JP2004339449A - Polyamide resin and its production process - Google Patents

Polyamide resin and its production process Download PDF

Info

Publication number
JP2004339449A
JP2004339449A JP2003140816A JP2003140816A JP2004339449A JP 2004339449 A JP2004339449 A JP 2004339449A JP 2003140816 A JP2003140816 A JP 2003140816A JP 2003140816 A JP2003140816 A JP 2003140816A JP 2004339449 A JP2004339449 A JP 2004339449A
Authority
JP
Japan
Prior art keywords
polyamide resin
component
dicarboxylic acid
diamine component
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003140816A
Other languages
Japanese (ja)
Inventor
Kazumi Tanaka
一實 田中
Minoru Kikuchi
稔 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2003140816A priority Critical patent/JP2004339449A/en
Publication of JP2004339449A publication Critical patent/JP2004339449A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyamide resin having a reduced low molecular weight component causing mold staining, mold failure or the like at molding, and to provide a process for producing the resin. <P>SOLUTION: The process for producing the polyamide resin, which uses a batch melt polymerization vessel, comprises the following steps: (1) melting a dicarboxylic acid component which is adipic acid in 60 mol% or more; (2) continuously or intermittently starting to add a diamine component with a boiling point of 200°C or higher under polymerization pressure to a dicarboxylic acid component in a molten state at 200°C or below in the absence of solvent; and (3) keeping the temperature of the reaction system at 200°C or below at least until the molar ratio (diamine component/dicarboxylic acid component) reaches 0.1. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、成型材料、ボトル、シート、フィルム、繊維用に好適に用いられるポリアミド樹脂の製造方法に関する。更に詳しくは、成型時の金型汚れおよび成形不良等の原因となる低分子量成分を低減した、ジカルボン酸成分とジアミン成分から成るポリアミド樹脂およびその製造方法に関する。
【0002】
【従来の技術】
ポリアミド樹脂は一般にポリマー生成に関する重縮合平衡以外に、環状−鎖状構造間の化学平衡も存在している。アミノカルボン酸もしくはラクタムを原料とする様なナイロン6タイプのポリアミド樹脂には重合後に相当量の環状構造物を主体とする低分子量成分が含まれるため、抽出操作が必要である。一方、ジアミン成分とジカルボン酸成分から成るポリアミド樹脂は、平衡はかなり鎖状構造に寄っているものの環状構造物は皆無では無く、ある割合で存在する。また、鎖状構造であったとしてもモノマーあるいはオリゴマーと称される低分子量成分は存在する。この様な低分子量成分は、成形加工上様々な不都合をもたらす。例えば射出成形においては、金型の汚れ、成型品のひけ、成型品表面の荒れ等の原因となる。押出成形においては、ダイスのヤケ、成型品表面の荒れ、成型品表面での低分子量成分の析出、冷却ロールの汚染等であり、繊維成形では、糸切れ、糸径の変動等である。また溶融粘度安定性の欠如、成型品の物性低下、溶出による内容物の汚染等、多大な影響を与えるため、環状および鎖状構造のモノマーあるいはオリゴマーの様な低分子量成分はできる限り除去されることが望まれる。
【0003】
アミノカルボン酸もしくはラクタムを原料とする様なナイロン6タイプのポリアミドから重合後に低分子量成分の抽出操作を行う際、一般には熱水抽出塔が用いられ、抽出塔上部に供給されたペレットは、塔下部から送られる熱水にて向流抽出された後、下部から連続的に取り出される。抽出後は乾燥され、製品となる。
低分子量成分を低減するため、溶融重合工程の中に低分子量成分を除去する工程を組み込むことは、商業的にも効率的であり好ましい。一般には重合反応に寄与する未反応のモノマーまで除かれない様に、反応が最も進んだ重合工程の後半において、低分子量成分の除去が実施される。ナイロン6樹脂では未反応モノマーを主体とする低分子量成分を除くため、未反応モノマーの除去と後重合を同時に行う方法が開示されている(特許文献1参照。)。また、薄膜蒸発機を用いて、ナイロン6樹脂からモノマー、オリゴマーを除去する方法も提案されている(特許文献2、および3参照。)。
【0004】
ジアミン成分とジカルボン酸成分から成るナイロン66タイプのポリアミド樹脂では、ナイロン6タイプのポリアミドに比較し環状構造物を主体とする低分子量成分が少ないため、一般にはこの様な抽出操作はとられていない。低分子量成分を低減するためナイロン6の様に抽出を行うことは、品質を向上させる上で極めて有効であるが、経済的理由から抽出操作は省略されてきた。
【0005】
ところで、ジカルボン酸成分とジアミン成分から成るポリアミド樹脂を製造する際に、供給原料としてナイロン塩水溶液を用いることが一般的である。先ずナイロン塩水溶液を加圧下に加熱し、ジアミン成分の留出を抑えながら均一相で重合を進め、ジアミン成分を固定化したのち系内の水蒸気を徐々に放圧し、最終的に常圧もしくは減圧とし重合を完結させる。ナイロン塩を供給原料とする方法(特許文献4、および5参照。)もあるが、ナイロン塩の単離,精製工程が新たに必要であり、効率の良い方法とは言い難い。ナイロン塩およびナイロン塩の水溶液を供給原料としない重合方法として、少量の水を含んだジアミンを常圧下220℃以下の温度で滴下して反応を行う方法がある(特許文献6参照。)。更に、溶媒の非存在下に溶融状態にあるジカルボン酸成分にジアミン成分を常圧下に滴下し、直接反応させる方法が開示されており、熱履歴も少なく経済的にも有利な方法である(特許文献7、および8参照。)。
【0006】
これらいずれの供給原料を用いた場合であっても、基本的には溶融重合には次の3つの工程が含まれる。先ずジアミンの固定化が主目的となる前期重縮合工程、溶媒水および/あるいは縮合水の大部分の留去と重合の促進が目的である中期重縮合工程、そして目標とする重合度(分子量,粘度)を達成する後期重縮合工程の3工程である。
回分式では1つの重合槽を用いて重合条件を調整しながら上記3工程を順次経る。一般に回分式では3工程の全てに対応するため縦型重合槽が用いられるため、単位処理量あたりの蒸発表面積を大きくすることができない。従って、後期重縮合工程で低分子量成分を除去するには、反応混合物の縦型反応槽における滞留時間を長くする必要があり、反応混合物は長い熱履歴を経ることになり、得られる生成物の着色度が高くなる。また、高真空下に保つことは、液面上昇、発泡等の問題から難しい。
【0007】
一方、半連続式あるいは完全連続式では、2つ以上の重合器を用いて3工程毎に最適な重合器と重合条件が選ばれる。後期重縮合工程を担う後期重合器には、低分子量成分の低減と同じ作用効果である水分を除去する性能、つまりポリアミド樹脂の平衡反応をポリマー生成側にずらすための脱気性能の他に、ポリマー鎖の末端アミノ基と末端カルボキシル基の反応を促進するための攪拌混合性能が求められる。従って、半連続式および完全連続式の重合方法の方が、回分式より低分子量成分の低減には有利である。
