため、発明者らは次のような改良を考案した。
【0006】
図11(a)、(b)は発明者らの行った考案における感圧センサ8をスライドドア2に適用した場合の、図9のA−A線に相当する位置における断面図である。図11(a)は物体の挟み込みがない状態でスライドドア2が閉止した場合、図11(b)は物体の挟み込みがある場合を示している。図12(a)は同考案の感圧センサ8に物体が斜め方向から接触した際の外観図、図12(b)は図12(a)のB−B線における断面図である。
【0007】
感圧センサ8はケーブル状で可撓性の有る圧電センサからなる感圧手段9と、感圧手段9を支持する支持手段10とからなり、支持手段10は側壁部11aと中空部11bとを有した荷重吸収部11を備えている。12は感圧センサ8をスライドドア2の端面に固定するための取付け金具、13は助手席側ドア、14及び15はフランジである。
【0008】
この構成により、図11(b)に示したように、物体Mがフランジ15と感圧センサ8の間に挟み込まれると、感圧センサ8が物体の接触による押圧により変形し、感圧手段9は前記変形の加速度が所定値以上となると物体の接触を検出する。そして、感圧手段9により物体の接触が検出されるとスライドドア2の閉動作が停止されて反転後退させられる。この際、スライドドア2の重量による慣性力により暫時、スライドドア2が閉止方向に移動しても、荷重吸収部11が変形して物体Mに印加される挟み込みの荷重を吸収するため、物体に不要に過大な荷重が印加されてしまうといったことがなく、挟み込み荷重を低減することができる(特許文献2参照)。
【0009】
【特許文献1】
特開平10−264652号公報
【特許文献2】
特開2002−96637号公報
【0010】
【発明が解決しようとする課題】
しかしながら、特許文献2に記載の従来の感圧センサ8は、図12(a)、(b)に示したように感圧センサ8に物体Mが斜め方向から接触すると、側壁部11aと中空部11bとからなる荷重吸収部11が柔らかいため、接触点Pを中心として広い範囲D1にわたって荷重吸収部11が腰折れ状態となり、感圧手段9が変形する際の曲率が小さくなり、変形の加速度が所定値以上にならず、物体の接触を検出できない場合があるといった課題があった。
【0011】
本発明はこのような従来の課題を解決するものであり、物体が斜め方向から接触しても確実に接触を検出し、かつ、接触時に物体に印加される荷重を低減できる感圧センサを提供することを目的とする。
【0012】
【課題を解決するための手段】
上記課題を解決するために本発明は、荷重吸収部の少なくとも一部の横幅を感圧手段を配設した位置の横幅よりも大きくしたものである。これによって、斜め方向からの物体の接触に対する荷重吸収部の強度保持力を高めたので、斜め方向から物体が接触した際に、接触点を中心として荷重吸収部が広範囲にわたって腰折れして感圧手段の変形が不要に小さくなるといったことがなくなり、斜め方向からの物体の接触を確実に検出でき、かつ、荷重吸収部により接触時に物体に印加される荷重を低減できる。
【0013】
【発明の実施の形態】
請求項1の発明は、荷重吸収部の少なくとも一部の横幅を感圧手段を配設した位置の横幅よりも大きくしたことにより、斜め方向からの物体の接触に対する荷重吸収部の強度保持力を高めたので、斜め方向から物体が接触した際に、接触点を中心として荷重吸収部が広範囲にわたって腰折れして感圧手段の変形が不要に小さくなるといったことがなくなり、斜め方向からの物体の接触を確実に検出でき、かつ、荷重吸収部により接触時に物体に印加される荷重を低減できる。
【0014】
請求項2の発明は、特に請求項1に記載の感圧手段を支持手段と一体成型したことにより、感圧手段と支持手段の密着性を全体に均一化するので、接触を検出する際に感度が場所によって不均一になることがなくなり、検出の信頼性が向上する。
【0015】
請求項3の発明は、特に請求項1または2に記載の支持手段の少なくとも荷重吸収部を発泡樹脂で成形したことにより、成形時に発泡密度を調節することにより荷重吸収部の強度保持力と荷重吸収性能を容易に変えることができ、設計の自由度が高まる。また、従来のように荷重吸収のための中空部を設けないので、水分の侵入により凍結して検出性能が劣化するといったことがなく、信頼性が向上する。
【0016】
請求項4の発明は、特に請求項1〜3のいずれか1項に記載の支持手段の横断面を略三角形に成型したことにより、斜め方向からの物体の接触を確実に検出するための支持手段の具体的形状を提示できる。
【0017】
請求項5の発明は、特に請求項1〜3のいずれか1項に記載の支持手段の横断面を略ダルマ型に成型したことにより、斜め方向からの物体の接触を確実に検出するための支持手段の具体的形状を提示できる。
【0018】
請求項6の発明は、特に請求項1〜5のいずれか1項に記載の支持手段が長手方向の少なくとも一方の端部で感圧手段を所定長さ折り返して弾性保持したことにより、感圧センサの長手方向の端部でも物体の接触による押圧により感圧手段が変形可能となり、感圧センサの全長にわたって物体の接触を検出することができる。
【0019】
請求項7の発明は、特に請求項1〜5のいずれか1項に記載の感圧センサを、自動車のスライドドア、テールゲート、トランクリッド、昇降式ウィンドウ、サンルーフ、トラックの荷台用開閉ウィング、及び、建物やエレベータのドア、シャッター等の少なくとも1つの開閉扉と、前記開閉扉により開閉される開口部との少なくとも一方に配設し、前記感圧センサからの出力信号に基づき前記開閉扉の駆動を制御することにより、これらの開閉扉への物体の接触を検出して開閉扉の駆動を安全に制御することができる。
【0020】
【実施例】
以下、本発明の実施例について図1から図8を参照して説明する。
【0021】
(実施例1)
実施例1の発明を図1から図5、図9を参照して説明する。実施例1では本発明の感圧センサを自動車のスライドドアに適用した場合を示している。
【0022】
図1(a)、(b)は本実施例1の感圧センサにおける図9のA−A線に相当する位置での断面図である。図1(a)はスライドドアが完全に閉扉した状態を、図1(b)は助手席側ドア13とスライドドア2との間に物体の挟み込みがある状態を示しており、図面上側が車室内側、下側が車外側である。
【0023】
先ず、本発明の実施例1の感圧センサ16の構成は以下の通りである。図1より、感圧センサ16は、感圧手段としての可撓性を有したケーブル状の圧電センサ17と、圧電センサ17を支持する支持手段18とを有している。支持手段18は、圧電センサ17を弾性保持するとともに圧電センサ17に隣接して物体の接触による押圧を吸収する荷重吸収部19を有している。荷重吸収部19の少なくとも一部の横幅は圧電センサ17を配設した位置の横幅よりも大きくしており、これを実現する具体的形状として、支持手段18の横断面を略三角形に成型している。支持手段18は、少なくとも荷重吸収部19を発泡樹脂で成形している。また、圧電センサ17は支持手段18と一体押出し成型が可能であり、大量生産が可能となる。また、圧電センサ17を支持手段18と一体成型することにより、圧電センサ17と支持手段18の密着性を全体に均一化することができる。支持手段18、荷重吸収部19は圧電センサ17より柔軟性を有しており、物体が接触した際の押圧で圧電センサ17がより変形しやすくなっている。
