JP2004339592A - Composite material of copper-tungsten alloy and copper, and its production method - Google Patents

Composite material of copper-tungsten alloy and copper, and its production method Download PDF

Info

Publication number
JP2004339592A
JP2004339592A JP2003140488A JP2003140488A JP2004339592A JP 2004339592 A JP2004339592 A JP 2004339592A JP 2003140488 A JP2003140488 A JP 2003140488A JP 2003140488 A JP2003140488 A JP 2003140488A JP 2004339592 A JP2004339592 A JP 2004339592A
Authority
JP
Japan
Prior art keywords
copper
tungsten alloy
composite material
joined
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003140488A
Other languages
Japanese (ja)
Other versions
JP4253216B2 (en
Inventor
Yasushi Watanabe
靖 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003140488A priority Critical patent/JP4253216B2/en
Publication of JP2004339592A publication Critical patent/JP2004339592A/en
Application granted granted Critical
Publication of JP4253216B2 publication Critical patent/JP4253216B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite material of a copper-tungsten alloy and copper which has excellent reliability in the operation of joining over the whole molded cross-section and excellent joining strength in the joined boundaries, and is free from dissociation fracture from the joined faces, and to provide its production method. <P>SOLUTION: The composite material of a copper-tungsten alloy and copper is obtained by mutually being joined by hot hydrostatic pressing treatment. The hot hydrostatic pressing treatment is performed at 950 to <1,083°C in a state where the copper-tungsten alloy and copper powder having a mean particle diameter of 5 to 150 μm or a previous molding thereof are stored in a vessel for molding. Thus, the obtained molded material is not fractured on the mutually joined boundaries. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、放電加工用電極や接点材料、伝熱材料として使用する銅−タングステン合金と銅との複合材およびその製造方法に関する。
【0002】
【従来の技術】
放電加工用電極や接点材料、伝熱材料などに使用される材料としては、高熱伝導性や低熱膨張性が要求されるため、高熱伝導性金属と低熱膨張性金属とからなる合金、例えば、銅−タングテン合金、銀−タングテン合金などが多用されている。また、実際にこれらの合金を放電加工用電極部品などとして用いる場合には、コスト面を考慮し、これらの合金を銅系金属や鉄系金属の基材などに接合した複合材として用いられている。
