JP2004339520A - Thermosetting adhesive material - Google Patents

Thermosetting adhesive material Download PDF

Info

Publication number
JP2004339520A
JP2004339520A JP2004161431A JP2004161431A JP2004339520A JP 2004339520 A JP2004339520 A JP 2004339520A JP 2004161431 A JP2004161431 A JP 2004161431A JP 2004161431 A JP2004161431 A JP 2004161431A JP 2004339520 A JP2004339520 A JP 2004339520A
Authority
JP
Japan
Prior art keywords
adhesive material
thermosetting adhesive
inorganic filler
insulating inorganic
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004161431A
Other languages
Japanese (ja)
Inventor
Motohide Takechi
元秀 武市
Hidekazu Yagi
秀和 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Sony Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Chemicals Corp filed Critical Sony Chemicals Corp
Priority to JP2004161431A priority Critical patent/JP2004339520A/en
Publication of JP2004339520A publication Critical patent/JP2004339520A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Wire Bonding (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Conductive Materials (AREA)
  • Organic Insulating Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pair of connecting terminals each placed on a pair of respective facing surfaces of bases so as to compose an insulating inorganic filler without decline of a toughness parameter. <P>SOLUTION: The thermosetting adhesive material connects a pair of the connecting terminals placed on a pair of the respective facing surfaces of the bases and comprises a thermosetting resin and an insulating inorganic filler. The combined amount [a (volume%)] of the insulating inorganic filler and a modulus of elasticity [E (GPa)/30°C] of the thermosetting adhesive material after curing satisfy the following relational expression of 0.042a+0.9<E<0.106a+2.5 (1). Simultaneously, the combined amount [a (volume%)] of the insulating inorganic filler and a tensile elongation [d (%)] at 25°C after curing of the thermosetting adhesive material satisfy the following relational expression of -0.072a+4<d<-0.263a+13∼ (2). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、対向する一対の基板のそれぞれの対向面に設けられた接続端子同士を接続するための熱硬化性接着材料に関する。   The present invention relates to a thermosetting adhesive material for connecting connection terminals provided on respective opposing surfaces of a pair of opposing substrates.

近年、携帯端末機器等を中心とした電子機器の軽薄短小化並びに高機能化が進展し、それに相応して機器内の実装エリアが狭くなっている現状から、ベアICチップをIC搭載用基板に直接フリップチップ実装したり、チップサイズパッケージ(CSP)の形態に加工し実装することが行われるようになっている。   In recent years, as electronic devices, especially portable terminal devices, have become lighter, thinner, smaller, and more sophisticated, the mounting area inside the device has been correspondingly narrower. Direct flip chip mounting or processing and mounting in the form of a chip size package (CSP) has been performed.

このような実装の際には、エポキシ樹脂等の熱硬化性樹脂と硬化剤とを主剤として含有し、更に必要に応じて異方性導電接続用の導電性粒子が配合されたフィルム状、ペースト状もしくは液状の熱硬化性接着材料が一般に用いられている。   In the case of such mounting, a film-like or paste containing a thermosetting resin such as an epoxy resin and a curing agent as main components, and further containing conductive particles for anisotropic conductive connection if necessary. A liquid or thermosetting adhesive material is generally used.

最近では、そのような熱硬化性接着材料の接続信頼性を向上させるために、アルミナやシリカ等の絶縁性無機フィラーを配合することにより、硬化後の接着材料の線膨張係数を減少させ、被接着体(ICチップや配線基板等)の線膨張係数に近づけることが試みられている。   Recently, in order to improve the connection reliability of such a thermosetting adhesive material, an insulating inorganic filler such as alumina or silica is blended to reduce the coefficient of linear expansion of the cured adhesive material, thereby reducing Attempts have been made to approach the linear expansion coefficient of an adhesive (such as an IC chip or a wiring board).

しかしながら、単に絶縁性無機フィラーを配合した場合には、硬化後の接着材料の弾性率の上昇、伸び率の低下などのタフネスパラメーターが低下し、接続信頼性が却って損なわれるという問題があった。   However, when an insulating inorganic filler is simply blended, there is a problem that toughness parameters such as an increase in elastic modulus and a decrease in elongation of the adhesive material after curing are reduced, and connection reliability is rather impaired.