【0024】
支持手段18は取付け金具20に両面テープ21で接着され、取付け金具20はビス22でスライドドア2の端部に固定される。
【0025】
図2に感圧センサ16の端部の構成図を示す。圧電センサ17は支持手段18と一体押出し成型された後、所定長さに切断された後、圧電センサ17の端部加工のため、圧電センサ17を残して支持手段18の両端部を一部切除する。そして、圧電センサ17の両端にそれぞれ、断線検出用の抵抗体封入部23と、圧電センサ17からの出力信号に基づき物体の接触を判定する判定部24が接続される。25は判定部24への電源供給と判定信号出力のためのリード線、26は後述するスライドドア2の制御手段に接続するためのコネクタである。そして、圧電センサ17は両端部27、28でそれぞれU字状に所定長さ折り返して弾性体29、30により弾性保持してモールドされる。弾性体29、30の断面形状は支持手段18と同様である。また、弾性体29、30の材質は支持手段18で用いた発泡樹脂材料と同様にするのが望ましい。
【0026】
図3は本実施例1のブロック図である。図3において、31はスライドドア2を駆動する駆動手段32を制御する制御手段である。
【0027】
次に作用について説明する。図4(a)は本実施例の感圧センサ16に斜め方向から物体Mが接触した際の外観図、図4(b)は図4(a)のB−B線における断面図である。図4(a)、(b)において、感圧センサ16に斜め方向から物体Mが接触すると、接触による押圧Wにより接触点Pを中心として領域D2で感圧センサ16及び圧電センサ17が変形する。この際、図4(a)、(b)に示したように、支持手段18の横断面が略三角形に成型され、荷重吸収部19の少なくとも一部の横幅が圧電センサ17を配設した位置の横幅よりも大きくしたことにより、斜め方向からの物体Mの接触に対する荷重吸収部19の強度保持力を高めたので、斜め方向から物体Mが接触しても、図12(a)、(b)に示した従来の感圧センサ8のように、接触点Pを中心として荷重吸収部11が広い範囲D1にわたって腰折れして感圧手段9の変形の曲率が不要に小さくなるといったことがなくなり、圧電センサ17の変形の曲率が従来よりも大きくなる。これにより、物体Mの接触時に圧電センサ17の変形の加速度が所定値以上となり、判定部24により物体の接触が判定され、制御手段32により駆動手段31が制御されてスライドドア2の閉動作が停止、反転後退させられ、不要な挟み込みが防止される。
【0028】
図5は圧電センサ17からの出力信号V、判定部24の判定出力J、駆動手段31への印加電圧Vmを示す特性図である。図より、使用者の閉扉動作により時刻t1で駆動手段31にVdの電圧が印加されるとスライドドア2が閉扉動作を開始する。駆動手段31による閉扉動作時には注意喚起のため制御手段32からアラームを発生してもよい。
【0029】
次に、閉扉動作中にスライドトア2の端部に物体Mが接触すると、スライドトア2の端部に配設された感圧センサ16と物体Mとが接触し、物体Mによる押圧が圧電センサ17及び荷重吸収部19に印加される。荷重吸収部19は圧電センサ17より柔軟性を有しているので、物体Mの接触点P中心として押圧により荷重吸収部19が圧縮されて変形し押しつぶされる。これにより圧電センサ17も接触点Pを中心として屈曲し変形する。
【0030】
この際、図5に示したように物体Mの接触が起こると圧電センサ17からは圧電効果により圧電センサ17の変形の加速度に応じた信号(図5の基準電位V0より大きな信号成分)が出力される。この際、荷重吸収部19が圧電センサ17よりも柔軟性を有した発泡樹脂からなり、接触の際に荷重吸収部19が圧縮されるので圧電センサ17の変形量が増大する。このように圧電センサ17は大きな変形量が得られ、変形量の2次微分値である加速度も大きくなり、結果として圧電センサ17の出力信号も大きくなる。これにより、本来の接触時の信号成分と外来振動や電気的ノイズによる信号成分との判別がつき易くなり、接触判定時の判定精度が上がり、誤判定がなくなる。
【0031】
また、この際、スライドドア2の重量による慣性力により暫時、スライドドア2が閉止方向に移動しても、荷重吸収部19が変形して物体Mに印加される接触による荷重を吸収するため、物体Mに不要に過大な荷重が印加されてしまうといったことがなく、接触の際の荷重を低減することができる。
【0032】
判定部24は物体Mの接触がない状態ではLoの出力を行うが、物体Mの接触によりVのV0からの正方向の振幅(V−V0)がD0以上ならば接触が生じたと判定し、時刻t2で判定出力としてHiの信号を出力する。Hi信号は振幅(V−V0)がD0以上である間、継続される。
【0033】
制御手段31では判定部24からHi信号があると駆動手段32への+Vdの電圧印加を停止し、−Vdの電圧を一定時間印加してスライドドア2を一定距離開扉動作させ、接触を解除する。この場合、スライドドア2を完全開扉するまで開扉動作させてもよい。また、制御手段31では判定部24からHi信号があると、予め記憶しておいた所定の音声信号を発生して周囲に注意喚起してもよい。この音声信号としては、例えば、「接触を検出しましたのでスライドドアを開きます」といったメッセージを発生する。このような音声信号は、例えば、カーナビゲーション装置やカーオーディオ装置のスピーカから発生してもよい。
【0034】
尚、物体の接触の際、VがV0より大となるか小となるかは、圧電センサ17の屈曲方向や分極方向、電極の割付け(どちらを基準電位とするか)、圧電センサ17の支持形状により変わるため、判定部24でVのV0からの振幅|V−V0|に基づき接触を判定する構成としてもよく、VのV0に対する大小によらず挟み込みを判定することができる。
【0035】
上記作用により、実施例1の感圧センサによれば、荷重吸収部の少なくとも一部の横幅を感圧手段を配設した位置の横幅よりも大きくしたことにより、斜め方向からの物体の接触に対する荷重吸収部の強度保持力を高めたので、斜め方向から物体が接触した際に、接触点を中心として荷重吸収部が広範囲にわたって腰折れして感圧手段の変形が不要に小さくなるといったことがなくなり、斜め方向からの物体の接触を確実に検出でき、かつ、荷重吸収部により接触時に物体に印加される荷重を低減できる。
【0036】
また、感圧手段を支持手段と一体成型したことにより、感圧手段と支持手段の密着性を全体に均一化するので、接触を検出する際に感度が場所によって不均一になることがなくなり、検出の信頼性が向上する。
【0037】
また、支持手段の少なくとも荷重吸収部を発泡樹脂で成形したことにより、成形時に発泡密度を調節することにより荷重吸収部の強度保持力と荷重吸収性能を容易に変えることができ、設計の自由度が高まる。また、従来のように荷重吸収のための中空部を設けないので、水分の侵入により凍結して検出性能が劣化するといったことがなく、信頼性が向上する。
【0038】