従来、銅−タングステン合金と銅との複合材の製造方法としては、(1)銅−タングステン合金と銅とをロー付けする方法、(2)銅−タングテン合金と銅とを熱間静水圧加圧(以下「HIP」と称する)処理により拡散接合する方法(特許文献1参照)、(3)銅−タングステン合金と銅との間にロー材をはさんでHIP処理する方法(特許文献2参照)などがある。また、銅−タングテン合金と鉄系金属とを接合する方法はロー付け法に限られていた。
【0003】
【特許文献1】
特開平11−323409号公報 (段落[0008])
【特許文献2】
特開2002−317210号公報 (段落[0008])
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来の各方法で製造された銅−タングテン合金と銅との複合材は、接合面での信頼性が不十分であり、複合材の接合界面で破断しやすいなどその強度が低いため市場性に乏しいという問題ある。
例えば、(1)の方法で製造された複合材は接合全断面にわたる施工が不十分であり、ワイヤー放電切断加工などにより小別体の複合材を切り出した場合に、切り出した小別体の接合面で解離するものがあり、その防止が困難であるという問題がある。これに対し、(2)および(3)の方法で製造された複合材は接合全断面にわたる施工は確保されるが、複合材より切り出された小別体の加工を受けた、または加工の影響がある接合界面が開口し、以後の使用時に解離破断する場合があるなどの問題がある。
【0005】
本発明はこのような問題に対処するためになされたもので、接合全断面にわたる接合の信頼性と接合界面の接合強度に優れ、かつ後の加工取り扱いで接合面の強度低下がなく、接合面からの解離破断のない銅−タングステン合金と銅との複合材およびその製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の銅−タングステン合金と銅との複合材は、熱間静水圧加圧処理により相互に接合されてなり、その熱間静水圧加圧処理が、銅−タングステン合金と、平均粒子径 5μm〜150μmを有する銅粉末またはその予備成形体とを成形用容器に収納して 950 ℃以上、1083 ℃未満の温度でなされ、得られる成形材が相互に接合された接合界面で破断しないことを特徴とする。ここで、「相互に接合された接合界面で破断しない」とは、元の複合材の任意の位置で切り出される小別体複合材の破断解離が接合面によらないことをいう。また、実施例に示すように、複合材の任意の位置のJISZ2201の10号引張り試験片を引張り試験したときに、破断箇所が接合界面でないことで確認する。
【0007】
また、本発明の銅−タングステン合金と銅との複合材の製造方法は、銅−タングステン合金材と、平均粒子径 5μm〜150μmを有する銅粉末またはその予備成形体とを成形用容器に収納する工程と、銅粉末等が収納された成形用容器を950 ℃以上、1083 ℃未満の温度で熱間静水圧加圧処理する工程とを備えることを特徴とする。
また、製造に用いられる上記成形用容器は、鋼製容器であることを特徴とする。
【0008】
銅−タングステン合金と銅との複合材は、HIP処理を用いて製造することにより、ロー材などを必要としない。さらに、該HIP処理において、その加熱温度を 950 ℃以上で、銅の融点である1083 ℃未満とすることにより、銅液相の発生を防ぎ、銅−タングステン合金材と反応表面積の大きい粉末状の銅材とが固相拡散接合されるため、接合界面の接合強度に優れる。
また、銅粉末の平均粒子径を 5μm〜150μmとすることにより、接合反応表面積が大きくなり接合界面での接合強度をさらに向上させることができる。
また、HIP処理を銅の融点より低い温度で行なうことにより、成形用容器として安価な鋼製容器の使用が可能となり、複合材の製造コストを大幅に削減することができる。
【0009】
【発明の実施の形態】
銅−タングステン合金は公知の方法により製造される。例えば銅粉末とタングステン粉末とをHIP処理により焼結する方法などが挙げられる。また、銅−タングステン混合粉末の焼結体の使用もできる。
本発明に使用できる銅粉末は、公知の製法により製造された銅粉末を使用できる。例えば、機械的粉砕法、アトマイズ法、急冷凝固法等が挙げられる。銅粉末の平均粒子径は 5μm〜150μm、好ましくは 5μm〜100μmである。5μm未満では工業的に入手が困難であり、150μmをこえると接合反応表面積が小さくなり接合強度が不十分となる。
粉末平均粒子径はJISZ8801−1「ふるいの目開」としても表すことができ、その場合、少なくとも 355μmのものが好ましい。
【0010】
また、本発明の複合材が、接点材料、伝熱材料として用いられるものであることから、その熱伝導度や塑性加工性の低下などを防止するため、銅粉末中の鉄、クロム、ニッケルなどの不純物の含有量を少なくすることが好ましい。具体的には、銅粉末全体に対して、各不純物の含有量はそれぞれ 0.05 重量%以下とすることが好ましい。
【0011】
本発明の銅−タングステン合金と銅との複合材は、銅−タングステン合金と銅との接合全断面にわたり接合が完結する信頼性があり、かつ、接合界面の接合強度に優れたものとするため、その製造工程において以下の点に留意している。