【0008】
溶融重合後あるいは溶融重合工程の後半で低分子量成分を除去するのではなく、溶融重合における低分子量成分の生成量そのものを低下させることが重要であり、極めて効率的である。ナイロン6では低温で重合することでラクタムモノマーおよび環状オリゴマー量が低下することが判っている(例えば、非特許文献1参照。)。ナイロン66タイプのポリアミド樹脂においても、同様の知見が得られる。しかし、ラクタムモノマー、アミノカルボン酸、ナイロン塩水溶液、およびナイロン塩を供給原料とする溶融重合方法では、反応の開始当初から反応の主生成物は、アミノ基とカルボキシル基のモル比がほぼ一致したポリアミドであり、重合度が約6〜10以上からその融点は最終的に得られるポリアミド樹脂の融点とほぼ一致する。つまり、反応系を均一な液相に保つため、重合反応の開始当初から反応系の温度を得られるポリアミド樹脂の融点近傍、もしくは溶媒水への溶解温度以上に維持する必要があり、限られた範囲で反応温度を低下させる事しかできず、その効果は極めて小さなものである。またその際、非常に厳密な温度管理を必要とする。
【0009】
この様に、低分子量成分が低減されたポリアミド樹脂を得ることを目的として、ポリアミド樹脂に含まれる低分子量成分を除去する方法は、多数考案され、商業的に実施されているものもあり確実な効果が得られている。しかし、抽出搭と乾燥機、薄膜蒸発機等の設備が必要であり、更に低分子量成分の生成そのものを低減する技術は充分なものとは言い難く、より簡便で確実な方法の開発が望まれていた。
【0010】
【特許文献1】
特開昭60−101120号公報
【特許文献2】
特開昭53−111394号公報
【特許文献3】
特開2000−256460号公報
【特許文献4】
特公昭33−15700号公報
【特許文献5】
特公昭43−22874号公報
【特許文献6】
特開昭48−12390号公報
【特許文献7】
特開昭57−200420号公報
【特許文献8】
特開昭58−111829号公報
【非特許文献1】
ポリアミド樹脂ハンドブック 日刊工業新聞社 昭和63年1月 P59〜P61
【0011】
【発明が解決しようとする課題】
本発明の目的は、上記従来技術の問題点を解消し、成型時の金型汚れおよび成形不良等の原因となる低分子量成分が低減されたポリアミド樹脂およびその製造方法を提供することにある。
【0012】
【課題を解決するための手段】
本発明者らは鋭意検討した結果、溶融状態にあるジカルボン酸成分にジアミン成分を直接添加してポリアミド樹脂を製造するに際し、特定のモル比(ジアミン成分/ジカルボン酸成分)に達するまで特定温度に維持することで、低分子量成分が低減されたポリアミド樹脂が得られる事を見出し、本発明を完成させた。
【0013】
すなわち本発明は、回分式溶融重合槽を用いたポリアミド樹脂の製造方法であって、
(1)アジピン酸が60モル%以上であるジカルボン酸成分を溶融する工程、
(2)200℃以下の溶融状態にあるジカルボン酸成分に対し、溶媒の非存在下に、重合圧力における沸点が200℃より高いジアミン成分を、連続的にもしくは間欠的に添加を開始する工程、および
(3)少なくともモル比(ジアミン成分/ジカルボン酸成分)が0.1に達するまで反応系の温度を200℃以下に維持する工程
を含むことを特徴とするポリアミド樹脂の製造方法、
および該製造方法で得られ、水/メタノール=1/9(重量比)による還流下での抽出量が1.6重量%未満であることを特徴とするポリアミド樹脂である。
【0014】
【発明の実施の形態】
ポリアミド樹脂の重合度を制御する上で、モル比を所定の値に保つ事が非常に重要であり、ジアミン成分の固定化が大きな課題である。本発明では、溶媒の非存在下にジカルボン酸成分にジアミン成分を直接添加する方法を取るため、ジカルボン酸成分、重合途中の生成物および最終的に得られるポリアミド樹脂の融点以上の沸点を有するジアミン成分を用いる事が好ましい。なぜならば、気相より液相状態のジアミンの方が固定化する上で効率のよいことは明らかであり、更にジアミンの液化を目的に高度な加圧条件を選択する必要がなく、常圧付近での反応が可能なため設備的にも有利となるためである。
【0015】
本発明で言う、重合途中の生成物および最終的に得られるポリアミド樹脂(以後、ポリアミド樹脂と言うことがある。)の融点とは、DSC測定等で観測される結晶融解熱に起因する吸熱ピーク温度を指し、この融点以上の温度にポリアミド樹脂を加熱することにより均一な攪拌混合が達成される。また、明確な結晶融解を示さない難晶性もしくは非晶性ポリアミド樹脂の場合は、均一な攪拌混合が可能となる温度つまり流動開始温度を指す。
【0016】
ジアミン成分の沸点はポリアミド樹脂の融点より5℃以上、更に好ましくは10℃以上高い沸点を有するジアミンの使用が好ましい。しかし、本発明はジアミン成分が溶融状態にあるジカルボン酸成分に滴下される製造方法によるため、モル比が0.5〜0.6以下であれば、重合途中の生成物の融点はジカルボン酸成分の融点とほぼ一致する。従って、モル比が0.5以下の条件において滴下されれば、上記要件を満たさなくてもジカルボン酸の融点以上の沸点を有するジアミン成分であれば、ジアミン成分の固定化が可能であり、好適に用いられる。本発明では、重合圧力における沸点が200℃より高いジアミン成分を用いる。更に、ジアミン成分の60モル%以上が、ポリアミド樹脂の融点より5℃以上高い沸点を有するジアミンである、キシリレンジアミンおよび/またはビスアミノシクロヘキサンであることが好ましい。キシリレンジアミンはメタ,パラおよびオルソキシリレンジアミンが例示でき、ビスアミノメチルシクロヘキサンは1,2−、1,3−、1,4―ビスアミノメチルシクロヘキサンが例示できる。また、得られるポリアミド樹脂の実用的な物性から考えて、メタキシリレンジアミンを50mol%以上含むジアミン成分の使用が好ましく、より好ましくは70mol%以上である。
【0017】
キシリレンジアミンおよびビスアミノメチルシクロヘキサン以外のジアミン成分としては、テトラメチレンジアミン,ペンタメチレンジアミン,ヘキサメチレンジアミン,ヘプタメチレンジアミン,オクタメチレンジアミン,ノナメチレンジアミン,オルソフェニレンジアミン,メタフェニレンジアミン,パラフェニレンジアミン等が挙げられる。
【0018】
本発明では、全てのジカルボン酸成分をジアミン成分の沸点以下の融点を有するジカルボン酸とする必要は無い。なぜならば、主たるジカルボン酸の融点がジアミン成分の沸点以下であれば、高融点を有するジカルボン酸が存在しても溶解し、均一な液相を示すからである。また、得られるポリアミド樹脂の実用的な物性から考えて、ジカルボン酸成分の60モル%以上がアジピン酸である事が好ましい。更に好ましくは70モル%以上である。
アジピン酸以外のジカルボン酸成分として、琥珀酸,グルタル酸,アジピン酸,スベリン酸,セバシン酸,ドデカン二酸,イソフタル酸,テレフタル酸,フタル酸,2−6−ナフタレンジカルボン酸等が挙げられる。これらは単独でも2種以上混合しても使用可能である。
【0019】
また、ジアミン成分およびジカルボン酸成分以外のポリアミド構成成分は、カプロラクタム,バレロラクタム,ラウロラクタム,ウンデカラクタム等のラクタム、11−アミノウンデカン酸,12−アミノドデカン酸等のアミノカルボン酸を例示することができ、溶融状態にあるジカルボン酸成分に予め溶解する、もしくはジアミン成分とともに滴下することができる。
【0020】
本発明では所望のモルバランスを有するポリアミド樹脂(ジアミン成分過剰,ジカルボン酸成分過剰および等モル)を得るため、仕込みのモルバランスは任意に選択される。仕込みのモルバランスの調整方法は、例えば、粉体のジカルボン酸成分の重量を秤量し重合槽に供給し溶融する、もしくは溶融状態にあるジカルボン酸成分を溶融槽ごと質量計量器で計量し重合槽に供給する、その後、ジアミン成分貯槽を質量計量器で計量しつつ、ジアミン成分を反応系に供給する方法等が例示できる。本発明においてジアミン成分およびジカルボン酸成分の質量を計量する場合、ロードセル、天秤等の質量計量器が好適に利用可能である。
【0021】
ジカルボン酸成分の溶融工程は、酸化着色を避ける目的から窒素等の不活性ガス雰囲気で行われることが好ましい。ジカルボン酸成分の溶融は重合槽もしくは専用の溶融槽で実施可能であるが、重合槽の利用効率を高める目的から、専用の溶融槽の利用が好ましい。
【0022】