本発明は、以上の従来の技術の問題を解決するものであり、対向する一対の基板のそれぞれの対向面に設けられた接続端子同士を接続するための熱硬化性接着材料に、そのタフネスパラメーターを低下させずに絶縁性無機フィラーを配合できるようにすることを目的とする。   The present invention has been made to solve the above-mentioned problems of the conventional technology, and has a toughness parameter for a thermosetting adhesive material for connecting connection terminals provided on respective opposing surfaces of a pair of opposing substrates. It is an object of the present invention to be able to mix an insulating inorganic filler without lowering the content.

本発明者は、硬化後の熱硬化性接着材料の弾性率を、絶縁性無機フィラーの配合量(容量%)に対して特定の関係を保つように調整することにより上述の目的を達成できることを見出し、本発明を完成させるに至った。   The present inventor has found that the above-mentioned object can be achieved by adjusting the elastic modulus of the cured thermosetting adhesive material so as to maintain a specific relationship with respect to the blending amount (volume%) of the insulating inorganic filler. As a result, the present invention has been completed.

即ち、本発明は、対向する一対の基板のそれぞれの対向面に設けられた接続端子同士を接続するための熱硬化性接着材料であって、熱硬化性樹脂と絶縁性無機フィラーとを含有する熱硬化性接着材料において、絶縁性無機フィラーの配合量(a(容量%))と熱硬化性接着材料の硬化後の弾性率(E(GPa)/30℃)とが以下の関係式(1)   That is, the present invention is a thermosetting adhesive material for connecting connection terminals provided on respective opposing surfaces of a pair of opposing substrates, and includes a thermosetting resin and an insulating inorganic filler. In the thermosetting adhesive material, the blending amount (a (% by volume)) of the insulating inorganic filler and the elastic modulus after curing of the thermosetting adhesive material (E (GPa) / 30 ° C.) are represented by the following relational expression (1). )

Figure 2004339520

を満足し、同時に絶縁性無機フィラーの配合量(a(容量%))と熱硬化性接着材料の硬化後の25℃における引張り伸び率(d(%))とが以下の関係式(2)
Figure 2004339520

And at the same time, the blending amount (a (% by volume)) of the insulating inorganic filler and the tensile elongation (d (%)) at 25 ° C. after curing of the thermosetting adhesive material are represented by the following relational expression (2):

Figure 2004339520

を満足することを特徴とする熱硬化性接着材料を提供する。
Figure 2004339520

And a thermosetting adhesive material characterized by satisfying the following.

本発明の熱硬化性接着材料によれば、対向する一対の基板のそれぞれの対向面に設けられた接続端子同士を、タフネスパラメーターを低下させずに絶縁性無機フィラーを配合でき、良好な接続信頼性で接続できる。   ADVANTAGE OF THE INVENTION According to the thermosetting adhesive material of this invention, the connection terminal provided in each opposing surface of a pair of opposing board | substrate can mix | blend an insulating inorganic filler without lowering a toughness parameter, and can achieve favorable connection reliability. Can be connected by sex.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の熱硬化性接着材料は、対向する一対の基板(例えば、ベアICチップとその搭載用基板;液晶表示素子用ガラス基板とドライバーIC等)のそれぞれの対向面に設けられた接続端子同士を接続するためのものであって、少なくとも一種の熱硬化性樹脂と少なくとも一種の絶縁性無機フィラーとを含有する。   The thermosetting adhesive material of the present invention comprises a pair of opposing substrates (for example, a bare IC chip and a substrate for mounting the same; a glass substrate for a liquid crystal display element and a driver IC, etc.). And contains at least one thermosetting resin and at least one insulating inorganic filler.

