JP3551991B2 - Production method of copolyamide - Google Patents

Production method of copolyamide Download PDF

Info

Publication number
JP3551991B2
JP3551991B2 JP06406295A JP6406295A JP3551991B2 JP 3551991 B2 JP3551991 B2 JP 3551991B2 JP 06406295 A JP06406295 A JP 06406295A JP 6406295 A JP6406295 A JP 6406295A JP 3551991 B2 JP3551991 B2 JP 3551991B2
Authority
JP
Japan
Prior art keywords
reaction
mixed
temperature
dicarboxylic acid
diamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06406295A
Other languages
Japanese (ja)
Other versions
JPH08259691A (en
Inventor
泰夫 稲場
正広 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP06406295A priority Critical patent/JP3551991B2/en
Publication of JPH08259691A publication Critical patent/JPH08259691A/en
Application granted granted Critical
Publication of JP3551991B2 publication Critical patent/JP3551991B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polyamides (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、常圧下に混合ジアミンと混合ジカルボン酸とを直接重縮合させる共重合ポリアミドの製造法に関する。さらに詳しくは、メタキシリレンジアミンおよびパラキシリレンジアミンからなる混合ジアミンと、アジピン酸およびテレフタル酸からなる混合ジカルボン酸を共重合する共重合ポリアミドの経済的な製造方法を提供する。
上記反応で得られた共重合ポリアミドは、高耐熱性で結晶性である。
【0002】
【従来の技術】
ジカルボン酸とジアミンとを直接混合し、常圧下で重縮合反応を行うに当たり、反応開始温度をジカルボン酸の融点以上とし、原料混合物を含む反応系を実質的に均一溶融状態に保ち得るように昇温しつつ反応を進行させ、反応率が95%に達する以前に反応系の温度を生成するポリアミドの融点より30℃低い温度以上に昇温し、系内が流動性を失うことなく、均一系で反応を進め得るように反応温度を制御することを特徴とするポリアミドの製造法(特公平1−14925公報)が開示されている。この製造法によれば、生成するオリゴアミド/ポリアミドを含む反応系を均一溶融状態に保ちつつ、ジアミンを反応系に連続的に添加する方法が採用されている。
【0003】
上記製造法では、重縮合反応装置は、耐圧容器であることを要しないため、極めて安価に設置できる。加えて、この方法では加圧および降圧などの操作に要する時間、および公知の水溶液法の場合に必要な溶媒である水の留去に要する時間を全く必要としないため、重縮合に必要な時間を著しく短縮することができ、さらには、従来加圧法では水溶液濃縮に必要であった熱量を全く必要としない上、一回の反応に仕込み得る量を多くとることができて生産性が高められ、ポリアミドの製造法として極めて経済的な方法が提供される。
しかしながら、この常圧直接重縮合法では、脂肪族ジカルボン酸と芳香族ジカボン酸の反応性の差から反応系を均一な状態に保つことが困難であったため、芳香族ジカルボン酸を含む耐熱性ポリアミド、特に高温での剛性保持性に優れた共重合ポリアミドを製造するには至っていなかった。
【0004】
【発明が解決しようとする課題】
ジカルボン酸成分中に芳香族ジカルボン酸を用いたポリアミドがこれまで種々開発されており、金属代替を主な用途とする有用な材料として市場が広がりつつある。これらのポリアミドは、一般的に、ナイロン塩からの加圧水溶液法で製造されており、前述したように経済的にも生成ポリアミドの品質の点からも多くの問題点を抱えている。また、既存の常圧直接重縮合法では、パラキシリレンジアミンとメタキシリレンジアミンを主成分とするジアミンと、アジピン酸およびテレフタル酸を主成分とするジカルボン酸とから得られる共重合ポリアミドを合成しようとすると、生成ポリアミドを含む反応系を均一溶融状態に保ち得ることが困難であった。
【0005】
【課題を解決するための手段】
本発明者らは、鋭意検討した結果、混合ジカルボン酸と混合ジアミンとを直接重縮合させる際、反応度を段階的に制御することにより、共重合ポリアミドを好適に製造する方法を見い出し本発明を完成するに至った。
【0006】
すなわち、本発明は、メタキシリレンジアミン含有率が35〜70モル%であり、パラキシリレンジアミン含有率が30〜65モル%である混合ジアミンと、アジピン酸含有率が40〜80モル%であり、テレフタル酸含有率が20〜60モル%である混合ジカルボン酸とを重縮合反応させる共重合ポリアミドの製造方法であって、
1)該混合ジカルボン酸をアジピン酸の融点以上でかつ生成する共重合ポリアミドの融点より更に30℃低い温度よりも低い温度に加熱し、
2)加熱した混合ジカルボン酸中に混合ジアミンの滴下を開始して継続的に滴下を続け、
3)混合ジカルボン酸の反応率が〔前記(混合ジカルボン酸のアジピン酸含有率(モル%)−5〕モル%に達する以前に、反応系の温度を最終的に生成する共重合ポリアミドの融点よりも30℃低い温度よりも高い温度に昇温し、
4)ジカルボン酸に対するジアミンのモル比が、0.97〜1.03となるまでジアミンの滴下を行い、
5)ジアミンの滴下終了時の反応系の温度を、最終的に生成する共重合ポリアミドの融点以上の温度に制御する
ことを特徴とする共重合ポリアミドの製造法に関する発明である。
【0007】
本発明において、下記の混合ジアミンおよび混合ジカルボン酸を使用する。
(1)混合ジアミン
混合ジアミンは、35〜70モル%のメタキシリレンジアミンと30〜65モル%のパラキシリレンジアミンを含有する混合ジアミンを使用する。ここで、混合ジアミンのメタキシリレンジアミンとパラキシリレンジアミンの濃度はそれぞれ上記濃度範囲であればよい。
混合ジアミン中のパラキシリレンジアミン含有率が30モル%未満では、得られる共重合ポリアミドの結晶性が低下してしまう。混合ジアミン中のパラキシリレンジアミン含有率が65モル%を超えると得られる共重合ポリアミドの融点が300℃を超えてしまう場合があり、成形性が著しく低下してしまう。
【0008】
尚、本発明において、上記該混合キシリレンジアミン中に、更に、他のジアミンとして、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン等の脂肪族ジアミン、パラフェニレンジアミン等の芳香族ジアミン、1,3−ビスアミノメチルシクロヘキサン、1,4−ビスアミノメチルシクロヘキサン等の脂環族ジアミン類等を全ジアミン中に20モル%以下の範囲で使用することができる。
【0009】
(2)混合ジカルボン酸
混合ジカルボン酸は、40〜80モル%のアジピン酸と20〜60モル%のテレフタル酸を含有する混合ジカルボン酸を使用する。
混合ジカルボン酸中のアジピン酸の含有率が40モル%未満であると、ジアミン滴下開始以前に混合ジカルボン酸の流動性を確保することが困難になるため、好ましくない
【0010】
混合ジカルボン酸中のテレフタル酸含有率が20モル%未満であると、得られる共重合ポリアミドの耐熱性、特に高温での剛性保持性が低下し、好ましくない。混合ジカルボン酸中のテレフタル酸含有率が60モル%を超えると、生成する共重合ポリアミドは反応中にゴム状物や固化物等の三次元化物を含み、均一な製品を製造することが困難になるので、好ましくない。
本発明の製造法によれば、溶媒を使用することなく、また反応圧力にも特に制約を受けず、混合ジアミンと混合ジカルボン酸とから直接共重合ポリアミドを製造することが可能である。しかし、装置の製作上及び操作上、常圧下または減圧下で行うことが望ましい。
【0011】
尚、本発明の製造法を実施するに際し、次の装置を使用し、及び操作条件で行うことが望ましい。
(A)反応缶は攪拌機及び分縮器を備えたものを使用する。
(B)着色のない均一な共重合ポリアミドを製造するためには、反応缶へジカルボン酸を仕込むのに先立って、反応缶内を予め不活性ガスで十分に置換する。
本発明の共重合ポリアミドの製造に際し、反応缶内にジカルボン酸を仕込んだ後、下記の条件下に共重合ポリアミドの製造を行う。
【0012】
▲1▼該混合ジカルボン酸をアジピン酸の融点以上でかつ生成する共重合ポリアミドの融点より更に30℃低い温度よりも低い温度に加熱し、
▲2▼加熱した混合ジカルボン酸中に混合ジアミンの滴下を開始して継続的に滴下を続け、
▲3▼混合ジカルボン酸の反応率が〔混合ジカルボン酸中のアジピン酸含有率(モル%)−5〕モル%に達する以前に、反応系の温度を最終的に生成する共重合ポリアミドの融点よりも30℃低い温度よりも高い温度に昇温し、
▲4▼ジカルボン酸に対するジアミンのモル比が、0.97〜1.03となるまでジアミンの滴下を行い、
▲5▼ジアミンの滴下終了時の反応系の温度を、最終的に生成する共重合ポリアミドの融点以上の温度に制御する。
以下に上記各工程について、説明する。
【0013】
工程▲1▼
該混合ジカルボン酸をアジピン酸の融点以上でかつ生成する共重合ポリアミドの融点より更に30℃低い温度よりも低い温度に加熱し、
すなわち、反応温度をアジピン酸の融点以上でかつ反応系が終始流動状態を保持するため、アジピン酸の融点以上でかつ生成する共重合ポリアミドの融点より更に30℃低い温度以下に加熱する。
この場合、反応系の流動状態を保持し得るため、必ずしもジカルボン酸を全て溶融状態とする必要はなく、スラリー状態であっても良い。
【0014】
工程▲2▼
加熱した混合ジカルボン酸中に混合ジアミンの滴下を開始して継続的に滴下を続ける。
すなわち、上記混合ジアミンの滴下により、混合ジアミンと混合ジカルボン酸とが混合され、アジピン酸の融点以上の温度に保たれて、重縮合反応を開始するが、実質的にアミド化反応が生起するためには160℃以上の温度に昇温されることが望ましく、かつ中間体として生成するオリゴアミド及び/またはポリアミドが溶融状態となって反応系全体が均一な流動状態を保持し得る温度に設定されていることが望ましい。好ましい重合操作として、反応缶中で溶融またはスラリー状態にあるジカルボン酸を攪拌し、これに混合ジアミンを常圧下に添加し、反応混合物を生成するオリゴアミド及び/またはポリアミドの融点以上の温度に保持することによって行われる。
【0015】
ここで、混合ジアミンの添加速度は、アミド化反応の生成熱、縮合生成水の留去に消費される熱量、縮合生成水と原料化合物とを分離する分縮器及び冷却器の構造等を勘案し、所定の反応温度、すなわち、原料化合物を含有する反応系を均一な流動状態に保持し得る温度を考慮して選定される。
通常、混合ジアミンの滴下に要する時間は、反応缶の規模によって変化するが、0.5時間から10時間の範囲内である。この間、反応の進行と共に生成する縮合水は、塔頂部の蒸気の温度が100〜120℃の温度に制御されている分縮器と冷却器を通して反応系外に留去される。飛散するジアミン、ジカルボン酸等の原料は、分縮器で回収され、反応缶に再度戻される。
【0016】
工程▲3▼
混合ジカルボン酸の反応率が〔ジカルボン酸中のアジピン酸含有率(モル%)−5〕(モル%)に達する以前に、反応系の温度を最終的に生成するポリアミドの融点よりも30℃低い温度以上に昇温する。 すなわち、重縮合反応において生成するオリゴアミドまたはポリアミドは、反応の進行に伴い分子量が高くなると、反応生成物の融点が高くなり、反応混合物の粘度が上昇して内容物の昇温が妨げられ、結果として反応混合物は固化し易くなる。従って、反応温度は、反応の進行に合わせて昇温するように制御し、反応系、すなわち反応生成物を常に均一な流動状態にしなければならない。
【0017】
本発明の方法においては、この温度制御は反応原料の反応率が、〔ジカルボン酸中のアジピン酸含有率(モル%)−5〕(モル%)に達する以前に反応系の温度を最終的に生成する共重合ポリアミドの融点より30℃低い温度以上に昇温するように実施される。ここで反応率は、最初に存在した官能基の内反応を起こしたものの割合で表される。反応率は重縮合反応により生成する水の量で確認することができる。また、反応率が〔ジカルボン酸中のアジピン酸含有率(モル%)−5〕(モル%)以下では、添加されたジアミンは反応系で短時間の内に反応するので、実質的には、反応率はジアミンの滴下割合からも推定できる。