ジアミン成分の添加を開始する際の反応系の温度は、当然ジカルボン酸成分が均一な液相を示す温度に昇温されている事が必要であり、主たるジカルボン酸成分であるアジピン酸の融点以上に加熱されている事が好ましい。更に、ジアミン成分は溶融ジカルボン酸成分を攪拌しつつ連続的にもしくは間欠的に添加されるが、実質的にアミド化反応が進行する温度である150℃以上の温度に加熱されることが好ましく、かつ中間体として生成するオリゴマーおよび/または低分子量ポリアミドが溶融状態となって反応系全体が均一な流動状態を保持しうる温度に加熱されていることが好ましい。また、本発明の最大の特徴である、低分子量成分が低減されたポリアミド樹脂を得るため、少なくともモル比が0.1に達するまで反応系の温度は200℃以下に保たれなければならない。更に好ましくは、モル比が0.2に達するまで反応系の温度は200℃以下に保たれなければならない。また、反応系の温度は190℃以下であることがより好ましい。
【0023】
ジアミン成分の添加、つまりモル比の上昇にともない反応系の融点は上昇するが、モル比が0.5〜0.6に達するまでは、反応系の融点はジカルボン酸成分の融点とほぼ一致する。ジアミン成分の滴下後半では、反応系の融点は最終的に得られるポリアミド樹脂の融点に近接してくる。また、添加終了時点での反応系の温度は、熱履歴を抑制するため最終的に得られるポリアミド樹脂の融点以上、(融点+35℃)未満、好ましくは(融点+15℃)未満に調整される。
以上の様な要因を加味して、反応系の温度は設定されなければならない。つまり、反応系の温度制御は、ジアミン成分の添加に伴い反応系の温度を逐次昇温させ、所定の温度に維持することによって行われる。このとき昇温速度は、中和熱、アミド化反応熱,縮合水の蒸発潜熱,供給熱等に依存するため、ジアミン成分の添加速度も適時調整されなければならない。
【0024】
ジアミン成分の添加中の圧力は特に限定されないが、ジアミン成分を固定化する上で常圧以上が好ましい。しかし、ジアミン成分の60モル%以上をポリアミド樹脂の融点より高い沸点を有するジアミンを用いるため、常圧から微加圧で充分であり、極度な加圧は設備的にも高価となるため好ましくない。
【0025】
本発明ではジアミン成分を添加終了後、反応槽内を常圧以上で、少なくとも5分以上保持することが好ましい。更に好ましくは少なくとも10分以上保持する。ジアミン成分の添加初期には、ジアミン成分に対しカルボキシル基が相当過剰に存在し、ジアミン成分の反応速度つまり固定化速度は極めて速い。しかし、添加終了時にはカルボキシル基が相当量消費されており、添加初期と比較しジアミン成分の固定化速度は極めて遅くなる。また、重合度の増加により、反応混合物の攪拌効率が低下しジアミン成分の固定化に一層不利となる。固定化されなかったジアミン成分は、反応混合物中もしくは反応槽内の気相部分に存在し、あるいは分縮器で凝縮したものは、再度反応混合物に添加される。ジアミン成分の添加を終了した後に、常圧以上で少なくとも5分以上保持することで、この様なジアミン成分が固定化され、仕込みのモルバランスが精度良くポリアミドのモルバランスに再現される。
【0026】
反応槽内を常圧以上で少なくとも5分以上保持した後は、反応槽内を減圧状態とし気相部分に存在する水蒸気を反応系外に留去し、アミド化平衡を利用し重合度を更に高めることができる。あるいは、不活性ガスを反応槽の気相に流通したり、反応混合物中に曝気したりして、水蒸気を留去することで重合度を高めることも可能である。
【0027】
反応の進行と共に生成する縮合水は、100〜120℃の温度に制御されている分縮器と冷却器を通して反応系外に留去される。縮合水と共に蒸気として反応系外に留出するジアミン成分、昇華により留出するジカルボン酸成分等は、分縮器で水蒸気と分離され、反応槽に再度戻される。本発明において、公知のナイロン塩水溶液を原料とする加圧法の場合と同様に、反応原料、特にジアミン成分の反応系外への留出は避けがたく、反応槽は分縮器を備えていることが必要である。分縮器を備えることにより、ジアミン成分が留出することを効果的に防止できる。
【0028】
本発明で得られるポリアミド樹脂は、溶融重合によって得られるが、溶融重合後に更に固相状態で乾燥および重合を行っても、低分子量成分の量的な変化は殆ど無く、固相状態での後処理は特に限定されない。
本発明で得られるポリアミド樹脂を更に溶融状態での後処理する場合、高度な脱気能力を備えた重合機を使用することで低分子量成分の更なる低減が図れるため好ましい。高度な脱気能力を備えた重合機として、1本もしくは平行する2本以上の水平回転軸とこの水平回転軸にほぼ直角に取り付けられた相互に不連続な複数の攪拌翼を有しスクリュー部を有しない筒状である横型の連続式重合機、縦型の薄膜蒸発機、ベントを有する一軸もしくは二軸押出し機、等が好適に使用できる。
【0029】
本発明で得られるポリアミド樹脂の相対粘度(96%硫酸で測定した値)は、1.4以上2.7未満であることが好ましい。1.4未満であるとき、粘度が低いため造粒工程での不都合が懸念される。また、2.7以上であるとき、高粘度のため回分式溶融重合槽内での均一な攪拌混合が困難となり、部分的に過剰な熱履歴を受けたポリアミド樹脂が得られる可能性が高くなる。
【0030】
本発明で得られるポリアミド樹脂の低分子量成分の総量は、水/メタノール=1/9(重量比)による還流下での抽出量によって定義される。詳しくは、ポリアミド樹脂20gに対し、抽出溶媒として水/メタノール=1/9(重量比)を600ml加え加熱し、還流状態で4時間抽出する。本発明で得られるポリアミド樹脂の抽出量は1.6重量%以下であり、更に好ましくは1.3重量%以下である。抽出物には環状もしくは鎖状量のモノマー,ダイマー,トリマー等の低分子量成分が含まれる。上記抽出量を1.6重量%以下とすることにより、成型時の金型汚れおよび成形不良等の不具合を低減することができる。
【0031】
また、本発明で得られるポリアミド樹脂は、ナノコンポジットあるいは酸素捕捉性材料に用いられるポリアミド樹脂としても、好適に利用される。
【0032】
【実施例】
以下に実施例および比較例を示し、本発明を具体的に説明する。なお本発明における評価のための測定は以下の方法によった。
(イ)相対粘度
ポリアミド樹脂1gを精秤し、96%硫酸100ccに20〜30℃で攪拌溶解した。完全に溶解した後、速やかにキャノンフェンスケ型粘度計に溶液5ccを取り、25℃±0.03℃の恒温槽中で10分間放置後、落下時間(t)を測定した。また、96%硫酸そのものの落下時間(t0)も同様に測定した。tおよびt0から次式(A)により相対粘度を求めた。
相対粘度=t/t0・・・・・・・・・・(A)
(ロ)水分(重量%)
三菱化学株式会社製カールフィッシャー微量水分測定装置(CA−06型、VA−06型)を用い、ポリアミド樹脂1〜2gを精秤し、140℃で30分間窒素気流下に加熱し、水分濃度(重量%)を測定した。
(ハ)抽出量(重量%)
ポリアミド樹脂を破砕した後、目開き250μmのメッシュスクリーンでふるい、メッシュスクリーンをパスしたポリアミド樹脂粉末20gを精秤する。尚、このとき上記(ロ)の方法でポリアミド樹脂粉末中の水分を測定し、水分濃度(重量%)の補正を加える。この粉末に水/メタノール=1/9(重量比)を600ml加え加熱し、還流状態で4時間加熱する。その後速やかにガラスフィルターで濾過し、その後水/メタノール=1/9(重量比)で充分にポリアミド樹脂粉末を洗い、濾液および洗液を捕集する。捕集された濾液および洗液を、ロータリーエバポレーターを用いて蒸発乾固し、得られた残渣を精秤する。
抽出量(重量%)として次式(B)に基づき算出した。
抽出量(重量%)=残渣量/{ポリアミド樹脂粉末量×(1−水分濃度×100)}×100・・・(B)
【0033】
実施例1〜4,比較例1〜2
攪拌機、熱電対、分縮器、全縮器、窒素ガス導入管および滴下ロートを備えた2Lのステンレス製の容器にアジピン酸(純度=99.85%,水分=0.15%)585.44g(4mol)を仕込み、窒素置換した。その後、少量の窒素を流通させながら、攪拌しつつマントルヒーターで加熱し、アジピン酸を溶融した。次いで溶融したアジピン酸を攪拌しながら、滴下ロートからメタキシリレンジアミン(沸点=274℃,純度=99.90%)545.31g(4mol)を常圧下に連続的に2時間かけて滴下した。メタキシリレンジアミン滴下開始から所定モル比(ジアミン成分/ジカルボン酸成分)に到達するまでの間、反応系の温度を表1の如く制御した。メタキシリレンジアミンの滴下が終了する際に反応系の温度が250℃に到達する様に、所定モル比に到達以降の反応系の温度を調整しつつ連続的に昇温した。メタキシリレンジアミンの滴下とともに留出する水は分縮器および全縮器を通して反応系外に除いた。このとき分縮器塔頂の最高温度は101℃であった。
メタキシリレンジアミンの滴下終了後、引き続き攪拌しながら0.2℃/分の昇温速度で昇温しながら常圧下に20分保持し、更に5分かけて80kPaまで圧力を低下させ、80kPaで15分間保持した。この間反応系の温度は255〜260℃に維持した。その後、窒素常圧とし加熱を中止し、放冷しポリアミドが冷却固化後、抽出量および相対粘度を測定した。結果を表1に示す。尚、得られたポリアミドの融点は、243℃であった。
【0034】
【表1】