また、支持手段の横断面を略三角形に成型したことにより、斜め方向からの物体の接触を確実に検出するための支持手段の具体的形状を提示できる。
【0039】
尚、感圧センサ16をスライドドア2に配設する他の構成を図6(a)〜(c)に示す。図6(a)はフランジ部14と感圧センサ16との隙間をなくした構成で、フランジ部14と感圧センサ16との隙間に物体が接触するのを避けることができる。図6(b)はスライドドア2を構成する外板2a、内板2bのうち、内板2bがスライドドア2の端部で段差2cを設けた場合の感圧センサ16と取付け金具20との構成を示したものである。さらに、図6(c)は感圧センサ16をスペーサ33を介して直接スライドドア2の端部に両面テープ21で接着固定する構成を示したもので、例えば、圧電センサ17、支持手段18、及び、スペーサ33を一体成形した後に、スライドドア2の端面形状に合わせてスペーサをカットして接着する構成が可能であり、多様なスライドドアの端部形状に対応して容易にレイアウトすることが可能な上、取付け金具20が不要となるため部品の合理化が可能となる。
【0040】
また、実施例1では移動体が自動車のスライドドアであったが、移動体が自動車のテールゲート、トランクリッド、昇降式ウィンドウ、サンルーフ、トラックの荷台用開閉ウィング、及び、建物やエレベータのドア、シャッター等の少なくとも1つの開閉扉であってもよく、これらの開閉扉への物体の接触を検出して開閉扉の駆動を安全に制御することができる。
【0041】
(実施例2)
実施例2の発明を図7(a)、(b)を参照して説明する。図7(a)は実施例2の感圧センサ16における断面図、図7(b)は同感圧センサ16に斜め方向から物体Mが接触した際の断面図である。実施例2が実施例1と相違する点は、支持手段18の横断面が略ダルマ型に成型された点である。
【0042】
この構成により、感圧センサ16に斜め方向から物体Mが接触すると、図7(b)に示したように、支持手段18の横断面が略ダルマ型に成型され、荷重吸収部19の少なくとも一部、すなわち、略ダルマ型の下段の横方向凸部19aの横幅が圧電センサ17を配設した位置の横幅よりも大きくしたことにより、斜め方向からの物体Mの接触に対する荷重吸収部19の強度保持力を高めたので、斜め方向から物体Mが接触しても、図12(a)、(b)に示した従来の感圧センサ8のように、接触点Pを中心として荷重吸収部19が広い範囲D1にわたって腰折れして感圧手段9の変形の曲率が不要に小さくなるといったことがなくなり、圧電センサ17の変形の曲率が従来よりも大きくなる。これにより、実施例1と同様に、物体Mの接触時に圧電センサ17の変形の加速度が所定値以上となり、判定部24により物体の接触が判定され、制御手段32により駆動手段31が制御されてスライドドア2の閉動作が停止、反転後退させられ、不要な挟み込みが防止される。
【0043】
尚、感圧センサ16の他の構成における断面図を図8(a)〜(c)に示す。図8(a)は荷重吸収部19を略台形にした構成における断面図で実施例2と同様な効果がある。また、図8(b)は荷重吸収部19に中空部34を設けた構成における断面図で、圧電センサ17がより変形しやすくなるので、感度が向上する。さらに、図8(c)は支持手段18の底面側に固定部35を有し、固定部35の弾性率は荷重吸収部19の弾性率よりも小さくした構成における断面図で、支持手段18の底面をドアや窓枠に固定する際に固定面が変形して位置決めしずらいといったことがない。
【0044】
以上の実施例1、2では、感圧センサを自動車等の開閉扉に適用したが、走行装置のバンパーで物体の衝突を検出する用途に適用したり、工作機械の各種駆動部やロボットのアーム、昇降式の収納装置等、他の各種移動体に対して本発明を適用して物体の接触を検出することも可能である。
【0045】
【発明の効果】
上記実施例から明らかなように、本発明の感圧センサによれば、荷重吸収部の少なくとも一部の横幅を感圧手段を配設した位置の横幅よりも大きくしたことにより、斜め方向からの物体の接触に対する荷重吸収部の強度保持力を高めたので、斜め方向から物体が接触した際に、接触点を中心として荷重吸収部が広範囲にわたって腰折れして感圧手段の変形が不要に小さくなるといったことがなくなり、斜め方向からの物体の接触を確実に検出でき、かつ、荷重吸収部により接触時に物体に印加される荷重を低減できる。
【図面の簡単な説明】
【図1】(a)本実施例1のスライドドアが挟み込みがない状態で完全に閉扉した状態での感圧センサにおける図9のA−A線に相当する位置での断面図
(b)本実施例1の助手席側ドアとスライドドアとの間に物体の挟み込みがある状態での感圧センサにおける図9のA−A線に相当する位置での断面図
【図2】同感圧センサの端部の構成図
【図3】同感圧センサのブロック図
【図4】(a)同感圧センサに斜め方向から物体Mが接触した際の外観図
(b)図4(a)のB−B線における断面図
【図5】同感圧センサの圧電センサからの出力信号V、判定部の判定出力J、駆動手段への印加電圧Vmを示す特性図
【図6】(a)感圧センサの他の実施例において、フランジ部と感圧センサとの隙間をなくした場合の構成図
(b)感圧センサの他の実施例において、スライドドアの内板がスライドドアの端部で段差を設けた場合の感圧センサと取付け金具との構成図
(c)感圧センサの他の実施例において、感圧センサをスペーサを介して直接スライドドアの端部に両面テープで接着固定する場合の構成図
【図7】(a)実施例2の感圧センサにおける断面図
(b)同感圧センサに斜め方向から物体が接触した際の断面図
【図8】(a)感圧センサの他の実施例において、荷重吸収部を略台形にした構成における断面図
(b)感圧センサの他の実施例において、荷重吸収部に中空部を設けた構成における断面図
(c)感圧センサの他の実施例において、支持手段の底面側に固定部を有し、固定部の弾性率は荷重吸収部の弾性率よりも小さくした構成における断面図
【図9】従来例1の感圧センサが配設された開閉装置としての自動車のスライドドアの外観図
【図10】(a)同感圧センサが配設されたスライドドアが挟み込みがない状態で完全に閉扉した状態での図9のA−A線における断面図
(b)同感圧センサが配設されたスライドドアとボディーとの間に物体の挟み込みがある状態での図9のA−A線における断面図
【図11】(a)従来例2の感圧センサが配設されたスライドドアが挟み込みがない状態で完全に閉扉した状態での図9のA−A線に相当する位置での断面図
(b)同感圧センサが配設されたスライドドアとボディーとの間に物体の挟み込みがある状態での図9のA−A線に相当する位置での断面図
【図12】(a)同感圧センサに物体が斜め方向から接触した際の外観図
(b)図12(a)のB−B線における断面図
【符号の説明】
16 感圧センサ
17 圧電センサ(感圧手段)
18 支持手段
19 荷重吸収部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a pressure sensor for detecting contact of an object.