【0018】
制御されるべき反応系の温度の上限は、特に限定される必要はないが、生成物に与える熱履歴を考慮すると、最終的に生成するポリアミドの融点より50℃を超えない温度が望ましい。反応率が〔ジカルボン酸中のアジピン酸含有率(モル%)−5〕(モル%)を超えてから反応温度を上記所定の温度に設定すると、昇温前に反応生成物であるポリアミドは一部結晶化を見せ始め、反応生成物を均一な流動状態にすることを極めて困難にする。反応生成物に生ずる固化現象は、反応系の増粘、熱伝導性低下を招き、時として反応生成物全体を固化させる危険すら有り、このような条件下では、工業的規模でポリアミドを製造することは実質的に不可能である。
【0019】
工程▲4▼
ジカルボン酸に対するジアミンのモル比が、0.97〜1.03となるまでジアミンの滴下を行い、ジアミンの滴下終了時に、反応系の温度を、最終的に生成するポリアミドの融点以上の温度に制御する。
すなわち、反応率が〔ジカルボン酸中のアジピン酸含有率(モル%)−5〕(モル%)を超え、上記本発明で規定する温度以上に昇温した反応系を、反応が完結するまでの間、ポリアミドを含む反応生成物が均一な流動状態を保ち得るように、逐次昇温していく。
【0020】
前述のごとく、反応は、原料ジカルボン酸であるアジピン酸の融点以上であって、アミド化が生起する160℃以上の温度で開始するが、反応開始時から最終的に生成するポリアミドの融点より30℃低い温度以上に反応系を昇温しておくことも可能である。
しかし、熱経済的見地からも、あるいは反応生成物の熱履歴の点からも、反応初期から反応系を高温に保持することは必ずしも好ましくなく、従って、通常、反応率が〔ジカルボン酸中のアジピン酸含有率(モル%)−5〕(モル%)を超えてから、本発明の最終的に生成するポリアミドの融点より30℃低い温度以上に反応系を保持するのが好ましい。
【0021】
工程▲5▼
ジアミンの滴下終了時の反応系の温度を、最終的に生成する共重合ポリアミドの融点以上の温度に制御する。
すなわち、反応率が〔ジカルボン酸中のアジピン酸含有率(モル%)−5〕(モル%)を越え、上記本発明で規定する温度以上に昇温した反応系を反応が完結するまでの間、共重合ポリアミドを含む反応生成物が実質的に均一な流動状態を保ち得るように逐次昇温していく。
【0022】
本発明の方法を実施した場合、従来公知の水溶液加圧法の場合と同様に、ジアミンの反応系外への留出は避け難く、従って、重縮合反応装置には分縮器を備えることが必要である。分縮器を備えることにより、反応中にジアミンの留出を効果的に防ぎ得、その結果、アジピン酸を含むジカルボン酸に対するジアミンの仕込みモル比を、到達分子量を考慮した上で、0.97〜1.03の範囲に設定することにより、再現性よく、一定の分子量を有するポリアミドを製造することができる。
【0023】
本発明の方法で用いられる重縮合反応装置は、耐圧容器であることを要しないため、極めて安価に設置できる。加えて、本発明の方法では加圧及び降圧などの操作に要する時間、及び公知の水溶液法の場合に必要な溶媒である水の留去に要する時間を全く必要としないため、重縮合に必要な時間を著しく短縮することができ、更に、従来法では水溶液濃縮に必要であった熱量を全く必要としない上、一回の反応に仕込み得る量を多くとることができて生産性が高められ、ポリアミドの製造法として極めて経済的な方法が提供される。
【0024】
【実施例】
以下、実施例に基づいて本発明を説明する。
【0028】
実施例
攪拌機、分縮器、温度計、滴下ロートおよび窒素ガス導入管を備えた内容積50Lの反応缶に、精秤したアジピン酸3.500kgおよびテレフタル酸1.705kgを入れ、十分窒素置換し、さらに少量の窒素気流下に170℃でアジピン酸を溶解させ均一な流動状態とした。これに、メタキシリレンジアミンとパラキシリレンジアミンとの混合キシリレンジアミン(モル比7/3)2.969kgを攪拌下に80分を要して滴下した。この間、内温を連続的に227℃まで昇温させた。
【0029】
引き続き、混合キシリレンジアミン0.966kgを攪拌下に26分を要して滴下した。この間、内温を連続的に245℃まで昇温させた。さらに引き続き、混合キシリレンジアミン0.632kgを攪拌下40分で連続的に滴下した。この間、反応温度を245℃から255℃に連続的に昇温させた。混合キシリレンジアミンの滴下とともに留出する水は分縮器および冷却器を通して系外に除いた。
【0030】
混合キシリレンジアミン滴下終了後、内温を連続的に260℃まで昇温し、34分間反応を継続した。その後、反応系内圧を600mmHgまで10分間で連続的に減圧し、その後、44分間反応を継続した。この間、反応温度を260℃から270℃まで連続的に昇温させた。反応の全過程で、生成するオリゴマーまたはポリアミドが固化、析出して、反応系が均一な流動状態を失う現象は全く認められなかった。
得られたポリアミドの相対粘度(96%硫酸溶液1g/100mL)は1.74、融点は246℃であった。
【0031】
実施例
攪拌機、分縮器、温度計、滴下ロートおよび窒素ガス導入管を備えた内容積50リットルの反応缶に、精秤したアジピン酸7.000kgおよびテレフタル酸3.410kgを入れ、十分窒素置換し、さらに少量の窒素気流下に170℃でアジピン酸を溶解させ均一な流動状態とした。これに、メタキシリレンジアミンとパラキシリレンジアミンとの混合キシリレンジアミン(モル比6/4)5.967kgを攪拌下に79分を要して滴下した。この間、内温を連続的に239℃まで昇温させた。
【0032】
引き続き、混合キシリレンジアミン1.928kgを攪拌下に25分を要して滴下した。この間、内温を連続的に261℃まで昇温させた。さらに引き続き、混合キシリレンジアミン1.285kgを攪拌下60分で連続的に滴下した。この間、反応温度を261℃から267℃に連続的に昇温させた。混合キシリレンジアミンの滴下とともに留出する水は分縮器および冷却器を通して系外に除いた。混合キシリレンジアミン滴下終了後、内温を連続的に271℃まで昇温し、40分間反応を継続した。その後、反応系内圧を600mmHgまで10分間で連続的に減圧し、その後、43分間反応を継続した。この間、反応温度を271℃から275℃まで連続的に昇温させた。反応の全過程で、生成するオリゴマーまたはポリアミドが固化、析出して、反応系が均一な流動状態を失う現象は認められなかった
得られたポリアミドの主成分の相対粘度(96%硫酸溶液1g/100mL)は2.03、融点は257℃であった。
【0033】
比較例1
攪拌機、分縮器、温度計、滴下ロートおよび窒素ガス導入管を備えた内容積3リットルのフラスコに、精秤したアジピン酸96.7gおよびテレフタル酸256.1gを入れ、十分窒素置換し、さらに少量の窒素気流に170℃でアジピン酸を溶解させたが、均一な流動状態とはならなかった。これに、メタキシリレンジアミンとパラキシリレンジアミンとの混合キシリレンジアミン(モル比7/3)75.0gを攪拌下に23分を要して滴下した。この間、内温を連続的に255℃まで昇温させた。
【0034】
引き続き、混合キシリレンジアミン165.0gを攪拌下に50分を要して滴下した。この間、内温を連続的に264℃まで昇温させた。引き続き、混合キシリレンジアミン60.0gを攪拌下19分で連続的に滴下した。 この間、反応温度を264℃から270℃に連続的に昇温させた。混合キシリレンジアミンの滴下とともに留出する水は分縮器および冷却器を通して系外に除いた。混合キシリレンジアミン滴下終了後、内温を290℃まで昇温し、21分間反応を継続した。この間、生成ポリアミドの粘度の増大が激しくなり、内容物の攪拌ができなくなった。
内容物を96%硫酸に溶解させようと試みたが、不溶分が多かった。
【0037】
【発明の効果】
メタキシリレンジアミンおよびパラキシリレンジアミンと、アジピン酸及びテレフタル酸を主に使用して共重合ポリアミドを製造する際、本発明の製造法を採用することにより、結晶性で優れた耐熱性を有し、かつ着色のない均質な共重合ポリアミドを得ることができる。
[0001]
[Industrial applications]
The present invention relates to a method for producing a copolymerized polyamide by directly polycondensing a mixed diamine and a mixed dicarboxylic acid under normal pressure. More specifically, the present invention provides an economical method for producing a copolyamide in which a mixed diamine composed of meta-xylylenediamine and paraxylylenediamine is copolymerized with a mixed dicarboxylic acid composed of adipic acid and terephthalic acid.
The copolymerized polyamide obtained by the above reaction has high heat resistance and is crystalline.
[0002]
[Prior art]
When the dicarboxylic acid and the diamine are directly mixed and the polycondensation reaction is carried out under normal pressure, the reaction initiation temperature is raised to the melting point of the dicarboxylic acid or higher, and the reaction system containing the raw material mixture is raised so as to be able to maintain a substantially uniform molten state. The reaction proceeds while being heated, and before the reaction rate reaches 95%, the temperature of the reaction system is raised to a temperature of 30 ° C. lower than the melting point of the polyamide that generates the reaction system. A method for producing a polyamide characterized by controlling the reaction temperature so that the reaction can be carried out by the method described in JP-B-1-14925 is disclosed. According to this production method, a method is employed in which the diamine is continuously added to the reaction system while maintaining the resulting reaction system containing the oligoamide / polyamide in a uniform molten state.
[0003]
In the above production method, the polycondensation reaction device does not need to be a pressure-resistant vessel, and can be installed at extremely low cost. In addition, this method does not require any time required for operations such as pressurization and depressurization, and the time required for distilling off water, which is a necessary solvent in the case of a known aqueous solution method. In addition, the amount of heat required for concentrating the aqueous solution in the conventional pressurization method is not required at all, and the amount that can be charged in one reaction can be increased, thereby increasing the productivity. Thus, a very economical method for producing polyamide is provided.