(1)接合全断面にわたり、「破壊の起点となる空孔」が皆無の状態を達成できるHIP処理法を用いること、
(2)銅−タングステン合金と銅材との接合は、固相拡散接合とし、接合界面で低融点の液相によるロー付けでないこと、
(3)HIP処理を銅材の融点以下の温度条件で行なうことで銅液相の発生を防止すること、
(4)接合反応表面積を大きくし、接合強度を向上させるため銅材を粉末状とすること等である。
【0012】
銅粉末は粉末状態で使用できる。また、銅粉末の予備成形体であってもよい。予備成形体としては、銅粉末をプレス加工し圧粉体としたもの、または、それらの焼成体としたものが挙げられる。焼成は粉末の場合は焼成用容器に収納して行なう。また、プレス加工した圧粉体の場合は容器は必要なく、この圧粉体自体を冶具で把持して所定温度条件下で数時間行なう。
ここで、焼成時において銅粉末中に鉄成分が混入すると、熱伝導度や塑性加工性が低下するため、焼成用容器および冶具は、鉄成分の混入が起こらないように非鉄製であればよく、セラミックス製、黒鉛製、またはタングステン製などを好適に用いることができる。
【0013】
次に本発明のHIP処理工程について説明する。
上記銅−タングステン合金材、および、粉体、圧粉体またはそれらの焼成体とした銅粉末を成形用容器に収納して 950 ℃以上、1083 ℃未満でHIP処理し両部材を固相拡散接合する。HIP処理は、十分な密度を得ることができる圧力下で数時間行なう。HIP処理時の圧力は 100kgf/cm以上、好ましくは 500kgf/cm〜2000kgf/cmである。HIP処理温度を 1083 ℃未満としたのは、銅液相の発生を防止するためであり、HIP処理温度の下限を 950℃としたのは、この温度以下となると、HIP処理が実用的には進行しなくなるためである。
なお、HIP処理の圧力媒体としては、アルゴンガス、窒素ガスなどのほか、ガラス溶融体を使用することができる。
【0014】
成形用容器は、シリカガラス、銅、鋼製などの任意の容器を用いることが可能である。処理コストを削減できることから、鋼製容器を用いることが好ましい。
本発明のHIP処理では、処理温度を複合材原料である銅の融点より低い温度とするため、銅粉の溶解が起こらず、上記鋼製容器を用いた場合でも銅粉と鋼製容器との接触による鋼製容器鉄成分の合金材料への混入が防止できる。このため、安価な鋼製容器を好適に用いることができ、複合材の製造コストを削減することができる。
【0015】
銅粉末を用いることで、接合反応表面積が大きくなり、該銅粉末と銅−タングステン合金材とをHIP処理で固相拡散接合することにより、接合全断面で優れた接合強度を有する複合材が得られる。また、HIP処理を温度 1083 ℃未満で行なうことにより、鋼製容器鉄成分の合金材料への混入が防止でき、複合材の熱伝導度の低下を抑制することができる。
また、本発明の製造方法では、上述のように安価な鋼製容器を使用することができることに加え、両接合材の接合をHIP処理による固相拡散接合とし、別途ロー材などを必要としないので、従来の方法と比較して低コストで銅−タングステン合金と銅との複合材を製造できる。
以上より該製造方法によって得られた銅−タングステン合金と銅との複合材は、接合界面の接合強度に優れ、かつ高熱伝導性を有するため、放電加工用電極や接点材料、伝熱材料などとして好適に利用することができ、かつこれを安価に製造することができる。
【0016】
本発明の複合材の製造方法は、銅−タングステン合金と銅との接合部分を有すれば、銅と接合した第3層を有する複合材の製造にも利用できる。例えば、銅−タングステン合金/銅粉末/銅ソリッド材、銅−タングステン合金/銅粉末/鋼材、銀−タングステン合金/銅粉末、銀−タングステン合金/銅粉末/銅ソリッド材、銀−タングステン合金/銅粉末/鋼材などの3層の複合材のHIP処理による製造方法として好適に利用できる。
【0017】
【実施例】
実施例1〜実施例6、比較例1〜4
銅−タングテン合金材(銅 35 重量%、タングテン 65 重量%)と、表1に示す平均粒子径の銅粉末とを鋼製の成形用容器に収納して、表1に示す温度条件で 1200kgf/cmの圧力下、5 時間HIP処理を行なった。処理後、成形用容器を切削加工により取り除き銅−タングステン合金と銅との複合材を得た。なお、複合材の形状は、50mmφ×120mm 長さ(銅−タングステン合金部分の長さ 60mm、銅部分の長さ 60mm )とした。
この複合材の円周方向断面の中心部、1/2R部、表層部より 15mm φの小別体をワイヤー放電加工で切り出して、切削加工で引張り試験片を製作した。該試験片の形状は、JISZ2201 10号に適合するもので、掴み部φ 15mm、平行部φ 12.5mm、平行部長さ 60mm である。また、複合材の接合界面での破壊を確認するため、接合面を引張り試験片の平行部中央に位置するように切り出して加工した。
得られた試験片について、JISZ2241により、引張り試験を行なった。引張り強さ、機械的性質の合金の伸び、絞り、および試験における複合材の破断位置の測定結果を表1に示す。
【0018】
【表1】