Figure 2004339449
【0035】
比較例3
攪拌機、熱電対、圧力計、調圧弁および窒素ガス導入管を備えた5Lのステンレス製のオートクレーブにアジピン酸/メタキシリレンジアミン等モル塩の60%水溶液2000mlを仕込み、窒素置換後、反応系の温度を250℃まで昇温しつつ、内圧を1.5〜1.9MPaに保って2時間加熱した。更に、30分かけて水蒸気を徐々に放圧しながら内圧を80kPaに低下させ、80kPaで15分間保持し、反応系の温度を255〜260℃に維持した。その後、常圧とし加熱を中止し、オートクレーブを放冷しポリアミドが冷却固化後、抽出量および相対粘度を測定した。得られたポリアミド樹脂の抽出量は1.63重量%、相対粘度は2.10であった。一般的なナイロン塩水溶液を原料とする加圧重合方法では、抽出量の低減されたポリアミド樹脂を得ることはできなかった。
【0036】
実施例5,比較例4
実施例1と同じ反応器にアジピン酸(純度=99.85%,水分=0.15%)585.44g(4mol)を仕込み、窒素置換した。その後、少量の窒素を流通させながら、攪拌しつつマントルヒーターで加熱し、アジピン酸を溶融した。次いで溶融したアジピン酸を攪拌しながら、滴下ロートから1,3−ビスアミノメチルシクロヘキサン(沸点=244℃,純度=99.95%)569.00g(4mol)を常圧下に連続的に2時間かけて滴下した。1,3−ビスアミノメチルシクロヘキサン滴下開始から所定モル比(ジアミン成分/ジカルボン酸成分)に到達するまでの間、反応系の温度を表1の如く制御した。1,3−ビスアミノメチルシクロヘキサンの滴下が終了する際に反応系の温度が240℃に到達する様に、所定モル比に到達以降の反応系の温度を調整しつつ連続的に昇温した。1,3−ビスアミノメチルシクロヘキサンの滴下とともに留出する水は分縮器および全縮器を通して反応系外に除いた。このとき分縮器塔頂の最高温度は103℃であった。
1,3−ビスアミノメチルシクロヘキサンの滴下終了後、引き続き攪拌しながら0.4℃/分の昇温速度で昇温しながら常圧下に20分保持し、更に5分かけて80kPaまで圧力を低下させ、80kPaで15分間保持した。この間反応系の温度は255〜260℃に維持した。その後、窒素常圧とし加熱を中止し、放冷しポリアミドが冷却固化後、抽出量および相対粘度を測定した。結果を表2に示す。尚、得られたポリアミドの融点は、228℃であった。
【0037】
【表2】
Figure 2004339449
【0038】
表1および表2から明らかな様に、溶融状態にあるジカルボン酸成分にジアミン成分を添加する溶融重合方法において、少なくともモル比が0.1に達するまでの間、反応系の温度を200℃以下に維持することで、抽出量が低減されたポリアミド樹脂が得られることがわかる。
【0039】
【発明の効果】
本発明に係るポリアミド樹脂および製造方法によって以下の効果が得られる。(イ)成型時の金型汚れおよび成形不良等の原因となる低分子量成分を低減したポリアミド樹脂を簡便に得ることができる。
(ロ)成型材料、ボトル、シート、フィルム、繊維用に好適に用いられるポリアミド樹脂が得られる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a polyamide resin suitably used for molding materials, bottles, sheets, films, and fibers. More specifically, the present invention relates to a polyamide resin comprising a dicarboxylic acid component and a diamine component, and a method for producing the same, which reduces low-molecular-weight components that cause mold contamination and molding defects during molding.
[0002]
[Prior art]
Polyamide resins generally have a chemical equilibrium between cyclic and chain structures in addition to the polycondensation equilibrium for polymer formation. Nylon 6 type polyamide resin such as aminocarboxylic acid or lactam as a raw material contains a considerable amount of low molecular weight components mainly composed of cyclic structures after polymerization, and therefore requires an extraction operation. On the other hand, in the case of a polyamide resin comprising a diamine component and a dicarboxylic acid component, the equilibrium is rather close to a chain structure, but a cyclic structure is not present at all but present in a certain ratio. Even if it has a chain structure, a low molecular weight component called a monomer or an oligomer exists. Such a low molecular weight component causes various inconveniences in molding. For example, in injection molding, it causes stains on a mold, sink of a molded product, roughness of a molded product surface, and the like. In extrusion molding, there are burnt dies, rough surfaces of molded products, precipitation of low molecular weight components on the surfaces of molded products, contamination of cooling rolls, and the like, and in fiber molding, broken yarns, fluctuations in yarn diameter, and the like. In addition, low molecular weight components such as monomers or oligomers having a cyclic or chain structure are removed as much as possible because they have a great effect such as lack of melt viscosity stability, deterioration of physical properties of molded products, and contamination of contents due to elution. It is desired.
[0003]
When performing low molecular weight component extraction operation after polymerization from nylon 6 type polyamide such as aminocarboxylic acid or lactam as a raw material, a hot water extraction column is generally used, and the pellet supplied to the upper part of the extraction column is converted into a column. After countercurrent extraction with hot water sent from the lower part, it is continuously taken out from the lower part. After extraction, it is dried to produce a product.
It is commercially efficient and preferable to incorporate a step of removing the low molecular weight component in the melt polymerization step in order to reduce the low molecular weight component. Generally, low molecular weight components are removed in the latter half of the polymerization step in which the reaction has proceeded most so that unreacted monomers contributing to the polymerization reaction are not removed. In order to remove low molecular weight components mainly composed of unreacted monomers in a nylon 6 resin, a method of simultaneously removing unreacted monomers and performing post-polymerization has been disclosed (see Patent Document 1). In addition, a method of removing monomers and oligomers from nylon 6 resin using a thin film evaporator has been proposed (see Patent Documents 2 and 3).
[0004]
In the case of nylon 66 type polyamide resin comprising a diamine component and a dicarboxylic acid component, such an extraction operation is not generally performed because there is less low molecular weight component mainly composed of a cyclic structure than nylon 6 type polyamide resin. . Performing extraction like nylon 6 to reduce low molecular weight components is extremely effective in improving quality, but the extraction operation has been omitted for economic reasons.
[0005]
By the way, when producing a polyamide resin comprising a dicarboxylic acid component and a diamine component, it is common to use an aqueous solution of a nylon salt as a feedstock. First, the nylon salt aqueous solution is heated under pressure, polymerization is promoted in a uniform phase while distilling out the diamine component, and after the diamine component is immobilized, the steam in the system is gradually released, and finally normal pressure or reduced pressure To complete the polymerization. There is also a method using a nylon salt as a feedstock (see Patent Documents 4 and 5), but a new isolation and purification step of the nylon salt is required, and it is hardly an efficient method. As a polymerization method that does not use a nylon salt or an aqueous solution of a nylon salt as a feedstock, there is a method in which a diamine containing a small amount of water is dropped at a temperature of 220 ° C. or less under normal pressure to carry out a reaction (see Patent Document 6). Furthermore, there is disclosed a method in which a diamine component is dropped at normal pressure to a dicarboxylic acid component in a molten state in the absence of a solvent and reacted directly with the dicarboxylic acid component. References 7 and 8).
[0006]
Regardless of which of these feedstocks is used, the melt polymerization basically includes the following three steps. First, a pre-polycondensation step in which the main purpose is immobilization of the diamine, a mid-term polycondensation step in which the solvent water and / or condensed water is largely distilled off and the polymerization is promoted, and a target degree of polymerization (molecular weight, (Viscosity).
In the batch system, the above three steps are sequentially performed while adjusting polymerization conditions using one polymerization tank. In general, in a batch system, since a vertical polymerization tank is used to cope with all three steps, the evaporation surface area per unit processing amount cannot be increased. Therefore, in order to remove low molecular weight components in the late polycondensation step, it is necessary to increase the residence time of the reaction mixture in the vertical reaction vessel, and the reaction mixture will have a long heat history, and the resulting product The coloring degree increases. Also, it is difficult to maintain a high vacuum because of problems such as a rise in liquid level and foaming.
[0007]
On the other hand, in a semi-continuous system or a fully continuous system, optimal polymerization reactors and polymerization conditions are selected every three steps using two or more polymerization reactors. In the late polymerization reactor that is responsible for the late polycondensation step, in addition to the performance of removing water, which is the same effect as the reduction of low molecular weight components, that is, in addition to the deaeration performance to shift the equilibrium reaction of the polyamide resin to the polymer generation side, The stirring and mixing performance for promoting the reaction between the terminal amino group and the terminal carboxyl group of the polymer chain is required. Therefore, the semi-continuous and fully continuous polymerization methods are more advantageous than the batch method in reducing low molecular weight components.
[0008]
It is important to reduce the amount of the low molecular weight component generated in the melt polymerization, rather than removing the low molecular weight component after the melt polymerization or in the latter half of the melt polymerization step, and it is extremely efficient. It has been found that the amount of lactam monomer and cyclic oligomer in nylon 6 decreases when polymerized at low temperature (for example, see Non-Patent Document 1). Similar findings are obtained for nylon 66 type polyamide resin. However, in the melt polymerization method using a lactam monomer, an aminocarboxylic acid, an aqueous solution of a nylon salt, and a nylon salt as feedstocks, the main product of the reaction had almost the same molar ratio of amino groups and carboxyl groups from the beginning of the reaction. It is a polyamide having a degree of polymerization of about 6 to 10 or more, and its melting point almost coincides with the melting point of the finally obtained polyamide resin. In other words, in order to maintain the reaction system in a uniform liquid phase, it is necessary to maintain the temperature of the reaction system near the melting point of the polyamide resin from the beginning of the polymerization reaction, or to maintain the temperature above the melting temperature of the solvent water, which is limited. Only the reaction temperature can be lowered within the range, and the effect is extremely small. At that time, very strict temperature control is required.
[0009]
As described above, for the purpose of obtaining a polyamide resin having a reduced low molecular weight component, a number of methods for removing the low molecular weight component contained in the polyamide resin have been devised, some of which have been commercialized and certain methods have been devised. The effect has been obtained. However, facilities such as an extraction tower, a dryer, and a thin film evaporator are required, and the technology for further reducing the production of low molecular weight components is not sufficient, and the development of a simpler and more reliable method is desired. I was
[0010]
[Patent Document 1]
JP-A-60-101120
[Patent Document 2]
JP-A-53-111394
[Patent Document 3]
JP 2000-256460 A
[Patent Document 4]
JP-B-33-15700
[Patent Document 5]
JP-B-43-22874
[Patent Document 6]
JP-A-48-12390
[Patent Document 7]
JP-A-57-200420
[Patent Document 8]
JP-A-58-111829
[Non-patent document 1]
Polyamide Resin Handbook Nikkan Kogyo Shimbunsha January 1988 P59-P61
[0011]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a polyamide resin in which low-molecular-weight components causing mold stains during molding and defective molding are reduced, and a method for producing the same.
[0012]
[Means for Solving the Problems]
As a result of intensive studies, the present inventors have found that when a diamine component is directly added to a dicarboxylic acid component in a molten state to produce a polyamide resin, a specific temperature is reached until a specific molar ratio (diamine component / dicarboxylic acid component) is reached. By maintaining, it was found that a polyamide resin having a reduced low molecular weight component was obtained, and the present invention was completed.
[0013]
That is, the present invention is a method for producing a polyamide resin using a batch-type melt polymerization tank,