本発明の熱硬化性接着材料においては、絶縁性無機フィラーの配合量(a(容量%))と熱硬化性接着材料の硬化後の弾性率(E(GPa)/30℃)とが以下の関係式(1)   In the thermosetting adhesive material of the present invention, the compounding amount (a (% by volume)) of the insulating inorganic filler and the elastic modulus (E (GPa) / 30 ° C.) after curing of the thermosetting adhesive material are as follows. Relational expression (1)

Figure 2004339520

を満足する。具体的には、関係式(1)をプロットした図1から明らかなように、本発明の熱硬化性接着材料においては、絶縁性無機フィラーの配合量と熱硬化性接着材料の硬化後の弾性率とを、直線A及び直線Bで挟まれた領域内に位置するように選ぶ。これは、直線Aよりも下方の領域では、加熱加圧により接続された接続端子同士の接続状態を外部の応力から維持するだけの凝集力が得られず、信頼性試験に耐えられず、逆に直線Bよりも上方の領域では弾性率が高過ぎ、接続端子同士を接着した際に発生する界面応力が大きくなり、信頼性試験で剥離等が生じ易くなるからである。
Figure 2004339520

To be satisfied. Specifically, as is apparent from FIG. 1 in which the relational expression (1) is plotted, in the thermosetting adhesive material of the present invention, the blending amount of the insulating inorganic filler and the elasticity of the thermosetting adhesive material after curing are increased. The ratio is selected so as to be located in an area between the straight line A and the straight line B. This is because, in a region below the straight line A, a cohesive force sufficient to maintain the connection state of the connection terminals connected by heating and pressurization from external stress cannot be obtained, the reliability cannot withstand the reliability test, and This is because, in the region above the straight line B, the elastic modulus is too high, and the interface stress generated when the connection terminals are bonded to each other increases.

また、本発明においては、関係式(1)を満足すると同時に、絶縁性無機フィラーの配合量(a(容量%))と熱硬化性接着材料の硬化後の25℃における引張り伸び率(d(%))とが以下の関係式(2)   In the present invention, while satisfying the relational expression (1), the blending amount (a (% by volume)) of the insulating inorganic filler and the tensile elongation at 25 ° C. after curing of the thermosetting adhesive material (d (d ( %)) And the following relational expression (2)

Figure 2004339520

を満足する。具体的には、関係式(2)をプロットした図1から明らかなように、本発明の熱硬化性接着材料においては、絶縁性無機フィラーの配合量と熱硬化性接着材料の硬化後の引張り伸び率を、直線C及び直線Dで挟まれた領域内に位置するように選ぶ。これは、直線Cよりも下方の領域では、接着界面で発生した応力を十分に分散できず、信頼性試験で不具合が生じ、逆に直線Dよりも上方の領域では伸び率が大き過ぎ、外部応力に抗して接続端子同士の接続状態を維持することができないからである。
Figure 2004339520

To be satisfied. Specifically, as is clear from FIG. 1 in which the relational expression (2) is plotted, in the thermosetting adhesive material of the present invention, the blending amount of the insulating inorganic filler and the tensile strength of the thermosetting adhesive material after curing are increased. The elongation is selected so as to be located in the region between the straight lines C and D. This is because, in the area below the straight line C, the stress generated at the bonding interface cannot be sufficiently dispersed, and a failure occurs in the reliability test. On the contrary, in the area above the straight line D, the elongation is too large, This is because the connection state between the connection terminals cannot be maintained against the stress.

本発明においては、絶縁性無機フィラーの配合量(a(容量%))は、少なすぎると接続信頼性を十分に改善することができず、多すぎると硬化前の熱硬化性接着材料の粘度が過度に高くなり作業性が大きく低下するので、好ましくは5〜35容量%である。ここで、配合量(a(容量%))は、熱硬化性接着材料の固形分中の配合量を意味する。   In the present invention, if the amount (a (% by volume)) of the insulating inorganic filler is too small, the connection reliability cannot be sufficiently improved, and if the amount is too large, the viscosity of the thermosetting adhesive material before curing will be insufficient. Is excessively high, and the workability is greatly reduced. Therefore, the content is preferably 5 to 35% by volume. Here, the compounding amount (a (% by volume)) means the compounding amount in the solid content of the thermosetting adhesive material.

絶縁性無機フィラーとしては、従来の熱硬化性接着材料において用いられているものを使用することができ、中でも化学的安定性と入手コストとの点からアルミナ又はシリカが好ましく挙げられる。   As the insulating inorganic filler, those used in conventional thermosetting adhesive materials can be used, and among them, alumina or silica is preferable from the viewpoint of chemical stability and acquisition cost.