Figure 2004339592
【0019】
表1より実施例1〜6では、接合面で破断するものはなく、銅塊を銅−タングステン合金と直接接合した比較例3、4と比較すると、破断強度(引張り強度)も大幅に向上している。また、複合材より切り出された小別体の引張り試験でも接合部で破断するものはなく、加工を受けた接合面の強度も各比較例より大幅に高いことが確認できる。
【0020】
【発明の効果】
本発明の銅−タングステン合金と銅との複合材は、銅−タングステン合金と所定の平均粒子径を有する銅粉末またはその予備成形体とを 950 ℃以上、1083 ℃未満の温度でHIP処理し、得られる成形材が相互に接合された接合界面で破断しないので、接合部の全断面にわたる接合施工の信頼性が確保されるとともに、接合界面の強度も、その後の加工によって低下することがない。
また、HIP処理を温度 1083 ℃未満で行なうことにより、鋼製容器鉄成分の合金材料への混入が防止でき、複合材の熱伝導度の低下を抑制することができる。
【0021】
また、本発明の銅−タングステン合金と銅との複合材の製造方法は、銅−タングステン合金材と、平均粒子径 5μm〜150μmを有する銅粉末またはその予備成形体とを成形用容器に収納する工程と、銅粉末等が収納された成形用容器を950 ℃以上、1083 ℃未満の温度で熱間静水圧加圧処理する工程とを備えるので、接合反応表面積が大きくなり接合界面での接合強度を向上させることができる。さらに、HIP処理を用いることにより、ロー材などを必要とせず、また、該処理を銅の融点より低い温度で行なうことにより、成形用容器として安価な鋼製容器の使用が可能となるため、複合材の製造コストを大幅に削減することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a composite material of copper-tungsten alloy and copper used as an electrode for electric discharge machining, a contact material, and a heat transfer material, and a method for producing the same.
[0002]
[Prior art]
Electrodes for electrical discharge machining, contact materials, heat transfer materials, etc., are required to have high thermal conductivity and low thermal expansion, so alloys composed of high thermal conductivity metal and low thermal expansion metal, such as copper -Tungten alloys, silver-Tungten alloys and the like are frequently used. In addition, when these alloys are actually used as electrode parts for electrical discharge machining, in consideration of cost, these alloys are used as a composite material joined to a copper-based metal or an iron-based metal base material. I have.
Conventionally, a method of manufacturing a composite material of a copper-tungsten alloy and copper includes (1) a method of brazing a copper-tungsten alloy and copper, and (2) a method of hot isostatic pressing of a copper-tungsten alloy and copper. Pressure bonding (hereinafter referred to as "HIP") treatment (see Patent Document 1), and (3) HIP treatment with a brazing material sandwiched between a copper-tungsten alloy and copper (see Patent Document 2). )and so on. Also, the method of joining the copper-tungsten alloy and the iron-based metal has been limited to the brazing method.
[0003]
[Patent Document 1]
JP-A-11-323409 (paragraph [0008])
[Patent Document 2]
JP, 2002-317210, A (paragraph [0008])
[0004]
[Problems to be solved by the invention]
However, since the composite material of copper-tungten alloy and copper produced by the above-described conventional methods has insufficient reliability at the joint surface, and its strength is low such that it is easily broken at the joint interface of the composite material. There is a problem of poor marketability.
For example, when the composite material manufactured by the method (1) is insufficiently applied to the entire cross section of the joint, and when the composite material of the small separate body is cut out by wire electric discharge cutting or the like, the cut small body is joined. However, there is a problem that it is difficult to prevent such dissociation. On the other hand, the composite material manufactured by the methods (2) and (3) is secured over the entire cross-section of the joint, but has been processed by a small separate body cut out of the composite material, or is affected by the processing. However, there is a problem that a certain bonding interface is opened and may be dissociated and ruptured during subsequent use.
[0005]
The present invention has been made in order to address such a problem, and has excellent bonding reliability and bonding strength of a bonding interface over the entire cross-section of the bonding, and has no reduction in strength of the bonding surface in subsequent processing. It is an object of the present invention to provide a copper-tungsten alloy-copper composite material free from dissociation fracture from copper and a method for producing the same.
[0006]
[Means for Solving the Problems]
The composite material of the copper-tungsten alloy and copper of the present invention is joined to each other by hot isostatic pressing, and the hot isostatic pressing is performed with the copper-tungsten alloy and an average particle diameter of 5 μm. Copper powder having a thickness of up to 150 μm or a preform thereof is housed in a molding container at a temperature of 950 ° C. or more and less than 1083 ° C., and the obtained molded materials do not break at the joint interface where they are joined to each other. And Here, “does not break at the joint interface joined to each other” means that the fracture dissociation of the small composite material cut out at an arbitrary position of the original composite material does not depend on the bonding surface. Further, as shown in the Examples, when a tensile test piece of JISZ2201 No. 10 at an arbitrary position of the composite material is subjected to a tensile test, it is confirmed that the fractured portion is not a joint interface.
[0007]
In the method for producing a composite material of a copper-tungsten alloy and copper according to the present invention, a copper-tungsten alloy material and a copper powder having an average particle diameter of 5 μm to 150 μm or a preform thereof are housed in a molding container. And a step of subjecting a molding container containing copper powder and the like to hot isostatic pressing at a temperature of 950 ° C. or more and less than 1083 ° C.
The molding container used in the production is a steel container.
[0008]
The composite material of the copper-tungsten alloy and copper does not require a brazing material or the like by being manufactured using the HIP process. Further, in the HIP treatment, by setting the heating temperature to 950 ° C. or higher and lower than 1083 ° C., which is the melting point of copper, the generation of a copper liquid phase is prevented, and the copper-tungsten alloy material and a powdery material having a large reaction surface area are used. Since the solid phase diffusion bonding is performed with the copper material, the bonding strength at the bonding interface is excellent.