[0002]
[Prior art]
A conventional pressure-sensitive sensor will be described with reference to FIGS.
[0003]
FIG. 9 is an external view of a sliding door of an automobile as an opening / closing device provided with a conventional pressure-sensitive sensor, wherein 1 is a body as an opening of the automobile, 2 is a sliding door as an opening / closing section for opening and closing the body 1, It is opened and closed electrically by a motor (not shown). At the end of the slide door 2, a touch sensor 3 as a pressure-sensitive sensor is provided. 10A and 10B are cross-sectional views taken along line AA of FIG. FIG. 10A shows a case where the slide door 2 is closed without any object being caught between the body 1 and the slide door 2, and FIG. 10B shows a case where an object is caught between the body 1 and the slide door 2. There is a case where there is. 10A and 10B, the touch sensor 3 has two electrodes 5 opposed to each other with a gap 4 interposed therebetween. The touch sensor 3 is disposed close to the flange portion 7 and is fixed to the slide door 2 via the mounting bracket 6.
[0004]
With the above configuration, when the object M is pinched as shown in FIG. 10B during the closing operation of the slide door 2, the front end of the touch sensor 3 is crushed to the same position as the front end of the flange portion 7 due to the impact load of the pinch. Then, the electrodes 4 of the touch sensor 3 come into contact with each other to detect the entrapment, the closing operation of the slide door 2 is stopped, and the slide door 2 is reversed and retracted (see Patent Document 1).
[0005]
However, in the above-described conventional configuration, even if the motor attempts to start reversing after the touch sensor 3 detects the entrapment, the inertia force acts due to the weight of the slide door 2 and the reversing is not instantaneous. That is, even after the touch sensor 3 detects the entrapment, the slide door 2 moves in the closing direction for a while, and further presses even if the front end of the flange portion 7 hits the object, so that an unnecessary excessive load is applied to the object. Inventors have devised the following improvements because of the problem that they will be lost.
[0006]
FIGS. 11A and 11B are cross-sectional views at a position corresponding to line AA in FIG. 9 when the pressure-sensitive sensor 8 according to the present invention is applied to the slide door 2. FIG. 11A illustrates a case where the slide door 2 is closed without any object being caught, and FIG. 11B illustrates a case where the object is caught. FIG. 12A is an external view when an object comes into contact with the pressure-sensitive sensor 8 of the present invention from an oblique direction, and FIG. 12B is a cross-sectional view taken along line BB of FIG. 12A.
[0007]
The pressure-sensitive sensor 8 includes a pressure-sensitive means 9 composed of a cable-shaped flexible piezoelectric sensor and a support means 10 for supporting the pressure-sensitive means 9, and the support means 10 includes a side wall 11a and a hollow part 11b. It has a load absorbing portion 11 having the same. Reference numeral 12 denotes a mounting bracket for fixing the pressure-sensitive sensor 8 to the end face of the slide door 2, reference numeral 13 denotes a passenger side door, and reference numerals 14 and 15 denote flanges.
[0008]
With this configuration, when the object M is sandwiched between the flange 15 and the pressure-sensitive sensor 8 as shown in FIG. Detects contact of an object when the acceleration of the deformation is equal to or greater than a predetermined value. Then, when the contact of the object is detected by the pressure sensing means 9, the closing operation of the slide door 2 is stopped and the slide door 2 is reversed and retracted. At this time, even if the slide door 2 moves in the closing direction for a while due to the inertial force due to the weight of the slide door 2, the load absorbing portion 11 is deformed to absorb the pinching load applied to the object M. Unnecessary excessive load is not applied, and the sandwiching load can be reduced (see Patent Document 2).
[0009]
[Patent Document 1]
JP 10-264652 A [Patent Document 2]
JP-A-2002-96637
[Problems to be solved by the invention]
However, as shown in FIGS. 12A and 12B, when the object M comes into contact with the pressure sensor 8 from an oblique direction as shown in FIGS. 11b, the load absorbing portion 11 is soft, the load absorbing portion 11 is bent over a wide range D1 around the contact point P, the curvature when the pressure sensing means 9 is deformed is reduced, and the acceleration of the deformation is reduced to a predetermined value. There has been a problem that the contact with the object may not be detected because the value does not exceed the value.
[0011]
The present invention solves such a conventional problem, and provides a pressure-sensitive sensor that can reliably detect contact even when an object comes into contact from an oblique direction and reduce the load applied to the object at the time of contact. The purpose is to do.