このような絶縁性無機フィラーの平均粒子径は、接続すべき基板の種類や基板に設けられた接続端子の形状等に応じて異なるが、通常、0.1〜20μm、好ましくは0.3〜10μmである。なお、後述するように異方性導電接続用の導電性粒子を配合する場合には、導電性粒子よりも小さくする必要がある。   The average particle diameter of such an insulating inorganic filler varies depending on the type of the substrate to be connected, the shape of the connection terminal provided on the substrate, and the like, but is usually 0.1 to 20 μm, preferably 0.3 to 20 μm. 10 μm. In addition, when the conductive particles for anisotropic conductive connection are blended as described below, it is necessary to make the conductive particles smaller than the conductive particles.

本発明の熱硬化性接着材料において使用する熱硬化性樹脂としては、従来の熱硬化性接着材料において用いられている樹脂を使用することができ、例えば、エポキシ樹脂、ウレタン樹脂、不飽和ポリエステル樹脂等を挙げることができる。また、熱硬化性樹脂は、アクリル酸エステル残基やメタクリル酸エステル残基等の光反応性官能基を有していてもよい。   As the thermosetting resin used in the thermosetting adhesive material of the present invention, resins used in conventional thermosetting adhesive materials can be used, for example, epoxy resin, urethane resin, unsaturated polyester resin And the like. Further, the thermosetting resin may have a photoreactive functional group such as an acrylate residue or a methacrylate residue.

熱硬化性接着材料中の熱硬化性樹脂の配合量は、少なすぎると熱硬化性接着材料の接着力が不十分となり接続信頼性が低下し、多すぎると相対的に絶縁性無機フィラーの配合量が少なくなり、やはり接続信頼性が低下するので、好ましくは5〜90重量%、好ましくは10〜70重量%である。   If the amount of the thermosetting resin in the thermosetting adhesive material is too small, the bonding strength of the thermosetting adhesive material is insufficient and the connection reliability is reduced. The amount is preferably 5 to 90% by weight, and more preferably 10 to 70% by weight, since the amount decreases and the connection reliability also decreases.

本発明の熱硬化性接着材料は、更に熱硬化性樹脂に反応する硬化剤、好ましくは潜在性硬化剤を含有することが好ましい。例えば、イミダゾール系硬化剤、酸無水物系硬化剤、ヒドラジット系硬化剤、ジシアンジアミド系硬化剤等が挙げられる。   The thermosetting adhesive material of the present invention preferably further contains a curing agent that reacts with the thermosetting resin, preferably a latent curing agent. For example, imidazole-based curing agents, acid anhydride-based curing agents, hydrazide-based curing agents, dicyandiamide-based curing agents, and the like can be given.

熱硬化性接着材料中の硬化剤の配合量は、熱硬化性樹脂100重量部に対し、好ましくは1〜50重量部、より好ましくは5〜30重量部である。   The amount of the curing agent in the thermosetting adhesive material is preferably 1 to 50 parts by weight, more preferably 5 to 30 parts by weight, based on 100 parts by weight of the thermosetting resin.

本発明の熱硬化性接着材料は、更に、異方性導電接続用の導電性粒子を配合して異方性導電接着材料とすることができる。この場合、導電性粒子を、熱硬化性接着材料中に、好ましくは0.5〜20容量%、より好ましくは1〜15容量%の割合で含有させることが好ましい。   The thermosetting adhesive material of the present invention can be further blended with conductive particles for anisotropic conductive connection to form an anisotropic conductive adhesive material. In this case, the conductive particles are preferably contained in the thermosetting adhesive material at a ratio of preferably 0.5 to 20% by volume, more preferably 1 to 15% by volume.

このような異方性導電接続用の導電性粒子としては、公知の異方性導電接着剤で使用されている導電性粒子を利用することができる。例えば、ハンダ粒子、ニッケル粒子等の金属粒子、樹脂コアの表面をメッキ金属で被覆した複合粒子、これらの粒子の表面に絶縁性樹脂薄膜を形成した粒子等が挙げられる。   As such conductive particles for anisotropic conductive connection, conductive particles used in a known anisotropic conductive adhesive can be used. Examples include metal particles such as solder particles and nickel particles, composite particles in which the surface of a resin core is coated with a plating metal, and particles in which an insulating resin thin film is formed on the surface of these particles.

本発明の熱硬化性接着材料は、熱硬化性樹脂と絶縁性無機フィラーと、更に導電性粒子や硬化剤とを必要に応じて溶媒(トルエン等)中で均一に混合することにより調製することができる。液状あるいはペースト状のまま使用してもよく、あるいは成膜して熱硬化性接着フィルムとして使用することもできる。   The thermosetting adhesive material of the present invention is prepared by uniformly mixing a thermosetting resin, an insulating inorganic filler, and further, conductive particles and a curing agent in a solvent (such as toluene) as necessary. Can be. It may be used in a liquid or paste state, or may be formed into a film and used as a thermosetting adhesive film.

本発明の熱硬化性接着材料は、対向する一対の基板のそれぞれの対向面に設けられた接続端子の間に挟み込んで加熱加圧することにより、良好な導通特性と絶縁特性と接続強度とを実現しながらそれらを接続することができる。   The thermosetting adhesive material of the present invention achieves good conduction characteristics, insulation characteristics, and connection strength by being sandwiched between connection terminals provided on the respective opposing surfaces of a pair of opposing substrates and heated and pressed. While you can connect them.

以下、本発明を以下の実験例により具体的に説明する。   Hereinafter, the present invention will be described specifically with reference to the following experimental examples.

実施例1〜6及び比較例1〜6
表1及び表2に示した配合組成の樹脂成分を、固形分が70%となるようにトルエンと混合し、更にフィラーを混ぜ、3本ロール混練装置で分散し、硬化剤を添加して混合し、熱硬化性接着材料を得た。
Examples 1 to 6 and Comparative Examples 1 to 6
The resin components having the composition shown in Tables 1 and 2 were mixed with toluene so as to have a solid content of 70%, further mixed with a filler, dispersed with a three-roll kneader, and mixed with a curing agent. Thus, a thermosetting adhesive material was obtained.

得られた熱硬化性接着材料を剥離PETフィルムに乾燥厚が40μmとなるようにコーティングし、熱風循環式オーブン中で乾燥することにより熱硬化性接着フィルムに加工した。   The obtained thermosetting adhesive material was coated on a peelable PET film so as to have a dry thickness of 40 μm, and dried in a hot-air circulation oven to be processed into a thermosetting adhesive film.

得られた熱硬化性接着フィルムを使用して以下に説明するように接続信頼性を評価し、また引張り伸び率と弾性率とを測定した。   Using the obtained thermosetting adhesive film, connection reliability was evaluated as described below, and tensile elongation and elastic modulus were measured.

(接続信頼性)
裏面に160個の高さ20μmのAuメッキパンプ(高さh=20μm/150μmピッチ)が設けられたシリコンICチップ(6.3mm平方/0.4mm厚)と、ニッケル−金メッキが施された銅配線(厚さ(電極高さ)h=12μm)が形成されたガラスエポキシ基板(40mm平方/0.6mm厚)との間に、剥離PETフィルムを取り除いた各実施例及び各比較例の熱硬化性接着フィルムを配置して位置合わせし、フリップチップボンダーを用いて両者を接続して接続体を得た(接続条件:180℃、20秒、100g/バンプ)。
(Connection reliability)
And 160 of the height 20 [mu] m of Au Mekkipanpu the back surface (the height h 1 = 20μm / 150μm pitch) silicon IC chip provided with (6.3 mm square /0.4mm thickness), nickel - copper gold plated The heat of each of the examples and comparative examples in which the peeled PET film was removed between the glass epoxy substrate (40 mm square / 0.6 mm thick) on which the wiring (thickness (electrode height) h 2 = 12 μm) was formed. A curable adhesive film was arranged and aligned, and both were connected using a flip chip bonder to obtain a connection body (connection conditions: 180 ° C., 20 seconds, 100 g / bump).

接続終了後、接続体を30℃、70%RHの雰囲気下に186時間放置し、次いで240℃(max)のリフロー炉に2回通過させた。そして、4端子法により接続部の抵抗を測定した。測定後、接続体にプレッシャークッカー(PCT)処理(121℃、2.1気圧、100%RH)を200時間施した後の接続部の抵抗を再度測定した。得られた結果を表3及び表4に示す。   After the connection was completed, the connected body was left in an atmosphere of 30 ° C. and 70% RH for 186 hours, and then passed twice through a reflow furnace at 240 ° C. (max). And the resistance of the connection part was measured by the four terminal method. After the measurement, the connection was subjected to a pressure cooker (PCT) treatment (121 ° C., 2.1 atm, 100% RH) for 200 hours, and the resistance of the connection was measured again. Tables 3 and 4 show the obtained results.

(引張り伸び率と弾性率)
未硬化の熱硬化性接着フィルムを1cm(幅)×15cm(長)の大きさにカッターナイフを用いて切り出し、180℃の熱風循環式オーブン中で15分間硬化させた後、剥離PETフィルムを取り除いた。ここで、硬化後にカッターナイフを用いて切り出さないのは、マイクロクラックの発生を避けるためである。
(Tensile elongation and elastic modulus)
The uncured thermosetting adhesive film is cut into a size of 1 cm (width) x 15 cm (length) using a cutter knife, cured in a hot air circulating oven at 180 ° C for 15 minutes, and then the peeled PET film is removed. Was. Here, the reason why cutting is not performed using a cutter knife after curing is to avoid generation of microcracks.

得られたフィルムの引張り伸び率を引張り試験機(オートグラフAGS−H/ビデオ式伸び計DVE−200、島津製作所)で測定(測定条件:引張り速度=1mm/min;チャック間距離=10cm;標線間距離=5cm;測定温度=25℃)した。また、弾性率は、引張り試験機より得られたストレス−ストレインカーブにおける歪量0.05%〜0.25%間の傾きから算出した。得られた測定結果並びに算出結果を表3及び表4に示す。併せて絶縁性無機フィラーの配合量(容量%)も表3及び表4に示す。   The tensile elongation rate of the obtained film was measured by a tensile tester (Autograph AGS-H / video type extensometer DVE-200, Shimadzu Corporation) (measurement conditions: tensile speed = 1 mm / min; distance between chucks = 10 cm; mark) (Distance between lines = 5 cm; measurement temperature = 25 ° C.). Further, the elastic modulus was calculated from the slope between the strain amount of 0.05% and 0.25% in the stress-strain curve obtained from the tensile tester. Tables 3 and 4 show the obtained measurement results and calculation results. Tables 3 and 4 also show the amounts (% by volume) of the insulating inorganic filler.

なお、実施例及び比較例における絶縁性無機フィラーの容量%(5.7%;16%;19%;35%)に対する式(1)の弾性率E(GPa/30℃)の範囲並びに式(2)の引張り伸び率d(%)の範囲を表5に示した。


The range of the elastic modulus E (GPa / 30 ° C.) of the formula (1) with respect to the volume% (5.7%; 16%; 19%; 35%) of the insulating inorganic filler in Examples and Comparative Examples and the formula ( Table 5 shows the range of the tensile elongation d (%) of 2).


Figure 2004339520
表1及び表2注
*1 YP50、東都化成社製; *2 4032D、大日本化学工業社製;*3 YD128、東都化成社製; *4: (株)クラレ社製; *5: SG80、藤倉化成社製; *6: 3941HP、旭化成社製; *7: SOE2、龍森社製; *8: ホワイトンSB、白石カルシウム社製; *9:EH20GNR、日本化学工業社製
Figure 2004339520
* 1 YP50, manufactured by Toto Kasei Co., Ltd .; * 2 4032D, manufactured by Dainippon Chemical Co., Ltd .; * 3 YD128, manufactured by Toto Kasei Co., Ltd .; * 4: Kuraray Co., Ltd .; * 5: SG80, * 6: 3941HP, manufactured by Asahi Kasei Corporation; * 7: SOE2, manufactured by Tatsumori Corporation; * 8: Whiteton SB, manufactured by Shiraishi Calcium Corporation; * 9: EH20GNR, manufactured by Nippon Chemical Industry Co., Ltd.

Figure 2004339520
Figure 2004339520





Figure 2004339520
Figure 2004339520

Figure 2004339520
Figure 2004339520

Figure 2004339520
Figure 2004339520

表3〜表5からわかるように、実施例1〜6の熱硬化性接着材料の場合、絶縁性無機フィラーの容量%と弾性率とが関係式(1)を満たしており、同時に絶縁性無機フィラーの容量%と引張り伸び率とが関係式(2)を満たしている。このため初期抵抗値もPCT200時間処理後の抵抗値も殆ど変化がなく、良好な接続信頼性を示していることがわかる。   As can be seen from Tables 3 to 5, in the case of the thermosetting adhesive materials of Examples 1 to 6, the volume% and the elastic modulus of the insulating inorganic filler satisfy the relational expression (1), and at the same time, the insulating inorganic The volume% of the filler and the tensile elongation satisfy the relational expression (2). Therefore, the initial resistance value and the resistance value after the PCT processing for 200 hours hardly change, and it is understood that good connection reliability is shown.

一方、比較例1〜3及び5〜6の熱硬化性接着材料の場合には、関係式(1)を満たしているが、関係式(2)を満たしておらず、また、比較例4の熱硬化性接着材料の場合には関係式(1)及び関係式(2)を同時に満たしていない。このため、初期抵抗値は良好であるが、PCT200時間処理後の抵抗値は増大しており、接続信頼性が劣っていることがわかる。   On the other hand, in the case of the thermosetting adhesive materials of Comparative Examples 1 to 3 and 5 to 6, the relational expression (1) is satisfied, but the relational expression (2) is not satisfied. In the case of a thermosetting adhesive material, the relational expressions (1) and (2) are not simultaneously satisfied. For this reason, although the initial resistance value is good, the resistance value after the PCT treatment for 200 hours is increased, which indicates that the connection reliability is poor.

本発明の熱硬化性接着材料によれば、対向する一対の基板のそれぞれの対向面に設けられた接続端子同士を、タフネスパラメーターを低下させずに絶縁性無機フィラーを配合でき、良好な接続信頼性で接続できる。   ADVANTAGE OF THE INVENTION According to the thermosetting adhesive material of this invention, the connection terminal provided in each opposing surface of a pair of opposing board | substrate can mix | blend an insulating inorganic filler without lowering a toughness parameter, and can achieve favorable connection reliability. Can be connected by sex.

熱硬化性接着材料における絶縁性無機フィラーの配合量と弾性率及び引張り伸び率との関係図である。FIG. 4 is a diagram showing the relationship between the amount of an insulating inorganic filler in a thermosetting adhesive material, the elastic modulus, and the tensile elongation.

Claims (4)

対向する一対の基板のそれぞれの対向面に設けられた接続端子同士を接続するための熱硬化性接着材料であって、熱硬化性樹脂と絶縁性無機フィラーとを含有する熱硬化性接着材料において、絶縁性無機フィラーの配合量(a(容量%))と熱硬化性接着材料の硬化後の弾性率(E(GPa)/30℃)とが以下の関係式(1)
Figure 2004339520

を満足し、同時に絶縁性無機フィラーの配合量(a(容量%))と熱硬化性接着材料の硬化後の25℃における引張り伸び率(d(%))とが以下の関係式(2)
Figure 2004339520

を満足することを特徴とする熱硬化性接着材料。
A thermosetting adhesive material for connecting connection terminals provided on respective opposing surfaces of a pair of opposing substrates, wherein the thermosetting adhesive material contains a thermosetting resin and an insulating inorganic filler. , The blending amount (a (% by volume)) of the insulating inorganic filler and the elastic modulus (E (GPa) / 30 ° C.) of the thermosetting adhesive material after curing are represented by the following relational expression (1).
Figure 2004339520

And at the same time, the blending amount (a (% by volume)) of the insulating inorganic filler and the tensile elongation (d (%)) at 25 ° C. after curing of the thermosetting adhesive material are represented by the following relational expression (2):
Figure 2004339520

A thermosetting adhesive material characterized by satisfying the following.
絶縁性無機フィラーの配合量(a)が5〜35容量%である請求項1記載の熱硬化性接着材料。 The thermosetting adhesive material according to claim 1, wherein the compounding amount (a) of the insulating inorganic filler is 5 to 35% by volume. 絶縁性無機フィラーがアルミナ又はシリカである請求項1又は2記載の熱硬化性接着材料。 3. The thermosetting adhesive material according to claim 1, wherein the insulating inorganic filler is alumina or silica. 更に、異方性導電接続用の導電性粒子を0.5〜20容量%の割合で含有する請求項1〜3いずれかに記載の熱硬化性接着材料。

The thermosetting adhesive material according to any one of claims 1 to 3, further comprising 0.5 to 20% by volume of conductive particles for anisotropic conductive connection.

JP2004161431A 2004-05-31 2004-05-31 Thermosetting adhesive material Pending JP2004339520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004161431A JP2004339520A (en) 2004-05-31 2004-05-31 Thermosetting adhesive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004161431A JP2004339520A (en) 2004-05-31 2004-05-31 Thermosetting adhesive material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP35080099A Division JP2001164232A (en) 1999-12-09 1999-12-09 Thermosetting adhesive material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009183227A Division JP5114784B2 (en) 2009-08-06 2009-08-06 Manufacturing method of connection body and connection body

Publications (1)

Publication Number Publication Date
JP2004339520A true JP2004339520A (en) 2004-12-02

Family

ID=33535794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004161431A Pending JP2004339520A (en) 2004-05-31 2004-05-31 Thermosetting adhesive material

Country Status (1)

Country Link
JP (1) JP2004339520A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006064678A1 (en) * 2004-12-16 2006-06-22 Sumitomo Electric Industries, Ltd. Adhesive for circuit connection
JP2008258492A (en) * 2007-04-06 2008-10-23 Nitto Denko Corp Adhesive sheet for manufacturing semiconductor device
JP2008300403A (en) * 2007-05-29 2008-12-11 Sony Chemical & Information Device Corp Conductor wire and manufacturing method therefor, and solar cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006064678A1 (en) * 2004-12-16 2006-06-22 Sumitomo Electric Industries, Ltd. Adhesive for circuit connection
JP2006196850A (en) * 2004-12-16 2006-07-27 Sumitomo Electric Ind Ltd Adhesive for connecting circuit
US7588698B2 (en) * 2004-12-16 2009-09-15 Sumitomo Electric Industries, Ltd. Circuit connecting adhesive
JP2008258492A (en) * 2007-04-06 2008-10-23 Nitto Denko Corp Adhesive sheet for manufacturing semiconductor device
JP2008300403A (en) * 2007-05-29 2008-12-11 Sony Chemical & Information Device Corp Conductor wire and manufacturing method therefor, and solar cell

Similar Documents

Publication Publication Date Title
JP4304508B2 (en) Adhesive composition, adhesive composition for circuit connection, connector and semiconductor device
JP2007091959A (en) Anisotropically conductive adhesive
JP2008274019A (en) Anisotropically conductive film, and connection structure
JP2007112949A (en) Anisotropic conductive adhesive
JP4998732B2 (en) Anisotropic conductive adhesive
JP2007056209A (en) Adhesive for circuit connection
KR100989535B1 (en) Adhesive material
JPH10335389A (en) Semiconductor device and sheet-shaped sealing material used for the same
JP5556488B2 (en) Adhesive for connecting counter electrode
JP2005075983A (en) Adhesive and method for producing the same
TWI280590B (en) Thermosetting adhesive material
JP2009158712A (en) Adhesive for electronic component
KR20040029940A (en) Die-attaching paste and semiconductor device
JP2003193021A (en) Adhesive film with high heat conductivity
JPH07173448A (en) Anisotropically conductive film
JP6283520B2 (en) Adhesive composition for semiconductor and semiconductor device
JP2004339520A (en) Thermosetting adhesive material
JP2009246026A (en) Paste-like adhesive, and method of manufacturing substrate incorporating electronic components using the same
JP5114784B2 (en) Manufacturing method of connection body and connection body
JP2004328000A (en) Connection material
JP4381272B2 (en) Anisotropic conductive adhesive and anisotropic conductive adhesive sheet using the same
JPH0853659A (en) Adhesive
JP2002270624A (en) Die attach paste and semiconductor device
JP2007277478A (en) Adhesive for connecting circuits
JP2008084545A (en) Adhesive for electrode connection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090507