Further, by setting the average particle diameter of the copper powder to 5 μm to 150 μm, the bonding reaction surface area is increased, and the bonding strength at the bonding interface can be further improved.
Further, by performing the HIP treatment at a temperature lower than the melting point of copper, an inexpensive steel container can be used as a molding container, and the production cost of the composite material can be significantly reduced.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
The copper-tungsten alloy is manufactured by a known method. For example, there is a method of sintering a copper powder and a tungsten powder by HIP processing. Also, a sintered body of a copper-tungsten mixed powder can be used.
As the copper powder that can be used in the present invention, a copper powder manufactured by a known manufacturing method can be used. For example, a mechanical pulverizing method, an atomizing method, a rapid solidification method and the like can be mentioned. The average particle size of the copper powder is 5 μm to 150 μm, preferably 5 μm to 100 μm. If it is less than 5 μm, it is difficult to obtain industrially, and if it exceeds 150 μm, the bonding reaction surface area becomes small and the bonding strength becomes insufficient.
The average particle diameter of the powder can also be expressed as JISZ8801-1 “opening of sieve”, in which case it is preferably at least 355 μm.
[0010]
In addition, since the composite material of the present invention is used as a contact material and a heat transfer material, iron, chromium, nickel, etc. in copper powder are used to prevent a decrease in thermal conductivity and plastic workability. Is preferably reduced. Specifically, the content of each impurity is preferably set to 0.05% by weight or less based on the entire copper powder.
[0011]
The composite material of the copper-tungsten alloy and copper of the present invention has the reliability that the joining is completed over the entire cross-section of the joining of the copper-tungsten alloy and the copper, and has excellent joining strength at the joining interface. The following points are taken into account in the manufacturing process.
(1) using an HIP processing method capable of achieving a state in which there is no "holes serving as fracture starting points" over the entire cross section of the joint;
(2) The bonding between the copper-tungsten alloy and the copper material is solid-phase diffusion bonding, and is not brazed by a low-melting liquid phase at the bonding interface;
(3) preventing the generation of a copper liquid phase by performing the HIP treatment under a temperature condition not higher than the melting point of the copper material;
(4) The copper material is powdered in order to increase the bonding reaction surface area and improve the bonding strength.
[0012]
Copper powder can be used in a powder state. Further, it may be a preform of copper powder. Examples of the preform include those obtained by pressing copper powder into a green compact or those obtained by firing them. In the case of powder, the firing is carried out in a firing container. In the case of a pressed green compact, a container is not necessary, and the green compact itself is gripped by a jig and is performed for several hours under a predetermined temperature condition.
Here, if an iron component is mixed into the copper powder during firing, thermal conductivity and plastic workability are reduced, so that the firing container and jig may be made of non-ferrous metal so that the mixing of the iron component does not occur. , Ceramics, graphite, tungsten, or the like can be suitably used.
[0013]
Next, the HIP process of the present invention will be described.
The copper-tungsten alloy material and the powder, the green compact, or the copper powder as a fired body thereof are housed in a molding container, and HIP-treated at 950 ° C. or higher and lower than 1083 ° C., and solid-state diffusion bonding of both members is performed. I do. The HIP process is performed for several hours under a pressure capable of obtaining a sufficient density. Pressure during HIP treatment 100 kgf / cm 2 or more, preferably 500kgf / cm 2 ~2000kgf / cm 2 . The reason why the HIP processing temperature is set to less than 1083 ° C. is to prevent generation of a copper liquid phase, and the lower limit of the HIP processing temperature is set to 950 ° C. This is because it does not progress.
In addition, as a pressure medium of the HIP processing, a glass melt can be used in addition to an argon gas, a nitrogen gas, and the like.
[0014]
As the molding container, an arbitrary container made of silica glass, copper, steel, or the like can be used. It is preferable to use a steel container because the processing cost can be reduced.
In the HIP treatment of the present invention, the treatment temperature is set to a temperature lower than the melting point of copper as the composite material, so that the copper powder does not dissolve, and even when the steel container is used, the copper powder and the steel container It is possible to prevent the steel container iron component from being mixed into the alloy material due to the contact. Therefore, an inexpensive steel container can be suitably used, and the manufacturing cost of the composite material can be reduced.
[0015]