[0012]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention is configured such that the width of at least a part of the load absorbing portion is larger than the width of a position where the pressure sensing means is provided. As a result, the strength holding force of the load absorbing portion against the contact of the object from an oblique direction is increased, so that when the object comes into contact from an oblique direction, the load absorbing portion breaks over a wide area around the contact point, and the pressure-sensitive means The deformation of the object does not become unnecessarily small, the contact of the object from an oblique direction can be reliably detected, and the load applied to the object at the time of contact by the load absorbing portion can be reduced.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
According to the first aspect of the present invention, at least a part of the width of the load absorbing portion is made larger than the width of the position where the pressure sensing means is disposed, so that the strength retaining force of the load absorbing portion against contact of an object from an oblique direction is obtained. As a result, when the object comes into contact from an oblique direction, the load absorbing part does not bend over a wide area around the contact point and the deformation of the pressure-sensitive means does not become unnecessarily small. Can be reliably detected, and the load applied to the object at the time of contact by the load absorbing portion can be reduced.
[0014]
According to the second aspect of the present invention, since the pressure-sensitive means of the first aspect is integrally formed with the support means, the adhesion between the pressure-sensitive means and the support means is made uniform over the whole. Sensitivity does not become uneven depending on the place, and the reliability of detection is improved.
[0015]
According to a third aspect of the present invention, at least the load absorbing portion of the supporting means according to the first or second aspect is formed of a foamed resin. The absorption performance can be easily changed, and the degree of freedom in design increases. Further, since a hollow portion for absorbing a load is not provided as in the related art, the detection performance is not degraded due to freezing due to intrusion of moisture, and the reliability is improved.
[0016]
According to a fourth aspect of the present invention, in particular, the support means according to any one of the first to third aspects has a cross section formed into a substantially triangular shape, so that a support for reliably detecting contact of an object from an oblique direction is provided. The specific shape of the means can be presented.
[0017]
According to a fifth aspect of the present invention, in particular, by forming the cross section of the supporting means according to any one of the first to third aspects into a substantially Dharma shape, it is possible to reliably detect contact of an object from an oblique direction. The specific shape of the support means can be presented.
[0018]
According to a sixth aspect of the present invention, in particular, the supporting means according to any one of the first to fifth aspects is configured such that the pressure-sensitive means is folded back at a predetermined length at least at one end in the longitudinal direction to elastically hold the pressure-sensitive means. The pressure-sensitive means can be deformed by the pressing by the contact of the object at the longitudinal end of the sensor, and the contact of the object can be detected over the entire length of the pressure-sensitive sensor.
[0019]
According to a seventh aspect of the present invention, in particular, the pressure-sensitive sensor according to any one of the first to fifth aspects is further provided with a sliding door, a tailgate, a trunk lid, an elevating window, a sunroof, an opening / closing wing for a truck bed, And, at least one door such as a door of a building or an elevator, a shutter, and the like, and an opening part opened and closed by the door, and disposed on at least one of the doors, based on an output signal from the pressure-sensitive sensor, the opening and closing of the door By controlling the driving, it is possible to detect the contact of the object with these doors and control the driving of the doors safely.
[0020]
【Example】
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
[0021]
(Example 1)
The first embodiment will be described with reference to FIGS. 1 to 5 and FIG. Example 1 shows a case where the pressure-sensitive sensor of the present invention is applied to a sliding door of an automobile.
[0022]
1A and 1B are cross-sectional views of the pressure-sensitive sensor according to the first embodiment at a position corresponding to line AA in FIG. 9. 1A shows a state in which the sliding door is completely closed, and FIG. 1B shows a state in which an object is sandwiched between the passenger side door 13 and the sliding door 2, and the upper part of the drawing shows a car. The interior side and the lower side are the vehicle exterior.
[0023]
First, the configuration of the pressure-sensitive sensor 16 according to the first embodiment of the present invention is as follows. As shown in FIG. 1, the pressure-sensitive sensor 16 has a flexible cable-shaped piezoelectric sensor 17 as pressure-sensitive means, and a support means 18 for supporting the piezoelectric sensor 17. The support means 18 has a load absorbing portion 19 that elastically holds the piezoelectric sensor 17 and absorbs a pressure caused by contact with an object adjacent to the piezoelectric sensor 17. The width of at least a part of the load absorbing portion 19 is larger than the width of the position where the piezoelectric sensor 17 is provided. As a specific shape for realizing this, the cross section of the support means 18 is formed into a substantially triangular shape. I have. The support means 18 has at least the load absorbing portion 19 formed of a foamed resin. Further, the piezoelectric sensor 17 can be extruded integrally with the support means 18, and mass production is possible. Further, by integrally molding the piezoelectric sensor 17 with the support means 18, the adhesion between the piezoelectric sensor 17 and the support means 18 can be made uniform as a whole. The support means 18 and the load absorbing portion 19 have more flexibility than the piezoelectric sensor 17, and the piezoelectric sensor 17 is more easily deformed by pressing when an object comes into contact.
[0024]
The support means 18 is adhered to a mounting bracket 20 with a double-sided tape 21, and the mounting bracket 20 is fixed to an end of the slide door 2 with screws 22.
[0025]
FIG. 2 shows a configuration diagram of an end of the pressure-sensitive sensor 16. The piezoelectric sensor 17 is integrally extruded with the supporting means 18, cut into a predetermined length, and then, to process the end of the piezoelectric sensor 17, both ends of the supporting means 18 are partially cut away except the piezoelectric sensor 17. I do. Further, each end of the piezoelectric sensor 17 is connected to a resistor enclosing portion 23 for disconnection detection and a determining portion 24 for determining contact of an object based on an output signal from the piezoelectric sensor 17. Reference numeral 25 denotes a lead wire for supplying power to the determination unit 24 and outputting a determination signal. Reference numeral 26 denotes a connector for connecting to a control unit of the slide door 2 described later. The piezoelectric sensor 17 is folded in a U-shape at both ends 27 and 28 by a predetermined length, and is elastically held by elastic bodies 29 and 30 and molded. The cross-sectional shapes of the elastic bodies 29 and 30 are the same as those of the support means 18. The material of the elastic bodies 29 and 30 is desirably the same as the foamed resin material used for the support means 18.
[0026]
FIG. 3 is a block diagram of the first embodiment. In FIG. 3, reference numeral 31 denotes control means for controlling a driving means 32 for driving the slide door 2.