(1) a step of melting a dicarboxylic acid component in which adipic acid is 60 mol% or more;
(2) a step of continuously or intermittently adding a diamine component having a boiling point higher than 200 ° C. at a polymerization pressure to a dicarboxylic acid component in a molten state of 200 ° C. or lower in the absence of a solvent, and
(3) maintaining the temperature of the reaction system at 200 ° C. or lower until at least the molar ratio (diamine component / dicarboxylic acid component) reaches 0.1.
A method for producing a polyamide resin, comprising:
And a polyamide resin obtained by the production method, wherein the amount of extraction under reflux with water / methanol = 1/9 (weight ratio) is less than 1.6% by weight.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
In controlling the degree of polymerization of the polyamide resin, it is very important to keep the molar ratio at a predetermined value, and fixing the diamine component is a major issue. In the present invention, in order to take a method of directly adding a diamine component to a dicarboxylic acid component in the absence of a solvent, a dicarboxylic acid component, a diamine having a boiling point equal to or higher than the melting point of a polyamide resin obtained during polymerization and a finally obtained polyamide resin. It is preferred to use components. This is because it is clear that the diamine in the liquid phase is more efficient in fixing than the gas phase, and it is not necessary to select advanced pressurization conditions for the purpose of liquefying the diamine, and it is not necessary to use near normal pressure. This is because the reaction can be carried out at the same time, which is advantageous in terms of equipment.
[0015]
In the present invention, the melting point of the product during polymerization and the finally obtained polyamide resin (hereinafter sometimes referred to as polyamide resin) means the endothermic peak due to the heat of crystal fusion observed by DSC measurement or the like. A temperature refers to a temperature, and uniform stirring and mixing can be achieved by heating the polyamide resin to a temperature equal to or higher than the melting point. In the case of a hardly crystalline or amorphous polyamide resin that does not show clear crystal melting, it refers to a temperature at which uniform stirring and mixing is possible, that is, a flow start temperature.
[0016]
It is preferable to use a diamine having a boiling point of the diamine component higher than the melting point of the polyamide resin by 5 ° C. or more, more preferably 10 ° C. or more. However, since the present invention is based on the production method in which the diamine component is dropped into the dicarboxylic acid component in the molten state, if the molar ratio is 0.5 to 0.6 or less, the melting point of the product in the course of polymerization is dicarboxylic acid component. Almost coincides with the melting point. Therefore, if the molar ratio is dropped under the condition of 0.5 or less, the diamine component having a boiling point equal to or higher than the melting point of the dicarboxylic acid can be immobilized as long as the diamine component is immobilized without satisfying the above requirements. Used for In the present invention, a diamine component having a boiling point higher than 200 ° C. at the polymerization pressure is used. Further, it is preferable that 60 mol% or more of the diamine component is xylylenediamine and / or bisaminocyclohexane, which is a diamine having a boiling point higher than the melting point of the polyamide resin by 5 ° C. or more. Xylylenediamine is exemplified by meta, para and orthoxylylyleneamine, and bisaminomethylcyclohexane is exemplified by 1,2-, 1,3- and 1,4-bisaminomethylcyclohexane. In view of practical properties of the obtained polyamide resin, it is preferable to use a diamine component containing 50 mol% or more of metaxylylenediamine, and more preferably 70 mol% or more.
[0017]
Diamine components other than xylylenediamine and bisaminomethylcyclohexane include tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, orthophenylenediamine, metaphenylenediamine, paraphenylenediamine And the like.
[0018]
In the present invention, not all dicarboxylic acid components need to be dicarboxylic acids having a melting point equal to or lower than the boiling point of the diamine component. This is because, if the melting point of the main dicarboxylic acid is equal to or lower than the boiling point of the diamine component, the dicarboxylic acid having a high melting point will be dissolved even if present, and exhibit a uniform liquid phase. Also, from the viewpoint of practical properties of the obtained polyamide resin, it is preferable that 60 mol% or more of the dicarboxylic acid component is adipic acid. It is more preferably at least 70 mol%.
Examples of the dicarboxylic acid component other than adipic acid include succinic acid, glutaric acid, adipic acid, suberic acid, sebacic acid, dodecandioic acid, isophthalic acid, terephthalic acid, phthalic acid, and 2-6-naphthalenedicarboxylic acid. These can be used alone or in combination of two or more.
[0019]
Examples of the polyamide component other than the diamine component and the dicarboxylic acid component include lactams such as caprolactam, valerolactam, laurolactam, and undecalactam, and aminocarboxylic acids such as 11-aminoundecanoic acid and 12-aminododecanoic acid. Can be dissolved in the dicarboxylic acid component in a molten state in advance, or added dropwise together with the diamine component.
[0020]
In the present invention, in order to obtain a polyamide resin having a desired molar balance (excess diamine component, excess dicarboxylic acid component and equimolar), the molar balance of charging is arbitrarily selected. The method of adjusting the molar balance of the preparation is, for example, weighing the weight of the dicarboxylic acid component of the powder and supplying it to the polymerization tank to melt it, or weighing the molten dicarboxylic acid component together with the melting tank with a mass measuring device Then, the diamine component is supplied to the reaction system while the diamine component storage tank is measured by a mass meter. In the present invention, when measuring the mass of the diamine component and the dicarboxylic acid component, a mass measuring device such as a load cell or a balance can be suitably used.
[0021]
The melting step of the dicarboxylic acid component is preferably performed in an inert gas atmosphere such as nitrogen for the purpose of avoiding oxidative coloring. The melting of the dicarboxylic acid component can be carried out in a polymerization tank or a dedicated melting tank, but for the purpose of increasing the utilization efficiency of the polymerization tank, the use of a dedicated melting tank is preferred.
[0022]
The temperature of the reaction system at the start of the addition of the diamine component must naturally be raised to a temperature at which the dicarboxylic acid component shows a uniform liquid phase, and is higher than the melting point of adipic acid, which is the main dicarboxylic acid component. Preferably, it is heated to Further, the diamine component is added continuously or intermittently while stirring the molten dicarboxylic acid component, but is preferably heated to a temperature of 150 ° C. or higher, which is a temperature at which the amidation reaction substantially proceeds, In addition, it is preferable that the oligomer and / or low-molecular-weight polyamide produced as an intermediate be heated to a temperature at which the entire reaction system can be maintained in a uniform fluidized state in a molten state. In addition, in order to obtain a polyamide resin having a reduced low molecular weight component, which is the most important feature of the present invention, the temperature of the reaction system must be kept at 200 ° C. or lower at least until the molar ratio reaches 0.1. More preferably, the temperature of the reaction system must be kept below 200 ° C. until the molar ratio reaches 0.2. Further, the temperature of the reaction system is more preferably 190 ° C. or lower.
[0023]
Although the melting point of the reaction system increases with the addition of the diamine component, that is, the molar ratio increases, until the molar ratio reaches 0.5 to 0.6, the melting point of the reaction system substantially matches the melting point of the dicarboxylic acid component. . In the latter half of the dropping of the diamine component, the melting point of the reaction system approaches the melting point of the finally obtained polyamide resin. In addition, the temperature of the reaction system at the end of the addition is adjusted to a temperature equal to or higher than the melting point of the polyamide resin finally obtained and lower than (melting point + 35 ° C.), preferably lower than (melting point + 15 ° C.) in order to suppress the heat history.
In consideration of the above factors, the temperature of the reaction system must be set. That is, the temperature of the reaction system is controlled by sequentially increasing the temperature of the reaction system with the addition of the diamine component and maintaining the temperature at a predetermined temperature. At this time, the rate of temperature rise depends on the heat of neutralization, the heat of amidation reaction, the latent heat of evaporation of condensed water, the heat of supply, and the like. Therefore, the rate of addition of the diamine component must be adjusted as appropriate.
[0024]
The pressure during the addition of the diamine component is not particularly limited, but is preferably equal to or higher than normal pressure for fixing the diamine component. However, since a diamine having a boiling point higher than the melting point of the polyamide resin is used for 60 mol% or more of the diamine component, normal pressure to slight pressure are sufficient, and extreme pressure is not preferable because equipment becomes expensive. .
[0025]
In the present invention, after the addition of the diamine component is completed, it is preferable to maintain the inside of the reaction tank at normal pressure or higher for at least 5 minutes. More preferably, it is maintained for at least 10 minutes. At the initial stage of the addition of the diamine component, the carboxyl group is present in a considerable excess with respect to the diamine component, and the reaction rate of the diamine component, that is, the immobilization rate is extremely high. However, at the end of the addition, a considerable amount of the carboxyl group has been consumed, and the immobilization speed of the diamine component becomes extremely slow as compared with the initial stage of the addition. In addition, the increase in the degree of polymerization lowers the stirring efficiency of the reaction mixture, which is further disadvantageous for immobilizing the diamine component. The non-immobilized diamine component is present in the reaction mixture or in the gas phase in the reaction tank, or is condensed by the decomposer and is added to the reaction mixture again. After the addition of the diamine component is completed, the diamine component is fixed by maintaining the pressure at normal pressure or more for at least 5 minutes, and the molar balance of the preparation is accurately reproduced to the molar balance of the polyamide.
[0026]
After maintaining the inside of the reaction tank at normal pressure or higher for at least 5 minutes or more, the inside of the reaction tank is depressurized to distill off the steam present in the gas phase to the outside of the reaction system, and further utilize the amidation equilibrium to further increase the degree of polymerization. Can be enhanced. Alternatively, the degree of polymerization can be increased by flowing an inert gas into the gas phase of the reaction tank or aerating the reaction mixture to distill water vapor.