By using copper powder, the bonding reaction surface area is increased. By solid-phase diffusion bonding of the copper powder and copper-tungsten alloy material by HIP processing, a composite material having excellent bonding strength in all bonding cross sections is obtained. Can be Further, by performing the HIP treatment at a temperature of less than 1083 ° C., it is possible to prevent the iron component of the steel container from being mixed into the alloy material and to suppress a decrease in the thermal conductivity of the composite material.
Further, in the manufacturing method of the present invention, in addition to the use of an inexpensive steel container as described above, the joining of both joining materials is performed by solid phase diffusion joining by HIP treatment, and no separate brazing material is required. Therefore, a composite material of copper-tungsten alloy and copper can be manufactured at a lower cost as compared with the conventional method.
From the above, the composite material of copper-tungsten alloy and copper obtained by the manufacturing method has excellent bonding strength at the bonding interface and high thermal conductivity, so that it can be used as an electrode for electrical discharge machining, a contact material, a heat transfer material, and the like. It can be suitably used and can be manufactured at low cost.
[0016]
The method for producing a composite material according to the present invention can also be used for producing a composite material having a third layer joined to copper as long as it has a joint between copper-tungsten alloy and copper. For example, copper-tungsten alloy / copper powder / copper solid material, copper-tungsten alloy / copper powder / steel material, silver-tungsten alloy / copper powder, silver-tungsten alloy / copper powder / copper solid material, silver-tungsten alloy / copper It can be suitably used as a method for producing a three-layer composite material such as powder / steel material by HIP processing.
[0017]
【Example】
Examples 1 to 6 and Comparative Examples 1 to 4
A copper-tungten alloy material (35% by weight of copper, 65% by weight of tonten) and a copper powder having an average particle diameter shown in Table 1 were housed in a steel molding container, and under a temperature condition shown in Table 1, 1200 kgf / HIP treatment was performed for 5 hours under a pressure of cm 2 . After the treatment, the molding container was removed by cutting to obtain a composite material of copper-tungsten alloy and copper. The shape of the composite material was 50 mmφ × 120 mm in length (copper-tungsten alloy part length 60 mm, copper part length 60 mm).
A 15 mm diameter small body was cut out from the center, 1 / 2R part, and surface layer of the circumferential section of the composite material by wire electric discharge machining, and a tensile test piece was manufactured by cutting. The shape of the test piece conforms to JISZ220110, and has a gripping portion φ of 15 mm, a parallel portion φ of 12.5 mm, and a parallel portion length of 60 mm. Further, in order to confirm the fracture at the joint interface of the composite material, the joint surface was cut out and processed so as to be located at the center of the parallel portion of the tensile test piece.
The obtained test piece was subjected to a tensile test according to JISZ2241. Table 1 shows the measurement results of the tensile strength, the elongation of the alloy having mechanical properties, the drawing, and the fracture position of the composite in the test.
[0018]
[Table 1]
Figure 2004339592
[0019]
From Table 1, in Examples 1 to 6, there was no breakage at the bonding surface, and the breaking strength (tensile strength) was also significantly improved as compared with Comparative Examples 3 and 4 in which the copper lump was directly bonded to the copper-tungsten alloy. ing. Also, in the tensile test of the small separate body cut out from the composite material, there was no breakage at the joint portion, and it was confirmed that the strength of the processed joint surface was significantly higher than that of each comparative example.
[0020]
【The invention's effect】
The composite material of copper-tungsten alloy and copper of the present invention is obtained by subjecting a copper-tungsten alloy and a copper powder having a predetermined average particle size or a preform thereof to a HIP treatment at a temperature of 950 ° C. or more and less than 1083 ° C. Since the obtained molding material does not break at the joining interface joined to each other, the reliability of joining work over the entire cross section of the joining portion is ensured, and the strength of the joining interface is not reduced by the subsequent processing.
Further, by performing the HIP treatment at a temperature of less than 1083 ° C., it is possible to prevent the iron component of the steel container from being mixed into the alloy material, and to suppress a decrease in the thermal conductivity of the composite material.
[0021]
In the method for producing a composite material of a copper-tungsten alloy and copper according to the present invention, a copper-tungsten alloy material and a copper powder having an average particle diameter of 5 μm to 150 μm or a preform thereof are housed in a molding container. And a step of subjecting the molding container containing copper powder and the like to hot isostatic pressing at a temperature of 950 ° C. or more and less than 1083 ° C., thereby increasing the bonding reaction surface area and the bonding strength at the bonding interface. Can be improved. Furthermore, by using the HIP treatment, a brazing material is not required, and by performing the treatment at a temperature lower than the melting point of copper, an inexpensive steel container can be used as a molding container. The production cost of the composite material can be greatly reduced.