However, the heat in this normal pressure direct polycondensation comprising since it is difficult to maintain a uniform state of the reaction system from the difference in reactivity of the aliphatic dicarboxylic acid and an aromatic dicaprate Le Bon acid, an aromatic dicarboxylic acid However, it has not been possible to produce a functional polyamide, particularly a copolymer polyamide having excellent rigidity retention at high temperatures.
[0004]
[Problems to be solved by the invention]
Various polyamides using an aromatic dicarboxylic acid in the dicarboxylic acid component have been developed so far, and the market is expanding as a useful material mainly used for metal replacement. These polyamides are generally produced by a pressurized aqueous solution method from a nylon salt, and as described above, have many problems in terms of economy and quality of the produced polyamide. In addition, the existing atmospheric pressure direct polycondensation method synthesizes a copolyamide obtained from a diamine composed mainly of paraxylylenediamine and metaxylylenediamine, and a dicarboxylic acid composed mainly of adipic acid and terephthalic acid. In this case, it is difficult to keep the reaction system containing the produced polyamide in a uniform molten state.
[0005]
[Means for Solving the Problems]
The present inventors have assiduously studied, and found a method for suitably producing a copolymerized polyamide by controlling the degree of reaction in a stepwise manner during the direct polycondensation of a mixed dicarboxylic acid and a mixed diamine. It was completed.
[0006]
That is, the present invention relates to a mixed diamine having a metaxylylenediamine content of 35 to 70 mol% and a paraxylylenediamine content of 30 to 65 mol% , and an adipic acid content of 40 to 80 mol% . A method for producing a copolymerized polyamide, comprising subjecting a mixed dicarboxylic acid having a terephthalic acid content of 20 to 60 mol% to a polycondensation reaction,
1) heating the mixed dicarboxylic acid to a temperature lower than the melting point of adipic acid and lower by 30 ° C. than the melting point of the resulting copolymerized polyamide,
2) Start the dropping of the mixed diamine in the heated mixed dicarboxylic acid and continue dropping continuously,
3) Before the reaction rate of the mixed dicarboxylic acid reaches the [adipic acid content (of the mixed dicarboxylic acid ) (mol%)-5] mol%, the temperature of the reaction system is finally adjusted to the melting point of the copolymerized polyamide. Rises to a temperature higher than 30 ° C lower than
4) Diamine is added dropwise until the molar ratio of diamine to dicarboxylic acid is 0.97 to 1.03,
5) The present invention relates to a method for producing a copolymerized polyamide, characterized in that the temperature of the reaction system at the end of the dropping of the diamine is controlled to a temperature not lower than the melting point of the finally produced copolymerized polyamide.
[0007]
In the present invention, the following mixed diamine and mixed dicarboxylic acid are used.
(1) Mixed diamine A mixed diamine containing 35 to 70 mol% of meta-xylylenediamine and 30 to 65 mol% of para-xylylenediamine is used. Here, the concentrations of meta-xylylenediamine and para-xylylenediamine of the mixed diamine may be within the above-mentioned concentration ranges, respectively.
If the paraxylylenediamine content in the mixed diamine is less than 30 mol%, the crystallinity of the obtained copolymerized polyamide will be reduced. If the content of paraxylylenediamine in the mixed diamine exceeds 65 mol%, the melting point of the obtained copolymerized polyamide may exceed 300 ° C., and the moldability is significantly reduced.
[0008]
In the present invention, the mixed xylylenediamine further contains, as other diamines, aliphatic diamines such as tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, octamethylenediamine, nonamethylenediamine, and paraphenylenediamine. And alicyclic diamines such as 1,3-bisaminomethylcyclohexane and 1,4-bisaminomethylcyclohexane can be used in an amount of 20 mol% or less in the total diamine.
[0009]
(2) Mixed dicarboxylic acid As the mixed dicarboxylic acid, a mixed dicarboxylic acid containing 40 to 80 mol% of adipic acid and 20 to 60 mol% of terephthalic acid is used.
If the content of adipic acid in the mixed dicarboxylic acid is less than 40 mol%, it is difficult to ensure the fluidity of the mixed dicarboxylic acid before the start of diamine dropping, which is not preferable.
If the terephthalic acid content in the mixed dicarboxylic acid is less than 20 mol%, the heat resistance of the obtained copolymerized polyamide, particularly the rigidity retention at high temperatures, is undesirably reduced. If the terephthalic acid content in the mixed dicarboxylic acid exceeds 60 mol%, the resulting copolyamide contains three-dimensional compounds such as rubbery substances and solidified substances during the reaction, making it difficult to produce a uniform product. Is not preferred.
According to the production method of the present invention, it is possible to directly produce a copolymerized polyamide from a mixed diamine and a mixed dicarboxylic acid without using a solvent and without being particularly limited by the reaction pressure. However, it is desirable to perform the process under normal pressure or reduced pressure in manufacturing and operating the device.
[0011]
In carrying out the production method of the present invention, it is desirable to use the following apparatus and under the operating conditions.
(A) A reaction vessel equipped with a stirrer and a decompressor is used.
(B) In order to produce a uniform copolymerized polyamide without coloring, the inside of the reaction vessel is sufficiently replaced with an inert gas before the dicarboxylic acid is charged into the reaction vessel.
In the production of the copolymerized polyamide of the present invention, after the dicarboxylic acid is charged into the reaction vessel, the copolymerized polyamide is produced under the following conditions.
[0012]
(1) heating the mixed dicarboxylic acid to a temperature higher than the melting point of adipic acid and lower than the temperature lower by 30 ° C. than the melting point of the copolymerized polyamide to be produced;
{Circle around (2)} Starting the dropping of the mixed diamine into the heated mixed dicarboxylic acid and continuously dropping it,
(3) Before the reaction rate of the mixed dicarboxylic acid reaches [the content of adipic acid in the mixed dicarboxylic acid (mol%)-5] mol%, the temperature of the reaction system is determined from the melting point of the finally produced copolymerized polyamide. Also rises to a higher temperature than the 30 ° C lower temperature,
(4) The diamine is added dropwise until the molar ratio of the diamine to the dicarboxylic acid is 0.97 to 1.03,
(5) The temperature of the reaction system at the end of the dropping of the diamine is controlled to a temperature equal to or higher than the melting point of the finally produced copolymerized polyamide.
Hereinafter, each of the above steps will be described.
[0013]
Process ▲ 1 ▼
Heating the mixed dicarboxylic acid to a temperature higher than the melting point of adipic acid and lower than the melting point of the resulting copolymerized polyamide by 30 ° C.,
That is, in order to keep the reaction temperature above the melting point of adipic acid and to keep the reaction system in a fluid state, the reaction system is heated to a temperature higher than the melting point of adipic acid and lower than the melting point of the produced copolyamide by 30 ° C. or lower.
In this case, since the flow state of the reaction system can be maintained, the dicarboxylic acid does not necessarily need to be in a molten state, and may be in a slurry state.
[0014]
Process ▲ 2 ▼
The addition of the mixed diamine into the heated mixed dicarboxylic acid is started and continued to be continued.
That is, by dropping the mixed diamine, the mixed diamine and the mixed dicarboxylic acid are mixed and kept at a temperature equal to or higher than the melting point of adipic acid to start the polycondensation reaction, but the amidation reaction substantially occurs. It is desirable to raise the temperature to a temperature of 160 ° C. or higher, and to set a temperature at which the oligoamide and / or polyamide produced as an intermediate is in a molten state and the entire reaction system can maintain a uniform fluidized state. Is desirable. As a preferred polymerization operation, the dicarboxylic acid in a molten or slurry state is stirred in a reaction vessel, and the mixed diamine is added thereto under normal pressure, and the reaction mixture is maintained at a temperature equal to or higher than the melting point of the oligoamide and / or polyamide. This is done by:
[0015]
Here, the addition rate of the mixed diamine is determined in consideration of the heat of formation of the amidation reaction, the amount of heat consumed for distilling off the condensation product water, the structure of the condensing device and the cooler for separating the condensation product water and the raw material compound, and the like. The temperature is selected in consideration of a predetermined reaction temperature, that is, a temperature at which the reaction system containing the raw material compound can be maintained in a uniform fluidized state.
Usually, the time required for dropping the mixed diamine varies depending on the size of the reaction vessel, but is in the range of 0.5 hours to 10 hours. During this time, the condensed water generated with the progress of the reaction is distilled out of the reaction system through a condensing device and a cooler in which the temperature of the vapor at the top of the column is controlled at 100 to 120 ° C. Raw materials such as diamine and dicarboxylic acid that are scattered are collected by a decomposer and returned to the reaction vessel again.
[0016]
Process ▲ 3 ▼
Before the reaction rate of the mixed dicarboxylic acid reaches [adipic acid content in dicarboxylic acid (mol%)-5] (mol%), the temperature of the reaction system is 30 ° C. lower than the melting point of the finally formed polyamide. Raise the temperature above the temperature. That is, the oligoamide or polyamide generated in the polycondensation reaction, when the molecular weight increases with the progress of the reaction, the melting point of the reaction product increases, the viscosity of the reaction mixture increases, and the temperature rise of the contents is hindered. As a result, the reaction mixture is easily solidified. Therefore, the reaction temperature must be controlled so as to increase in accordance with the progress of the reaction, and the reaction system, that is, the reaction product must always be kept in a uniform fluid state.
[0017]
In the method of the present invention, this temperature control is performed by finally adjusting the temperature of the reaction system before the reaction rate of the reaction raw material reaches [adipic acid content in dicarboxylic acid (mol%)-5] (mol%). It is carried out so that the temperature is raised to a temperature lower by 30 ° C. than the melting point of the produced copolyamide. Here, the reaction rate is represented by the ratio of the functional groups that initially existed that caused a reaction. The reaction rate can be confirmed by the amount of water generated by the polycondensation reaction. When the reaction rate is [adipic acid content in dicarboxylic acid (mol%)-5] (mol%) or less, the added diamine reacts in a short time in the reaction system. The reaction rate can also be estimated from the dropping ratio of the diamine.
[0018]
The upper limit of the temperature of the reaction system to be controlled need not be particularly limited, but a temperature not exceeding 50 ° C. from the melting point of the finally formed polyamide is desirable in consideration of the heat history given to the product. When the reaction temperature is set to the above-mentioned predetermined temperature after the reaction rate exceeds [adipic acid content in dicarboxylic acid (mol%)-5] (mol%), the polyamide as a reaction product is reduced before the temperature rise. Partial crystallization begins to appear, making it very difficult to bring the reaction product into a uniform fluid state. The solidification phenomenon that occurs in the reaction product causes a thickening of the reaction system, a decrease in thermal conductivity, and sometimes even the danger of solidifying the entire reaction product. Under such conditions, the polyamide is produced on an industrial scale. It is virtually impossible.
[0019]
Process ▲ 4 ▼
The diamine is dropped until the molar ratio of the diamine to the dicarboxylic acid becomes 0.97 to 1.03, and at the end of the dropping of the diamine, the temperature of the reaction system is controlled to a temperature equal to or higher than the melting point of the finally produced polyamide. I do.
That is, the reaction system in which the reaction rate exceeds [adipic acid content in dicarboxylic acid (mol%)-5] (mol%) and is heated to a temperature not lower than the temperature specified in the present invention, until the reaction is completed. During this time, the temperature is gradually increased so that the reaction product containing the polyamide can maintain a uniform fluidized state.
[0020]
As described above, the reaction starts at a temperature of 160 ° C. or higher, which is higher than the melting point of adipic acid as a raw material dicarboxylic acid, and is 30 ° C. lower than the melting point of polyamide finally formed from the start of the reaction. It is also possible to raise the temperature of the reaction system to a temperature that is lower than or equal to ° C.
However, from a thermoeconomic point of view or from the viewpoint of the thermal history of the reaction product, it is not always preferable to keep the reaction system at a high temperature from the beginning of the reaction. After the acid content (mol%)-5] (mol%) is exceeded, the reaction system is preferably maintained at a temperature 30 ° C. lower than the melting point of the finally produced polyamide of the present invention.
[0021]
Process ▲ 5 ▼
The temperature of the reaction system at the end of the dropping of the diamine is controlled to a temperature equal to or higher than the melting point of the finally formed copolymerized polyamide.
That is, the reaction rate is higher than the content of adipic acid in the dicarboxylic acid (mol%)-5] (mol%) and the reaction system heated to a temperature not lower than the temperature specified in the present invention until the reaction is completed. The temperature is gradually increased so that the reaction product containing the copolymerized polyamide can maintain a substantially uniform fluid state.
[0022]
When the method of the present invention is carried out, it is inevitable to distill the diamine out of the reaction system, as in the case of the conventionally known aqueous solution pressurization method. It is. By providing the decomposer, the diamine can be effectively prevented from distilling out during the reaction. As a result, the charged molar ratio of diamine to dicarboxylic acid containing adipic acid can be reduced to 0.97 in consideration of the reached molecular weight. By setting the value in the range of 1.03 to 1.03, a polyamide having a constant molecular weight can be produced with good reproducibility.
[0023]
The polycondensation reaction device used in the method of the present invention does not need to be a pressure-resistant container, and can be installed at extremely low cost. In addition, the method of the present invention does not require the time required for operations such as pressurization and depressurization, and the time required for distilling off water, which is a solvent required in the case of a known aqueous solution method. In addition, the amount of heat required for the concentration of the aqueous solution in the conventional method is not required at all, and the amount that can be charged in one reaction can be increased, thereby increasing the productivity. Thus, a very economical method for producing polyamide is provided.
[0024]
【Example】
Hereinafter, the present invention will be described based on examples.
[0028]
Example 1
3.500 kg of accurately weighed adipic acid and 1.705 kg of terephthalic acid were placed in a 50 L reaction vessel equipped with a stirrer, a decomposer, a thermometer, a dropping funnel and a nitrogen gas inlet tube, and sufficiently purged with nitrogen. Adipic acid was dissolved at 170 ° C. in a small amount of nitrogen stream to make a uniform fluid state. To this, 2.969 kg of a mixed xylylenediamine (mole ratio: 7/3) of meta-xylylenediamine and para-xylylenediamine was added dropwise with stirring over 80 minutes. During this time, the internal temperature was continuously raised to 227 ° C.
[0029]
Subsequently, 0.966 kg of the mixed xylylenediamine was added dropwise with stirring over 26 minutes. During this time, the internal temperature was continuously raised to 245 ° C. Subsequently, 0.632 kg of mixed xylylenediamine was continuously added dropwise over 40 minutes with stirring. During this time, the reaction temperature was continuously raised from 245 ° C to 255 ° C. Water distilled off along with the dropwise addition of the mixed xylylenediamine was removed from the system through a condensing device and a condenser.
[0030]
After dropping the mixed xylylenediamine, the internal temperature was continuously raised to 260 ° C., and the reaction was continued for 34 minutes. Thereafter, the internal pressure of the reaction system was continuously reduced to 600 mmHg for 10 minutes, and then the reaction was continued for 44 minutes. During this time, the reaction temperature was continuously raised from 260 ° C to 270 ° C. During the entire reaction, no phenomenon was observed in which the generated oligomer or polyamide solidified and precipitated, and the reaction system lost a uniform fluid state.
The relative viscosity (96% sulfuric acid solution 1 g / 100 mL) of the obtained polyamide was 1.74, and the melting point was 246 ° C.
[0031]
Example 2
7.000 kg of adipic acid and 3.410 kg of terephthalic acid, which were precisely weighed, were placed in a 50-liter reactor equipped with a stirrer, a decomposer, a thermometer, a dropping funnel and a nitrogen gas inlet tube, and sufficiently purged with nitrogen. Further, adipic acid was dissolved at 170 ° C. in a small amount of nitrogen stream to make a uniform fluid state. To this, 5.967 kg of mixed xylylenediamine (molar ratio 6/4) of meta-xylylenediamine and para-xylylenediamine was added dropwise with stirring over 79 minutes. During this time, the internal temperature was continuously raised to 239 ° C.
[0032]
Subsequently, 1.928 kg of mixed xylylenediamine was added dropwise over 25 minutes while stirring. During this time, the internal temperature was continuously raised to 261 ° C. Subsequently, 1.285 kg of mixed xylylenediamine was continuously added dropwise with stirring for 60 minutes. During this time, the reaction temperature was continuously raised from 261 ° C to 267 ° C. Water distilled off along with the dropwise addition of the mixed xylylenediamine was removed from the system through a condensing device and a condenser. After the completion of the dropwise addition of the mixed xylylenediamine, the internal temperature was continuously raised to 271 ° C., and the reaction was continued for 40 minutes. Thereafter, the internal pressure of the reaction system was continuously reduced to 600 mmHg for 10 minutes, and then the reaction was continued for 43 minutes. During this time, the reaction temperature was continuously raised from 271 ° C to 275 ° C. In the whole process of the reaction, the generated oligomer or polyamide was not solidified and precipitated, and the phenomenon that the reaction system lost a uniform fluid state was not observed. The relative viscosity of the main component of the obtained polyamide (1 g of a 96% sulfuric acid solution / g) 100 mL) was 2.03 and the melting point was 257 ° C.
[0033]
Comparative Example 1
96.7 g of adipic acid and 256.1 g of terephthalic acid precisely weighed were placed in a 3 liter flask equipped with a stirrer, a separator, a thermometer, a dropping funnel and a nitrogen gas inlet tube, and sufficiently purged with nitrogen. Although dissolved adipic acid at 170 ° C. under a slight nitrogen stream, did not become a uniform flow state. To this, 75.0 g of mixed xylylenediamine (molar ratio: 7/3) of meta-xylylenediamine and para-xylylenediamine was added dropwise with stirring over 23 minutes. During this time, the internal temperature was continuously raised to 255 ° C.
[0034]
Subsequently, 165.0 g of mixed xylylenediamine was added dropwise over 50 minutes while stirring. During this time, the internal temperature was continuously raised to 264 ° C. Subsequently, 60.0 g of mixed xylylenediamine was continuously added dropwise with stirring for 19 minutes. During this time, the reaction temperature was continuously raised from 264 ° C to 270 ° C. Water distilled off along with the dropwise addition of the mixed xylylenediamine was removed from the system through a condensing device and a condenser. After the completion of the dropwise addition of the mixed xylylenediamine, the internal temperature was raised to 290 ° C., and the reaction was continued for 21 minutes. During this time, the viscosity of the resulting polyamide increased sharply, and the contents could not be stirred.
An attempt was made to dissolve the contents in 96% sulfuric acid, but the insoluble content was high.
[0037]
【The invention's effect】
When producing a copolymerized polyamide mainly using meta-xylylenediamine and para-xylylenediamine, and adipic acid and terephthalic acid, by adopting the production method of the present invention, it has excellent crystallinity and excellent heat resistance. In addition, it is possible to obtain a homogeneous copolymer polyamide having no coloring.

Claims (2)

メタキシリレンジアミン含有率が35〜70モル%であり、パラキシリレンジアミン含有率が30〜65モル%である混合ジアミンと、アジピン酸含有率が40〜80モル%であり、テレフタル酸含有率が20〜60モル%である混合ジカルボン酸とを重縮合反応させる共重合ポリアミドの製造方法であって、
1)該混合ジカルボン酸をアジピン酸の融点以上でかつ生成する共重合ポリアミドの融点より更に30℃低い温度よりも低い温度に加熱し、
2)加熱した混合ジカルボン酸中に混合ジアミンの滴下を開始して継続的に滴下を続け、
3)混合ジカルボン酸の反応率が〔前記アジピン酸含有率(モル%)−5〕モル%に達する以前に、反応系の温度を最終的に生成する共重合ポリアミドの融点よりも30℃低い温度よりも高い温度に昇温し、
4)ジカルボン酸に対するジアミンのモル比が、0.97〜1.03となるまでジアミンの滴下を行い、
5)ジアミンの滴下終了時の反応系の温度を、最終的に生成する共重合ポリアミドの融点以上の温度に制御する
ことを特徴とする共重合ポリアミドの製造法。
A mixed diamine having a metaxylylenediamine content of 35 to 70 mol% and a paraxylylenediamine content of 30 to 65 mol% , an adipic acid content of 40 to 80 mol% , and a terephthalic acid content Is a method for producing a copolymerized polyamide by a polycondensation reaction with a mixed dicarboxylic acid having 20 to 60 mol%,
1) heating the mixed dicarboxylic acid to a temperature not lower than the melting point of adipic acid and lower than the melting point of the resulting copolymerized polyamide by 30 ° C.,
2) Start dropping the mixed diamine in the heated mixed dicarboxylic acid and continue dropping continuously,
3) mixing the reaction rate of the dicarboxylic acid [the adipic acid content (mol%) - 5] before reaching mol%, 30 ° C. below the melting point of the copolymerized polyamide to produce the temperature of the reaction system finally Rise to a higher temperature than
4) Diamine is added dropwise until the molar ratio of diamine to dicarboxylic acid is 0.97 to 1.03,
5) A method for producing a copolymerized polyamide, wherein the temperature of the reaction system at the end of the dropwise addition of the diamine is controlled to a temperature equal to or higher than the melting point of the finally produced copolymerized polyamide.
混合ジアミンと混合ジカルボン酸とを常圧下または加圧下に反応させることを特徴とする請求項1に記載の共重合ポリアミドの製造法。The method for producing a copolymerized polyamide according to claim 1, wherein the mixed diamine and the mixed dicarboxylic acid are reacted under normal pressure or under pressure.
JP06406295A 1995-03-23 1995-03-23 Production method of copolyamide Expired - Lifetime JP3551991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06406295A JP3551991B2 (en) 1995-03-23 1995-03-23 Production method of copolyamide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06406295A JP3551991B2 (en) 1995-03-23 1995-03-23 Production method of copolyamide

Publications (2)

Publication Number Publication Date
JPH08259691A JPH08259691A (en) 1996-10-08
JP3551991B2 true JP3551991B2 (en) 2004-08-11

Family

ID=13247239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06406295A Expired - Lifetime JP3551991B2 (en) 1995-03-23 1995-03-23 Production method of copolyamide

Country Status (1)

Country Link
JP (1) JP3551991B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4193029B2 (en) * 2001-07-19 2008-12-10 三菱瓦斯化学株式会社 Polyamide resin and method for producing the same
JP4513953B2 (en) * 2003-05-20 2010-07-28 三菱瓦斯化学株式会社 Method for producing polyamide
JP4857634B2 (en) * 2005-07-22 2012-01-18 三菱瓦斯化学株式会社 Polyamide resin
RU2487142C2 (en) * 2008-09-18 2013-07-10 Мицубиси Гэс Кемикал Компани, Инк. Method of producing polyamide
CN103180363B (en) * 2010-11-26 2014-08-27 三菱瓦斯化学株式会社 Polyamide resin and method for molding same
CN104769010B (en) * 2012-11-08 2017-12-01 三菱瓦斯化学株式会社 The manufacture method of polyamide

Also Published As

Publication number Publication date
JPH08259691A (en) 1996-10-08

Similar Documents

Publication Publication Date Title
JPH0114925B2 (en)
EP2327738B1 (en) Method for producing polyamide
JPS58111829A (en) Preparation of polyamide
RU2557245C1 (en) Polyamide production method
JPH08512070A (en) Continuous production method of low molecular weight polyamide
JPS6054328B2 (en) Manufacturing method of high molecular weight polyamide
JP4774596B2 (en) Method for producing polyamide
JP3528875B2 (en) Production method of copolyamide
KR100685535B1 (en) Process for producing polyamide
JP3551991B2 (en) Production method of copolyamide
JP4077402B2 (en) Manufacturing method of nylon 6,6
EP0680987B1 (en) Copolyamide production method
JP2001200053A (en) Preparation method of polyamide
JP2001200052A (en) Continuous preparation method of polyamide
JP4168233B2 (en) Polyamide production method
JP2004204025A (en) Manufacturing process of copolyamide
JP2001329062A (en) Method for producing polyamide
JPH09104751A (en) Production of polyamide
JP2002097266A (en) Production method for copolymerized polyamide

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040420

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 10

EXPY Cancellation because of completion of term