[0027]
The condensed water generated as the reaction proceeds is distilled out of the reaction system through a condenser and a cooler controlled at a temperature of 100 to 120 ° C. A diamine component distilling out of the reaction system as a vapor together with the condensed water, a dicarboxylic acid component distilling out by sublimation, and the like are separated from steam by a decomposer and returned to the reaction tank again. In the present invention, as in the case of the pressurization method using a known aqueous solution of a nylon salt as a raw material, it is inevitable to distill the reaction raw material, particularly the diamine component, out of the reaction system, and the reaction tank is provided with a condensing device. It is necessary. Providing the decomposer can effectively prevent the diamine component from distilling out.
[0028]
Although the polyamide resin obtained in the present invention is obtained by melt polymerization, even if drying and polymerization are further performed in a solid state after the melt polymerization, there is almost no change in the amount of the low molecular weight component, and The processing is not particularly limited.
In the case where the polyamide resin obtained in the present invention is further post-treated in a molten state, it is preferable to use a polymerization machine having a high degassing ability since the low molecular weight component can be further reduced. As a polymerization machine having a high degassing capacity, a screw unit having one or more horizontal rotating shafts in parallel with each other and a plurality of mutually discontinuous stirring blades mounted substantially at right angles to the horizontal rotating shafts A horizontal continuous polymerization machine having a cylindrical shape and a vertical thin film evaporator, a single-screw or twin-screw extruder having a vent, and the like can be suitably used.
[0029]
The relative viscosity (measured with 96% sulfuric acid) of the polyamide resin obtained in the present invention is preferably 1.4 or more and less than 2.7. When it is less than 1.4, the viscosity is low, and there is a concern about inconvenience in the granulation step. When it is 2.7 or more, uniform stirring and mixing in a batch-type melt polymerization tank becomes difficult due to high viscosity, and the possibility of obtaining a polyamide resin partially subjected to excessive heat history increases. .
[0030]
The total amount of the low molecular weight components of the polyamide resin obtained in the present invention is defined by the extraction amount under reflux with water / methanol = 1/9 (weight ratio). Specifically, 600 g of water / methanol = 1/9 (weight ratio) is added as an extraction solvent to 20 g of the polyamide resin, and the mixture is heated and extracted under reflux for 4 hours. The extraction amount of the polyamide resin obtained in the present invention is at most 1.6% by weight, more preferably at most 1.3% by weight. The extract contains cyclic or linear amounts of low molecular weight components such as monomers, dimers and trimers. By setting the extraction amount to 1.6% by weight or less, it is possible to reduce problems such as mold contamination and molding failure during molding.
[0031]
Further, the polyamide resin obtained in the present invention is suitably used as a polyamide resin used for a nanocomposite or an oxygen-scavenging material.
[0032]
【Example】
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. In addition, the measurement for evaluation in this invention was based on the following method.
(B) Relative viscosity
1 g of the polyamide resin was precisely weighed and stirred and dissolved in 100 cc of 96% sulfuric acid at 20 to 30 ° C. After complete dissolution, 5 cc of the solution was promptly taken in a Cannon-Fenske viscometer, left in a thermostat at 25 ° C. ± 0.03 ° C. for 10 minutes, and the drop time (t) was measured. Also, the falling time (t0) of 96% sulfuric acid itself was measured in the same manner. The relative viscosity was determined from t and t0 by the following equation (A).
Relative viscosity = t / t0 (A)
(B) Moisture (% by weight)
Using a Karl Fischer trace moisture analyzer (Model CA-06, VA-06) manufactured by Mitsubishi Chemical Corporation, 1-2 g of the polyamide resin was precisely weighed and heated at 140 ° C. for 30 minutes under a nitrogen stream to obtain a moisture concentration ( % By weight).
(C) Extraction amount (% by weight)
After crushing the polyamide resin, it is sieved with a mesh screen having an aperture of 250 μm, and 20 g of the polyamide resin powder passed through the mesh screen is precisely weighed. At this time, the moisture in the polyamide resin powder is measured by the method (b), and the moisture concentration (% by weight) is corrected. 600 ml of water / methanol = 1/9 (weight ratio) is added to this powder, and the mixture is heated and heated under reflux for 4 hours. Thereafter, the mixture is quickly filtered through a glass filter, and then the polyamide resin powder is sufficiently washed with water / methanol = 1/9 (weight ratio), and the filtrate and the washing liquid are collected. The collected filtrate and washings are evaporated to dryness using a rotary evaporator, and the obtained residue is precisely weighed.
The extraction amount (% by weight) was calculated based on the following equation (B).
Extraction amount (% by weight) = residue amount / {amount of polyamide resin powder × (1-water concentration × 100)} × 100 (B)
[0033]
Examples 1-4 and Comparative Examples 1-2
585.44 g of adipic acid (purity = 99.85%, moisture = 0.15%) in a 2 L stainless steel container equipped with a stirrer, thermocouple, separator, total condenser, nitrogen gas inlet tube, and dropping funnel. (4 mol), and the atmosphere was replaced with nitrogen. Thereafter, the mixture was heated with a mantle heater while stirring while flowing a small amount of nitrogen to melt adipic acid. Then, while stirring the molten adipic acid, 545.31 g (4 mol) of meta-xylylenediamine (boiling point = 274 ° C., purity = 99.90%) was dropped from the dropping funnel over 2 hours continuously under normal pressure. The temperature of the reaction system was controlled as shown in Table 1 from the start of the addition of meta-xylylenediamine to the time when the molar ratio (diamine component / dicarboxylic acid component) was reached. The temperature of the reaction system was continuously increased while adjusting the temperature of the reaction system after reaching a predetermined molar ratio so that the temperature of the reaction system reached 250 ° C. when the dropping of meta-xylylenediamine was completed. The water distilled off along with the dropwise addition of meta-xylylenediamine was removed from the reaction system through a condensing device and a total condensing device. At this time, the highest temperature at the top of the condenser was 101 ° C.
After the end of the dropping of meta-xylylenediamine, the temperature was increased at a rate of 0.2 ° C./min with stirring, the temperature was maintained at normal pressure for 20 minutes, and the pressure was further reduced to 80 kPa over 5 minutes. Hold for 15 minutes. During this time, the temperature of the reaction system was maintained at 255 to 260 ° C. Thereafter, the heating was stopped under a normal pressure of nitrogen, and the polyamide was cooled and solidified after cooling. After that, the extraction amount and the relative viscosity were measured. Table 1 shows the results. The melting point of the obtained polyamide was 243 ° C.
[0034]
[Table 1]
Figure 2004339449
[0035]
Comparative Example 3
A 5 L stainless steel autoclave equipped with a stirrer, a thermocouple, a pressure gauge, a pressure regulating valve, and a nitrogen gas inlet tube was charged with 2000 ml of a 60% aqueous solution of a molar salt of adipic acid / meta-xylylenediamine and the like. While raising the temperature to 250 ° C., the internal pressure was maintained at 1.5 to 1.9 MPa and heating was performed for 2 hours. Further, the internal pressure was reduced to 80 kPa while gradually releasing the steam over 30 minutes, and the internal pressure was maintained at 80 kPa for 15 minutes, and the temperature of the reaction system was maintained at 255 to 260 ° C. Thereafter, the heating was stopped at normal pressure, the autoclave was allowed to cool, and after the polyamide was cooled and solidified, the extraction amount and the relative viscosity were measured. The extraction amount of the obtained polyamide resin was 1.63% by weight, and the relative viscosity was 2.10. With a pressure polymerization method using a general nylon salt aqueous solution as a raw material, a polyamide resin with a reduced amount of extraction could not be obtained.
[0036]
Example 5, Comparative Example 4
The same reactor as in Example 1 was charged with 585.44 g (4 mol) of adipic acid (purity = 99.85%, water = 0.15%) and purged with nitrogen. Thereafter, the mixture was heated with a mantle heater while stirring while flowing a small amount of nitrogen to melt adipic acid. Then, while stirring the molten adipic acid, 569.00 g (4 mol) of 1,3-bisaminomethylcyclohexane (boiling point = 244 ° C., purity = 99.95%) was continuously applied from the dropping funnel under normal pressure for 2 hours. And dropped. The temperature of the reaction system was controlled as shown in Table 1 from the start of the dropping of 1,3-bisaminomethylcyclohexane to reaching a predetermined molar ratio (diamine component / dicarboxylic acid component). When the dropping of 1,3-bisaminomethylcyclohexane was completed, the temperature of the reaction system was continuously increased while adjusting the temperature of the reaction system after reaching a predetermined molar ratio so that the temperature of the reaction system reached 240 ° C. Water distilled off along with the dropping of 1,3-bisaminomethylcyclohexane was removed to the outside of the reaction system through a condenser and a total condenser. At this time, the highest temperature at the top of the condenser was 103 ° C.
After the completion of the dropping of 1,3-bisaminomethylcyclohexane, the temperature is maintained at normal temperature for 20 minutes while the temperature is increased at a rate of 0.4 ° C./min with continuous stirring, and the pressure is further reduced to 80 kPa over 5 minutes. And kept at 80 kPa for 15 minutes. During this time, the temperature of the reaction system was maintained at 255 to 260 ° C. Thereafter, the heating was stopped under a normal pressure of nitrogen, and the polyamide was cooled and solidified by cooling. After that, the extraction amount and the relative viscosity were measured. Table 2 shows the results. The melting point of the obtained polyamide was 228 ° C.
[0037]
[Table 2]
Figure 2004339449
[0038]
As is clear from Tables 1 and 2, in the melt polymerization method in which the diamine component is added to the dicarboxylic acid component in the molten state, the temperature of the reaction system is set to 200 ° C. or less until the molar ratio reaches at least 0.1. It can be seen that, by maintaining the above, a polyamide resin with a reduced amount of extraction can be obtained.
[0039]
【The invention's effect】
The following effects can be obtained by the polyamide resin and the production method according to the present invention. (A) It is possible to easily obtain a polyamide resin in which low-molecular-weight components that cause mold contamination and molding defects during molding are reduced.
(B) A polyamide resin suitably used for molding materials, bottles, sheets, films and fibers is obtained.

Claims (4)

回分式溶融重合槽を用いたポリアミド樹脂の製造方法であって、
(1)アジピン酸が60モル%以上であるジカルボン酸成分を溶融する工程、
(2)200℃以下の溶融状態にあるジカルボン酸成分に対し、溶媒の非存在下に、重合圧力における沸点が200℃より高いジアミン成分を、連続的にもしくは間欠的に添加を開始する工程、および
(3)少なくともモル比(ジアミン成分/ジカルボン酸成分)が0.1に達するまで反応系の温度を200℃以下に維持する工程
を含むことを特徴とするポリアミド樹脂の製造方法。
A method for producing a polyamide resin using a batch-type melt polymerization tank,
(1) a step of melting a dicarboxylic acid component in which adipic acid is 60 mol% or more;
(2) a step of continuously or intermittently adding a diamine component having a boiling point higher than 200 ° C. at a polymerization pressure to a dicarboxylic acid component in a molten state of 200 ° C. or lower in the absence of a solvent, And (3) a method for producing a polyamide resin, comprising a step of maintaining the temperature of the reaction system at 200 ° C. or lower until at least the molar ratio (diamine component / dicarboxylic acid component) reaches 0.1.
ジアミン成分の60モル%以上が、キシリレンジアミンおよび/またはビスアミノメチルシクロヘキサンである請求項1に記載のポリアミド樹脂の製造方法。The method for producing a polyamide resin according to claim 1, wherein 60 mol% or more of the diamine component is xylylenediamine and / or bisaminomethylcyclohexane. ジアミン成分の50モル%以上がメタキシリレンジアミンである請求項1に記載のポリアミド樹脂の製造方法。The method for producing a polyamide resin according to claim 1, wherein 50 mol% or more of the diamine component is meta-xylylenediamine. 請求項1〜3のいずれかに記載の製造方法で得られ、水/メタノール=1/9(重量比)による還流下での抽出量が1.6重量%未満であることを特徴とするポリアミド樹脂。A polyamide obtained by the production method according to any one of claims 1 to 3, wherein an extraction amount under reflux with water / methanol = 1/9 (weight ratio) is less than 1.6% by weight. resin.
JP2003140816A 2003-05-19 2003-05-19 Polyamide resin and its production process Pending JP2004339449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003140816A JP2004339449A (en) 2003-05-19 2003-05-19 Polyamide resin and its production process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003140816A JP2004339449A (en) 2003-05-19 2003-05-19 Polyamide resin and its production process

Publications (1)

Publication Number Publication Date
JP2004339449A true JP2004339449A (en) 2004-12-02

Family

ID=33529427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003140816A Pending JP2004339449A (en) 2003-05-19 2003-05-19 Polyamide resin and its production process

Country Status (1)

Country Link
JP (1) JP2004339449A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2270078A1 (en) * 2008-04-16 2011-01-05 Unitika, Ltd. Biaxially stretched polyamide resin film, and process for production thereof
JP2011052341A (en) * 2009-09-01 2011-03-17 Asahi Kasei Fibers Corp Woven fabric for airbag, and airbag
JP2011052347A (en) * 2009-09-02 2011-03-17 Asahi Kasei Fibers Corp Woven fabric for airbag and airbag
JP2012052280A (en) * 2010-08-02 2012-03-15 Asahi Kasei Fibers Corp Woven fabric for air bag and air bag

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2270078A1 (en) * 2008-04-16 2011-01-05 Unitika, Ltd. Biaxially stretched polyamide resin film, and process for production thereof
EP2270078A4 (en) * 2008-04-16 2014-04-30 Unitika Ltd Biaxially stretched polyamide resin film, and process for production thereof
JP2011052341A (en) * 2009-09-01 2011-03-17 Asahi Kasei Fibers Corp Woven fabric for airbag, and airbag
JP2011052347A (en) * 2009-09-02 2011-03-17 Asahi Kasei Fibers Corp Woven fabric for airbag and airbag
JP2012052280A (en) * 2010-08-02 2012-03-15 Asahi Kasei Fibers Corp Woven fabric for air bag and air bag
JP2017002457A (en) * 2010-08-02 2017-01-05 旭化成株式会社 Fabric for air bag and air bag

Similar Documents

Publication Publication Date Title
JP5194978B2 (en) Method for producing polyamide
AU758289B2 (en) Solid phase-polymerized polyamide polymer
EP2821425B1 (en) Production method for polyamide
KR100799037B1 (en) Process for production of polyamide
JP2008081634A (en) Polyamide prepolymer and method for producing polyamide
US6489435B2 (en) Process for producing polyamide
US20020077419A1 (en) Multi-phase continuous polyamide polymerization process
JP2004339449A (en) Polyamide resin and its production process
JP2008080267A (en) Composite heat exchange type reactor and production method of polycaproamide prepolymer using it
JP5819404B2 (en) Process for producing polyamide
JP2002220463A (en) Continuous polymerizing apparatus for polyamide resin and method for continuous polymerizing
JP3551991B2 (en) Production method of copolyamide
JP2001200052A (en) Continuous preparation method of polyamide
JP5098187B2 (en) Method for producing polyamide
JP5103755B2 (en) Method for producing polyamide
JP4258152B2 (en) Method for producing polyamide
JP3601264B2 (en) Method for producing nylon 6 and polymerization apparatus
JP2003212992A (en) Postpolymerization method of polyamide resin
JP4906015B2 (en) Solid-phase polymerization method of polymetaxylylene adipamide
JP2002060486A (en) Method for manufacturing polyamide
JP2002220464A (en) Continuous polymerization method for polyamide resin
JP2008274086A (en) Method for producing polyamide
JP5050367B2 (en) Process for producing polycaproamide
JP2016141698A (en) Method for producing dehydration polycondensation polymer
WO2022248262A1 (en) Process for preparing polyamides