Claims (3)

銅−タングステン合金と銅とが熱間静水圧加圧処理により相互に接合されてなる複合材であって、
前記熱間静水圧加圧処理が、銅−タングステン合金と、平均粒子径 5μm〜150μmを有する銅粉末またはその予備成形体とを成形用容器に収納して 950 ℃以上、1083 ℃未満の温度でなされ、成形材が相互に接合された接合界面で破断しないことを特徴とする銅−タングステン合金と銅との複合材。
A composite material in which a copper-tungsten alloy and copper are joined to each other by hot isostatic pressing.
The hot isostatic pressing is performed by storing a copper-tungsten alloy and a copper powder having an average particle diameter of 5 μm to 150 μm or a preform thereof in a molding container at a temperature of 950 ° C. or more and less than 1083 ° C. A composite material of copper-tungsten alloy and copper, wherein the composite material does not break at a joint interface where the molding materials are joined to each other.
銅−タングステン合金材と、平均粒子径 5μm〜150μmを有する銅粉末またはその予備成形体とを成形用容器に収納する工程と、前記成形用容器を950 ℃以上、1083 ℃未満の温度で熱間静水圧加圧処理する工程とを備えることを特徴とする銅−タングステン合金と銅との複合材の製造方法。A step of storing a copper-tungsten alloy material and a copper powder having an average particle diameter of 5 μm to 150 μm or a preform thereof in a molding container; A method of producing a composite material of a copper-tungsten alloy and copper, comprising a step of performing hydrostatic pressure treatment. 前記成形用容器は、鋼製容器であることを特徴とする請求項2記載の銅−タングステン合金と銅との複合材の製造方法。The method for producing a composite material of copper-tungsten alloy and copper according to claim 2, wherein the molding container is a steel container.
JP2003140488A 2003-05-19 2003-05-19 Composite material of copper-tungsten alloy and copper and method for producing the same Expired - Fee Related JP4253216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003140488A JP4253216B2 (en) 2003-05-19 2003-05-19 Composite material of copper-tungsten alloy and copper and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003140488A JP4253216B2 (en) 2003-05-19 2003-05-19 Composite material of copper-tungsten alloy and copper and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004339592A true JP2004339592A (en) 2004-12-02
JP4253216B2 JP4253216B2 (en) 2009-04-08