[0027]
Next, the operation will be described. FIG. 4A is an external view when the object M comes into contact with the pressure-sensitive sensor 16 of the present embodiment from an oblique direction, and FIG. 4B is a cross-sectional view taken along line BB of FIG. 4A. 4A and 4B, when an object M comes into contact with the pressure sensor 16 from an oblique direction, the pressure sensor 16 and the piezoelectric sensor 17 are deformed in the area D2 around the contact point P due to the pressure W caused by the contact. . At this time, as shown in FIGS. 4A and 4B, the cross section of the support means 18 is formed into a substantially triangular shape, and the width of at least a part of the load absorbing portion 19 is set at the position where the piezoelectric sensor 17 is disposed. 12B, the strength holding force of the load absorbing portion 19 against the contact of the object M from an oblique direction is increased. Therefore, even if the object M comes into contact from an oblique direction, FIGS. 2), the load absorbing portion 11 does not bend over the wide range D1 around the contact point P to unnecessarily reduce the curvature of the deformation of the pressure-sensitive means 9, unlike the conventional pressure-sensitive sensor 8 shown in FIG. The curvature of the deformation of the piezoelectric sensor 17 becomes larger than before. As a result, the acceleration of deformation of the piezoelectric sensor 17 at the time of contact with the object M becomes equal to or greater than a predetermined value, the contact of the object is determined by the determination unit 24, and the drive unit 31 is controlled by the control unit 32, and the closing operation of the slide door 2 is performed. Stopping, reversing and retreating prevent unnecessary pinching.
[0028]
FIG. 5 is a characteristic diagram illustrating the output signal V from the piezoelectric sensor 17, the determination output J of the determination unit 24, and the voltage Vm applied to the driving unit 31. As shown in the figure, when the voltage Vd is applied to the driving means 31 at time t1 by the user's closing operation, the sliding door 2 starts the closing operation. At the time of the door closing operation by the driving means 31, an alarm may be generated from the control means 32 for calling attention.
[0029]
Next, when the object M comes into contact with the end of the slide door 2 during the door closing operation, the pressure-sensitive sensor 16 disposed at the end of the slide door 2 comes into contact with the object M, and the pressure by the object M is applied to the piezoelectric sensor. 17 and the load absorbing unit 19. Since the load absorbing portion 19 has more flexibility than the piezoelectric sensor 17, the load absorbing portion 19 is compressed, deformed, and crushed by being pressed around the contact point P of the object M. Accordingly, the piezoelectric sensor 17 also bends and deforms about the contact point P.
[0030]
At this time, when the object M comes into contact as shown in FIG. 5, a signal (signal component larger than the reference potential V0 in FIG. 5) corresponding to the acceleration of the deformation of the piezoelectric sensor 17 is output from the piezoelectric sensor 17 due to the piezoelectric effect. Is done. At this time, the load absorbing portion 19 is made of a foamed resin having more flexibility than the piezoelectric sensor 17, and the load absorbing portion 19 is compressed at the time of contact, so that the deformation amount of the piezoelectric sensor 17 increases. As described above, the piezoelectric sensor 17 has a large deformation amount, and the acceleration, which is the second derivative of the deformation amount, also increases. As a result, the output signal of the piezoelectric sensor 17 also increases. As a result, it becomes easier to distinguish between the signal component at the time of the original contact and the signal component due to external vibration or electrical noise, the accuracy of the determination at the time of the contact determination is increased, and erroneous determination is eliminated.
[0031]
At this time, even if the slide door 2 moves in the closing direction for a while due to the inertial force due to the weight of the slide door 2, the load absorbing portion 19 is deformed to absorb the load due to the contact applied to the object M. An unnecessary excessive load is not applied to the object M, and the load at the time of contact can be reduced.
[0032]
The determination unit 24 outputs Lo when there is no contact with the object M, but determines that contact has occurred when the positive amplitude (V−V0) of V from V0 due to the contact of the object M is equal to or greater than D0, At time t2, a Hi signal is output as the determination output. The Hi signal is continued while the amplitude (V-V0) is equal to or greater than D0.
[0033]
When there is a Hi signal from the determination unit 24, the control unit 31 stops applying the voltage of + Vd to the driving unit 32, applies the voltage of -Vd for a certain period of time, opens the slide door 2 for a certain distance, and releases the contact. I do. In this case, the door opening operation may be performed until the slide door 2 is completely opened. Further, when there is a Hi signal from the determination unit 24, the control unit 31 may generate a predetermined voice signal stored in advance to alert the surroundings. As this audio signal, for example, a message such as “The slide door is opened because contact was detected” is generated. Such an audio signal may be generated from a speaker of a car navigation device or a car audio device, for example.
[0034]
It should be noted that upon contact of an object, whether V is larger or smaller than V0 depends on the bending direction and the polarization direction of the piezoelectric sensor 17, the assignment of electrodes (which is the reference potential), the support of the piezoelectric sensor 17, and the like. Since it changes depending on the shape, the determination unit 24 may be configured to determine contact based on the amplitude | V−V0 | of V from V0, and it is possible to determine entrapment regardless of the magnitude of V with respect to V0.
[0035]
According to the pressure-sensitive sensor according to the first embodiment, the width of at least a part of the load absorbing portion is made larger than the width of the position where the pressure-sensitive means is provided, so that the pressure-sensitive sensor according to the first embodiment can prevent the object from oblique contact. The strength retention of the load absorbing part has been increased, so that when an object comes into contact from an oblique direction, the load absorbing part breaks over a wide area centering on the contact point, and the pressure-sensitive means does not needlessly be deformed and becomes smaller. Also, the contact of the object from an oblique direction can be reliably detected, and the load applied to the object at the time of the contact can be reduced by the load absorbing portion.
[0036]
In addition, since the pressure-sensitive means is integrally molded with the support means, the adhesion between the pressure-sensitive means and the support means is made uniform throughout, so that the sensitivity when detecting contact does not become uneven depending on the location, The detection reliability is improved.
[0037]
In addition, by forming at least the load absorbing portion of the support means with a foamed resin, the strength retention force and the load absorbing performance of the load absorbing portion can be easily changed by adjusting the foaming density at the time of molding, and the degree of freedom of design can be improved. Increase. Further, since a hollow portion for absorbing a load is not provided as in the related art, the detection performance is not degraded due to freezing due to intrusion of moisture, and the reliability is improved.
[0038]
Further, by forming the cross section of the support means into a substantially triangular shape, it is possible to present a specific shape of the support means for reliably detecting contact of an object from an oblique direction.
[0039]
FIGS. 6A to 6C show another configuration in which the pressure-sensitive sensor 16 is disposed on the slide door 2. FIG. 6A shows a configuration in which a gap between the flange portion 14 and the pressure-sensitive sensor 16 is eliminated, and an object can be prevented from contacting a gap between the flange portion 14 and the pressure-sensitive sensor 16. FIG. 6 (b) shows the relationship between the pressure-sensitive sensor 16 and the mounting bracket 20 when the inner plate 2 b is provided with a step 2 c at the end of the slide door 2, of the outer plate 2 a and the inner plate 2 b constituting the slide door 2. It shows the configuration. FIG. 6C shows a configuration in which the pressure-sensitive sensor 16 is directly adhered and fixed to the end of the slide door 2 via the spacer 33 with the double-sided tape 21. For example, the piezoelectric sensor 17, the support means 18, Further, after integrally forming the spacer 33, a configuration in which the spacer is cut and adhered to the shape of the end surface of the slide door 2 is possible, so that the layout can be easily performed in accordance with various end shapes of the slide door. In addition to being possible, the mounting bracket 20 is not required, so that parts can be rationalized.
[0040]
In the first embodiment, the moving body is the sliding door of the car. At least one opening / closing door such as a shutter may be used, and the drive of the opening / closing door can be safely controlled by detecting contact of an object with these opening / closing doors.
[0041]
(Example 2)
Embodiment 2 The invention of Embodiment 2 will be described with reference to FIGS. 7 (a) and 7 (b). 7A is a cross-sectional view of the pressure-sensitive sensor 16 according to the second embodiment, and FIG. 7B is a cross-sectional view when the object M contacts the same pressure-sensitive sensor 16 from an oblique direction. The second embodiment is different from the first embodiment in that the cross section of the support means 18 is formed in a substantially Dharma shape.
[0042]
With this configuration, when the object M comes into contact with the pressure-sensitive sensor 16 from an oblique direction, as shown in FIG. 7B, the cross section of the support unit 18 is formed into a substantially Dharma type, and at least one of the load absorbing portions 19 is formed. The strength of the load absorbing portion 19 with respect to the contact of the object M from a diagonal direction is obtained by making the width of the portion, that is, the lower lateral protrusion 19a of the substantially Dharma type larger than the width of the position where the piezoelectric sensor 17 is provided. Since the holding force is increased, even when the object M comes into contact from an oblique direction, as in the conventional pressure-sensitive sensor 8 shown in FIGS. Does not become unnecessarily small due to bending over a wide range D1, and the curvature of deformation of the piezoelectric sensor 17 becomes larger than before. Thus, similarly to the first embodiment, the acceleration of deformation of the piezoelectric sensor 17 at the time of contact with the object M becomes equal to or more than a predetermined value, the determination unit 24 determines the contact of the object, and the control unit 32 controls the driving unit 31. The closing operation of the slide door 2 is stopped, reversed, and retracted, thereby preventing unnecessary entrapment.
[0043]
8A to 8C are cross-sectional views of another configuration of the pressure-sensitive sensor 16. FIG. 8A is a cross-sectional view of a configuration in which the load absorbing portion 19 has a substantially trapezoidal shape, and has the same effect as the second embodiment. FIG. 8B is a cross-sectional view of a configuration in which the hollow portion 34 is provided in the load absorbing portion 19, and the sensitivity is improved because the piezoelectric sensor 17 is more easily deformed. Further, FIG. 8C is a cross-sectional view of a configuration in which a fixing portion 35 is provided on the bottom surface side of the supporting means 18 and the elastic modulus of the fixing portion 35 is smaller than the elastic modulus of the load absorbing portion 19. When the bottom surface is fixed to the door or window frame, the fixing surface is not deformed and it is difficult to position.
[0044]
In the first and second embodiments, the pressure sensor is applied to the opening / closing door of an automobile or the like. However, the pressure sensor may be applied to an application for detecting collision of an object with a bumper of a traveling device, various driving units of a machine tool, and a robot arm. It is also possible to detect the contact of an object by applying the present invention to various other moving objects such as a vertically movable storage device.
[0045]
【The invention's effect】
As is clear from the above embodiment, according to the pressure-sensitive sensor of the present invention, at least a part of the width of the load absorbing portion is made larger than the width of the position where the pressure-sensitive means is disposed, so that the oblique direction is obtained. Strength of the load absorbing part against the contact of the object has been increased, so that when the object comes into contact from an oblique direction, the load absorbing part breaks over a wide area around the contact point, and the deformation of the pressure sensitive means becomes unnecessary and small. Thus, the contact of the object from an oblique direction can be reliably detected, and the load applied to the object at the time of contact by the load absorbing portion can be reduced.
[Brief description of the drawings]
FIG. 1A is a cross-sectional view of the pressure-sensitive sensor in a state in which the sliding door of the first embodiment is completely closed without any entrapment at a position corresponding to the line AA in FIG. 9B. FIG. 2 is a cross-sectional view of the pressure-sensitive sensor at a position corresponding to the line AA in FIG. 9 in a state where an object is sandwiched between the passenger side door and the sliding door according to the first embodiment. FIG. 3 is a block diagram of the pressure-sensitive sensor. FIG. 4A is an external view when an object M comes into contact with the pressure-sensitive sensor from an oblique direction. FIG. FIG. 5 is a characteristic diagram showing an output signal V from a piezoelectric sensor of the pressure-sensitive sensor, a judgment output J of a judgment unit, and a voltage Vm applied to a driving means. FIG. 13B is a configuration diagram in a case where a gap between the flange portion and the pressure-sensitive sensor is eliminated in the embodiment of FIG. In another embodiment, the pressure sensitive sensor and the mounting bracket when the inner plate of the sliding door has a step at the end of the sliding door (c) In another embodiment of the pressure sensitive sensor, FIG. 7A is a cross-sectional view of the pressure-sensitive sensor according to the second embodiment, and FIG. 7B is a cross-sectional view of the pressure-sensitive sensor according to the second embodiment. FIG. 8 (a) is a cross-sectional view of another embodiment of the pressure-sensitive sensor in which the load absorbing portion is substantially trapezoidal. FIG. 8 (b) is a cross-sectional view of another embodiment of the pressure-sensitive sensor. Sectional view (c) in a configuration in which a hollow portion is provided in the absorbing portion In another embodiment of the pressure-sensitive sensor, a fixing portion is provided on the bottom side of the supporting means, and the elastic modulus of the fixing portion is larger than the elastic modulus of the load absorbing portion. FIG. 9 is a sectional view of a configuration in which the size is also reduced. FIG. 10A is an external view of a sliding door of an automobile as an opening / closing device provided with a pressure-sensitive sensor. FIG. 10A shows a state in which the sliding door provided with the pressure-sensitive sensor is completely closed without being caught. 9 (b) is a cross-sectional view taken along the line AA of FIG. 9 (b). FIG. 11 is a cross-sectional view taken along the line AA of FIG. 9 in a state where an object is sandwiched between the slide door provided with the pressure-sensitive sensor and the body. (A) Cross-sectional view at a position corresponding to the line AA in FIG. 9 in a state where the slide door on which the pressure-sensitive sensor of Conventional Example 2 is disposed is completely closed without being caught, FIG. 12A is a cross-sectional view at a position corresponding to the line AA in FIG. 9 in a state where an object is sandwiched between the sliding door and the body where the sensor is disposed. FIG. 12 (b) is an external view when contact is made from an oblique direction. Sectional view at line [Explanation of reference numerals]
16 Pressure-sensitive sensor 17 Piezoelectric sensor (pressure-sensitive means)
18 Support means 19 Load absorbing part

Claims (7)

物体の接触を検出する感圧手段と、前記感圧手段を弾性保持するとともに前記感圧手段に隣接して前記物体の接触による押圧を吸収する荷重吸収部を有した支持手段とを備え、前記荷重吸収部の少なくとも一部の横幅が前記感圧手段を配設した位置の横幅よりも大きくしたことを特徴とした感圧センサ。Pressure-sensitive means for detecting contact with an object, and a support means having a load absorbing portion that elastically holds the pressure-sensitive means and absorbs a pressure caused by the contact of the object adjacent to the pressure-sensitive means, A pressure-sensitive sensor, wherein the width of at least a part of the load absorbing portion is larger than the width of a position where the pressure-sensitive means is disposed. 感圧手段は支持手段と一体成型された請求項1記載の感圧センサ。2. The pressure-sensitive sensor according to claim 1, wherein the pressure-sensitive means is formed integrally with the support means. 支持手段は少なくとも荷重吸収部を発泡樹脂で成形した請求項1または2記載の感圧センサ。3. The pressure-sensitive sensor according to claim 1, wherein the support means has at least a load absorbing portion formed of a foamed resin. 支持手段は横断面が略三角形に成型された請求項1〜3のいずれか1項記載の感圧センサ。The pressure-sensitive sensor according to any one of claims 1 to 3, wherein the support means has a substantially triangular cross section. 支持手段は横断面が略ダルマ型に成型された請求項1〜3のいずれか1項記載の感圧センサ。The pressure-sensitive sensor according to any one of claims 1 to 3, wherein the support means has a substantially Dharma-shaped cross section. 支持手段は長手方向の少なくとも一方の端部で感圧手段を所定長さ折り返して弾性保持した請求項1〜5のいずれか1項記載の感圧センサ。The pressure-sensitive sensor according to any one of claims 1 to 5, wherein the support means elastically holds the pressure-sensitive means by folding the pressure-sensitive means at a predetermined length at at least one end in the longitudinal direction. 開閉扉により開閉される開口部と、前記開閉部と前記開口部の少なくとも一方に配設された請求項1〜6のいずれか1項記載の感圧センサを用いた自動車のスライドドア、テールゲート、トランクリッド、昇降式ウィンドウ、サンルーフ、トラックの荷台用開閉ウィング、及び、建物やエレベータのドア、シャッター等の開閉扉であって、前記開閉扉の開閉を行う駆動手段と、前記感圧センサからの出力信号に基づき前記駆動手段を制御する制御手段とを備えた開閉装置。7. An automobile sliding door and a tailgate using the pressure-sensitive sensor according to any one of claims 1 to 6, wherein the opening is opened and closed by an opening and closing door, and the opening and closing section is disposed in at least one of the opening and closing section and the opening. A trunk lid, a lifting window, a sunroof, an opening / closing wing for a truck bed, and an opening / closing door such as a door of a building or an elevator, a shutter, etc .; Control means for controlling the driving means based on the output signal of the switch.
JP2003138832A 2003-05-16 2003-05-16 Pressure sensitive sensor and opening/closing mechanism Pending JP2004340796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003138832A JP2004340796A (en) 2003-05-16 2003-05-16 Pressure sensitive sensor and opening/closing mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003138832A JP2004340796A (en) 2003-05-16 2003-05-16 Pressure sensitive sensor and opening/closing mechanism

Publications (1)

Publication Number Publication Date
JP2004340796A true JP2004340796A (en) 2004-12-02

Family

ID=33528091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003138832A Pending JP2004340796A (en) 2003-05-16 2003-05-16 Pressure sensitive sensor and opening/closing mechanism

Country Status (1)

Country Link
JP (1) JP2004340796A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109938945A (en) * 2019-04-11 2019-06-28 广东博智林智能技术有限公司 A kind of Multi-functional wheel chair bed
WO2020039665A1 (en) * 2018-08-23 2020-02-27 株式会社ミツバ Sensor unit manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020039665A1 (en) * 2018-08-23 2020-02-27 株式会社ミツバ Sensor unit manufacturing method
JP2020030114A (en) * 2018-08-23 2020-02-27 株式会社ミツバ Method for manufacturing sensor unit
JP7016777B2 (en) 2018-08-23 2022-02-07 株式会社ミツバ How to manufacture the sensor unit
US11401746B2 (en) 2018-08-23 2022-08-02 Mitsuba Corporation Sensor unit manufacturing method
CN109938945A (en) * 2019-04-11 2019-06-28 广东博智林智能技术有限公司 A kind of Multi-functional wheel chair bed

Similar Documents

Publication Publication Date Title
JP2005227244A (en) Electrostatic capacity type sensor
JP2007308929A (en) Vehicle door opening/closing control device
JPH10252349A (en) Opening/closing device of vehicle door
WO2004090273A1 (en) Moving device and open/close control device for moving body
JP2007256136A (en) Touch sensor
JP5158038B2 (en) Long sensor
JP2004340796A (en) Pressure sensitive sensor and opening/closing mechanism
JP3740951B2 (en) Pinching determination device and switching device
JP2005227243A (en) Electrostatic capacity type sensor
JP3680632B2 (en) Pinching detection device and switching device
JP3699552B2 (en) Powered window opening and closing device
JP3680700B2 (en) Pressure sensor, object detection device, and opening / closing device
JP2006125946A (en) Contact detector
JP4056687B2 (en) Pinching determination device and switching device
JP2002096637A (en) Closing gear
JP3788934B2 (en) Pinch detection device and vehicle back door device
JP2005207851A (en) Contact detection device and opening/closing device
JP2001324393A5 (en)
JP2004339829A (en) Nip preventive device
JP3680779B2 (en) Pressure-sensitive sensor and contact detection device
JP2000343937A (en) Insertion detecting device and opening/closing device
JP2004061338A (en) Contact detection system
JP2004212222A (en) Contact detection apparatus and automobile with the onboard apparatus
JP2001059381A5 (en)
JP2004308304A (en) Moving body opening/closing control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060426

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081224