Family

ID=33529205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003140488A Expired - Fee Related JP4253216B2 (en) 2003-05-19 2003-05-19 Composite material of copper-tungsten alloy and copper and method for producing the same

Country Status (1)

Country Link
JP (1) JP4253216B2 (en)

Also Published As

Publication number Publication date
JP4253216B2 (en) 2009-04-08

Similar Documents

Publication Publication Date Title
WO2004043642A1 (en) Method for joining aluminum powder alloy
WO1996009266A1 (en) Bonded body of aluminum and silicon nitride and production method thereof
JP2004273736A (en) Joint member and electrostatic chuck
JPS6362122A (en) Manufacture of electrode for vacuum breaker
CA2512096C (en) Method for producing reinforced platinum material
JP4410066B2 (en) Manufacturing method of electrical contact material
US4859531A (en) Method for bonding a cubic boron nitride sintered compact
KR102352640B1 (en) Molded article for bonding and manufacturing method thereof
JP4253216B2 (en) Composite material of copper-tungsten alloy and copper and method for producing the same
JP4295491B2 (en) Copper-tungsten alloy and method for producing the same
JP6242616B2 (en) Resistance welding electrode
JP2000128655A (en) Joined structure of ceramic member to metal member, joining of ceramic member to metal member, and ceramic heater using the same
CN104788116B (en) A kind of connector of zirconia-based ceramics and metal and attaching method thereof
JPH11188510A (en) Hard sintered body cutting tool
JP4891786B2 (en) Carbide composite metal body and method for producing the same
JP4068486B2 (en) Electrode material for resistance welding and manufacturing method thereof
TW201228749A (en) Method of producing highly compact silicon-aluminum (Si-Al) target
JPH11342479A (en) High melting point metallic joined body, ion gun parts for ion jinection device, and manufacturing method therefor
JPH0325499B2 (en)
JPH09248633A (en) Composite punch for fine perforation and its manufacture
JP2000123708A (en) Manufacture of composite sintered body and thermoelectron emitting electrode
JP2002013377A (en) Excavation tool having brazed join part of cutting edge piece having excellent resistance against impact and join strength
JP2000063974A (en) Copper - tungsten sintered alloy and its manufacture
JP4398288B2 (en) Bonding material for sintered aluminum nitride
CN118305388A (en) Method for brazing molybdenum alloy and aluminum nitride ceramic, brazing filler metal and preparation method of brazing filler metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090123

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150130

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees