JP2004339251A - Insulating coating material composition and insulated wire - Google Patents

Insulating coating material composition and insulated wire Download PDF

Info

Publication number
JP2004339251A
JP2004339251A JP2003133714A JP2003133714A JP2004339251A JP 2004339251 A JP2004339251 A JP 2004339251A JP 2003133714 A JP2003133714 A JP 2003133714A JP 2003133714 A JP2003133714 A JP 2003133714A JP 2004339251 A JP2004339251 A JP 2004339251A
Authority
JP
Japan
Prior art keywords
parts
resin
insulating coating
insulating
coating composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003133714A
Other languages
Japanese (ja)
Inventor
Toshitaka Kawanami
俊孝 川浪
Hiroyuki Sakamoto
裕之 坂本
Shusuke Tanaka
秀典 田中
Kazuo Morichika
和生 森近
Takao Saito
孝夫 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paint Co Ltd
Original Assignee
Nippon Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paint Co Ltd filed Critical Nippon Paint Co Ltd
Priority to JP2003133714A priority Critical patent/JP2004339251A/en
Priority to TW093113124A priority patent/TW200506018A/en
Priority to PCT/JP2004/006676 priority patent/WO2004099325A1/en
Publication of JP2004339251A publication Critical patent/JP2004339251A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • H01B3/428Polyacetals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D177/00Coating compositions based on polyamides obtained by reactions forming a carboxylic amide link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/305Polyamides or polyesteramides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/306Polyimides or polyesterimides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an insulating coating material composition which yields an insulating film having a high dielectric breakdown voltage, and to provide an insulated wire excellent in insulation and space factor coated with the same. <P>SOLUTION: The insulating coating material composition comprises a crosslinked resin particle and at least one insulating resin selected from the group consisting of a polyvinyl formal resin, a polyamideimide resin, a polyamide resin, a polyimide resin and a polyester imide resin. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、絶縁塗料組成物及び絶縁電線に関する。
【0002】
【従来の技術】
電気・電子機器等の分野において、絶縁性の皮膜を形成することがしばしば必要とされている。このような絶縁皮膜は各種合成樹脂や天然樹脂等の有機樹脂を含む絶縁塗料により得られるものが一般的である。
【0003】
このような絶縁性皮膜を形成することが必要とされる被塗物の一例としては、四角線等のエッジ部を有する電線を挙げることができる。このようなエッジ部を有する電線をマグネットワイヤ等として使用すると、占積率が増加し、より高密度で巻き付けることができるため、マグネットを小型化、軽量化することができたり、より強い磁力が得られたり、電流が大きくなったり、放熱性に優れていたりする点で従来の丸電線より優れた性能を有する。
【0004】
このような絶縁性皮膜の形成に使用される絶縁塗料としては、例えば、特許文献1等に開示されているように、芳香族ポリアミド、ポリベンズイミダゾール、ポリアミドイミド、ポリイミド樹脂系の塗料が知られている。
【0005】
しかしながら、上述したような絶縁塗料を使用して、四角線等のエッジ部を有する電線の塗装を行うと、エッジ部において形成される絶縁皮膜の膜厚が小さいものとなり、結果として、充分な絶縁性を有する絶縁電線を得ることができない場合がある。
更に、エッジ部において形成される絶縁皮膜の膜厚が小さいものとなるため、得られる絶縁電線の断面形状が被塗物の断面形状と異なるものとなってしまい、結果的に、占積率を充分に向上させることができない場合がある。
【0006】
従って、エッジ部を有する被塗物に塗装した際、エッジ部にも充分な膜厚で絶縁皮膜を形成することができ、高い絶縁性を有する絶縁皮膜を得ることができるような絶縁塗料組成物の開発が望まれていた。
【0007】
【特許文献1】
特開2000−235818号公報
【0008】
【発明が解決しようとする課題】
本発明は、上記現状に鑑み、高い絶縁破壊電圧を有する絶縁皮膜を得ることができる絶縁塗料組成物、及び、これによって塗装される絶縁性及び占積率に優れた絶縁電線を提供することを目的とするものである。
【0009】
【課題を解決するための手段】
本発明は、架橋樹脂粒子、並びに、ポリビニルホルマール樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ポリイミド樹脂及びポリエステルイミド樹脂からなる群から選択される少なくとも一種の絶縁性樹脂からなることを特徴とする絶縁塗料組成物である。
上記架橋樹脂粒子の含有量は、塗料樹脂固形分に対して0.5〜40質量%であることが好ましい。
【0010】
本発明は、上記絶縁塗料組成物により塗装されたことを特徴とするエッジを有する絶縁電線でもある。
上記エッジを有する絶縁電線における被塗物は、四角線又は真四角線の電線であることが好ましい。
以下、本発明を詳細に説明する。
【0011】
本発明の絶縁塗料組成物は、架橋樹脂粒子、並びに、ポリビニルホルマール樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ポリイミド樹脂及びポリエステルイミド樹脂からなる群から選択される少なくとも一種の絶縁性樹脂からなり、従来の絶縁塗料から得られる絶縁皮膜に比べて、より高い絶縁破壊電圧を有する絶縁皮膜を得ることができる絶縁塗料組成物である。
【0012】
即ち、上記絶縁塗料組成物を塗布することにより形成される絶縁皮膜は、全面が均一に塗装されるため、エッジ部においても膜厚が小さくならず、従来の絶縁塗料を塗布することのみによって得られる絶縁皮膜に比べて、優れた絶縁破壊電圧を有するものである。
【0013】
上記架橋樹脂粒子は、塗料にチキソトロピー性を付与する機能を有するものである。このため、塗布した皮膜を焼き付け硬化して絶縁皮膜を形成する際に、被塗物のエッジ部に対しても充分に被覆された絶縁皮膜を形成することができ、結果として、高い絶縁破壊電圧を有する絶縁皮膜を得ることができる。
【0014】
上記架橋樹脂粒子としては特に限定されず、当業者によってよく知られている、乳化能を有する樹脂と重合開始剤との存在下に,水性媒体中で重合性単量体を乳化重合しながら架橋させる、いわゆるエマルション法により得られるもの、及び、有機溶媒と有機溶媒に可溶な分散安定樹脂との混合液中で、重合性単量体を共重合しながら架橋させる、いわゆるNAD法により得られるもの等を挙げることができる。ここで、上記NAD法によって得られる場合は、共重合して架橋した重合性単量体と分散安定樹脂とを含めたものを架橋樹脂粒子という。
【0015】
なお、本発明の絶縁塗料組成物の形態が有機溶剤型である場合には、上記NAD法によって得られた架橋樹脂粒子はそのまま含むことができるが、上記エマルション法によって得られた際は、これを溶剤置換、共沸、遠心分離、濾過、乾燥等によって水を除去して有機溶剤型にしたものを含むことができる。
【0016】
上記架橋樹脂粒子の体積平均粒子径としては、具体的には、下限0.05μm、上限1μmの範囲内であることが好ましい。0.05μm未満であると、エッジ部の被覆が不充分になるおそれがあり、1μmを超えると絶縁皮膜の外観が低下するおそれがある。さらに好ましくは、下限0.07μm、上限0.5μmの範囲内である。この体積平均粒子径の調節は、例えば、重合性単量体の組成や重合条件を調整することにより可能である。上記体積体積粒子径は、例えば、レーザー光散乱法等によって決定することができる。
【0017】
本発明の絶縁塗料組成物は、上述したようにして得られる架橋樹脂粒子を、塗料樹脂固形分に対して0.5〜40質量%含有していることが好ましい。上記含有量が0.5質量%未満であると、エッジ部における被覆が不充分になるおそれがあり、40質量%を超えると、絶縁皮膜の外観が低下するおそれがある。上記下限は、1質量%がより好ましく、上記上限は、30質量%がより好ましい。
【0018】
本発明の絶縁塗料組成物としてポリビニルホルマール樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ポリイミド樹脂及びポリエステルイミド樹脂からなる群から選択される少なくとも一種の絶縁性樹脂を用いることができる。
【0019】
なかでも、得られる絶縁電線の絶縁破壊電圧がより高いという点から、上記絶縁性樹脂はポリアミドイミド樹脂又はポリアミド樹脂であることが好ましい。
【0020】
上記ポリアミドイミド樹脂を含有してなる絶縁塗料としては、例えば、トリカルボン酸無水物とジイソシアネートとを反応させることによって得られる塗料等を挙げることができ、市販品としては、NEOHEAT AI(東特塗料社製)等を挙げることができる。
上記ポリアミド樹脂を含有してなる絶縁塗料としては、例えば、アラミド(全芳香族ポリアミド)系塗料、ナイロンMXD6系塗料等を挙げることができる。なかでも、耐熱性、機械的強度等の点で、アラミド系塗料が好ましい。
【0021】
上記絶縁塗料組成物は、更に、必要に応じて、通常の絶縁塗料に用いられるその他の成分を含んでいてもよい。上記その他の成分としては特に限定されず、例えば、顔料、防錆剤、顔料分散樹脂、界面活性剤、酸化防止剤、紫外線吸収剤等を挙げることができる。ただし上記成分の使用に際しては、絶縁破壊電圧の保持に留意して配合量を調整することが好ましい。
【0022】
本発明の絶縁塗料組成物は、エッジ部を有する被塗物に好適に適用することができるものであり、特に塗装が困難とされる断面形状におけるエッジ部の曲率が小さい電線にも好適に塗装することができる。なお、本明細書中における曲率とは、電線の断面におけるエッジ部及びエッジ部を挟む2つの辺において、エッジ部の曲線の半径/エッジ部を挟む2つの辺のうち短い方の辺の長さ×100で表されるものである。
【0023】
本発明の絶縁塗料組成物の被塗物としては特に限定されず、例えば、鉄、銅、アルミニウム、金、銀、ニッケル、スズ、亜鉛、チタン、タングステン等及びこれらの金属を含む合金等を挙げることができる。
【0024】
本発明の絶縁塗料組成物の塗装方法としては特に限定されず、塗布、焼き付けのような従来公知の方法を挙げることができる。塗布方法としては、例えば、ダイス方式とフェルト方式等を挙げることができる。
【0025】
上記絶縁塗料組成物は、特にエッジ部を有する絶縁電線の製造に好適に使用することができる。上記絶縁電線は、架橋樹脂粒子の作用により、被塗物の表面全体、即ち、エッジ部を含む表面全体に絶縁皮膜がほぼ均一な厚みで形成されるため、高い絶縁破壊電圧を有するものである。従って、この絶縁塗料組成物により塗装されるエッジ部を有する絶縁電線は、高い絶縁破壊電圧を有するものとして好適に使用することができるものである。このようなエッジ部を有する絶縁電線も本発明の1つである。
【0026】
更に、本発明のエッジ部を有する絶縁電線の被塗物は、四角線又は真四角線の電線であることが好ましい。本発明の絶縁塗料組成物を用いて、四角線又は真四角線の電線に塗装を行う場合、形状の変化が少ないため、被塗物が有する占積率を維持することができ、結果として、得られる絶縁電線の占積率を向上させることができる。このため、同容積の丸電線を用いる場合に比べて、性能を向上させることができる。
【0027】
本発明の架橋樹脂粒子を含有する絶縁塗料組成物を用いて得られた絶縁皮膜の概念図の一例を図1に示す。図1は、四角線1の上に、架橋樹脂粒子を含有する絶縁塗料組成物から得られる絶縁皮膜2が形成された絶縁電線3を示している。本発明の絶縁塗料組成物によって形成された絶縁皮膜は、四角線1のエッジ部4においても、絶縁皮膜2が充分に形成されている。このため、本発明の塗料組成物により得られる絶縁電線3は、より高い絶縁破壊電圧が要求される用途に対しても、好適に使用することができるものである。更に、本発明の絶縁塗料組成物によって形成された絶縁電線3は、形状の変化が少なく断面は四角形を保っている。このため、絶縁電線3を束ねて使用すると、四角線であるため空隙が少なく、高い占積率を維持することができる。
【0028】
一方、図2は、架橋樹脂粒子を含有しない絶縁塗料を用いて絶縁皮膜を形成することによって得られた絶縁電線の概念図の一例を示したものである。架橋樹脂粒子を含有しない塗料を使用する場合に得られる絶縁皮膜2は、四角線1のエッジ部4において充分に形成されていない。従って、架橋樹脂粒子を含有しない絶縁塗料により得られる絶縁電線5は、本発明の架橋樹脂粒子を含有する絶縁樹脂塗料により得られるものに比べて、絶縁破壊電圧が小さいものである。更に、架橋樹脂粒子を含有しない塗料によって形成された絶縁電線5は、形状の変化が大きく、断面はエッジがゆるやかになり丸形に近づいている。このため、絶縁電線5を束ねて使用すると空隙が大きくなり、高い占積率を維持することができない。
【0029】
本発明の絶縁塗料組成物を塗布することにより、均一な膜厚を有する皮膜を得ることができ、従来の絶縁塗料を塗布することのみによって得られる絶縁皮膜に比べて、大幅に絶縁破壊電圧を高めることができる。また、被塗物が四角線又は真四角線の電線である場合には、得られる絶縁電線の占積率を維持することができる。これにより、例えば、マグネットワイヤとして使用する場合に、ワイヤの断面積が大きくなることによって、電流が大きくなったり、コイルの巻数が少なくなることによる小型化、軽量化が可能となったり、より強い磁力を得ることができ、また、電気抵抗が少なくなり、放熱性も高くなる。従って、本発明の絶縁塗料組成物により得られる絶縁皮膜は高い絶縁破壊電圧を有するものであり、上記絶縁皮膜を有する絶縁電線は各種用途に好適に用いることができるものである。
【0030】
【実施例】
以下に本発明を実施例により更に具体的に説明するが、本発明はこれら実施例のみに限定されるものではない。また実施例中、「部」は特に断りのない限り「質量部」を意味する。
【0031】
製造例1 エポキシ基を有するアクリル樹脂の製造
反応容器にブチルセルソルブ120部を入れ120℃に加熱攪拌した。ここにt−ブチルパーオキシ−2−エチルヘキサノエート2部及びブチルセルソルブ10部を混合した溶液とグリシジルメタクリレート40部、2−エチルヘキシルメタクリレート150部、2−ヒドロキシエチルメタクリレート50部及びn−ブチルメタクリレート65部からなるモノマー混合物とを3時間で滴下した。30分間エージングした後、t−ブチルパーオキシ−2−エチルヘキサノエート0.5部及びブチルセルソルブ5部を混合した溶液を30分で滴下し、更に2時間のエージングを行い、不揮発分42%のエポキシ基を有するアクリル樹脂1溶液を得た。ポリスチレン換算のGPCにより求められた、このエポキシ基を有するアクリル樹脂1は、GPC(ゲルパーミエーションクロマトグラフィ、ポリスチレン換算)測定による数平均分子量は11000であった。
【0032】
製造例2 4級化剤1の製造
反応容器にイソホロンジイソシアネート220部、メチルイソブチルケトン40部、ジブチル錫ラウレート0.22部を加え、55℃で2−エチルヘキサノール135部を滴下し、その後60℃で1時間反応させてハーフブロック化イソシアネート溶液を得た。これを更に80℃に加熱し、N,N−ジメチルアミノエタノール90部及びメチルイソブチルケトン10部を混合した溶液を30分間で滴下した。IRによりイソシアネート基が消失したことを確認した後、室温まで冷却してブロックイソシアネート基を有する3級アミンを得た。更に50%乳酸水溶液180部を加えて中和を行い、4級化剤1の溶液を得た。
【0033】
製造例3 4級化剤2の製造
製造例2においてブロック剤として用いた2−エチルヘキサノール135部の代わりにトリエチレングリコールモノメチルエーテル160部を用い、溶剤であるメチルイソブチルケトンの量を40部から25部に変更した以外は同様にして4級化剤2の溶液を得た。
【0034】
製造例4 アンモニウム基を有するアクリル樹脂1の製造
反応容器にブチルセルソルブ120部を入れ120℃に加熱攪拌した。ここにt−ブチルパーオキシ−2−エチルヘキサノエート2部及びブチルセルソルブ10部を混合した溶液と、グリシジルメタクリレート15部、2−エチルヘキシルメタクリレート50部、2−ヒドロキシエチルメタクリレート40部及びn−ブチルメタクリレート15部からなる溶解性パラメータが10.1であるモノマー混合物とを3時間で滴下した。30分間エージングした後、t−ブチルパーオキシ−2−エチルヘキサノエート0.5部及びブチルセルソルブ5部を混合した溶液を30分で滴下し、2時間のエージングを行った後、冷却した。このアンモニウム基を有するアクリル樹脂1は、GPC測定により数平均分子量は12000、重量平均分子量は28000であった。ここにN,N−ジメチルアミノエタノール7部及び50%乳酸水溶液15部を加えて80℃で加熱攪拌することにより4級化を行った。酸価が1以下になり、粘度上昇が止まった時点で加熱を停止し、不揮発分30%のアンモニウム基を有するアクリル樹脂1溶液を得た。このアンモニウム基を有するアクリル樹脂1の1分子あたりのアンモニウム基の個数は6.0個であった。
【0035】
製造例5 アンモニウム基を有するアクリル樹脂2の製造
製造例1で製造したエポキシ基を有するアクリル樹脂1を240部に、製造例2で製造した4級化剤1の溶液100部を加え、80℃で加熱攪拌して4級化を行った。酸価が1以下になり、粘度上昇が認められなくなった時点で加熱を停止し、不揮発分39%のアンモニウム基を有するアクリル樹脂2の溶液を得た。このアンモニウム基を有するアクリル樹脂2の1分子あたりのアンモニウム基の個数は8.5個であった。
【0036】
製造例6 アンモニウム基を有するアクリル樹脂3の製造
製造例5において、4級化剤1の溶液100部に代えて、製造例3で製造した4級化剤2の溶液80部を用いた以外は同様にして、不揮発分36%のアンモニウム基を有するアクリル樹脂3溶液を得た。このアンモニウム基を有するアクリル樹脂3の1分子あたりのアンモニウム基の個数は4.0個であった。
【0037】
製造例7 架橋樹脂粒子1の製造
反応容器に、製造例4で製造したアンモニウム基を有するアクリル樹脂1を20部と脱イオン水270部とを加え、75℃で加熱攪拌した。ここに2,2′−アゾビス(2−(2−イミダゾリン−2−イル)プロパン)1.5部の酢酸100%中和水溶液を5分かけて滴下した。5分間エージングした後、メチルメタクリレート30部を5分かけて滴下した。更に5分間エージングした後、アンモニウム基を有するアクリル樹脂1を70部と脱イオン水250部とを混合した溶液にメチルメタクリレート170部、スチレン40部、n−ブチルメタクリレート30部、グリシジルメタクリレート5部及びネオペンチルグリコールジメタクリレート30部からなるα,β−エチレン性不飽和モノマー混合物を加え攪拌して得られたプレエマルションを40分かけて滴下した。60分間エージングした後、冷却し、架橋樹脂粒子1の水分散液を得た。得られた架橋樹脂粒子1の水分散液の不揮発分は35%、pHは5.0、体積平均粒子径は100nmであった。これにキシレンを加えて、エバポレータで共沸させながら溶媒を水からキシレンに置換して、架橋樹脂粒子1のキシレン分散液を得た。
【0038】
製造例8 架橋樹脂粒子2の製造
反応容器に、製造例5で製造したアンモニウム基を有するアクリル樹脂2を20部と脱イオン水300部とを加え、75℃で加熱攪拌した。ここに2,2′−アゾビス(2−(2−イミダゾリン−2−イル)プロパン))1部の酢酸100%中和水溶液を5分かけて滴下した。5分間エージングした後、メチルメタクリレート25部を5分かけて滴下した。更に5分間エージングした後、アンモニウム基を有するアクリル樹脂2を55部と脱イオン水270部とを混合した溶液にメチルメタクリレート140部、スチレン30部、n−ブチルメタクリレート25部、グリシジルメタクリレート5部及びネオペンチルグリコールジメタクリレート25部からなるα,β−エチレン性不飽和モノマー混合物を加え攪拌して得られたプレエマルションを40分かけて滴下した。60分間エージングした後、冷却し、架橋樹脂粒子2の水分散液を得た。得られた架橋樹脂粒子2の水分散液の不揮発分は30%、pHは5.5、体積平均粒子径は100nmであった。これにキシレンを加えて、エバポレータで共沸させながら溶媒を水からキシレンに置換して、架橋樹脂粒子2のキシレン分散液を得た。
【0039】
製造例9 架橋樹脂粒子溶液3の製造
製造例8において、乳化剤として用いたアンモニウム基を有するアクリル樹脂2の代わりにアンモニウム基を有するアクリル樹脂3を同量用いる以外は同じ手順により、架橋樹脂粒子3の水分散液を得た。得られた架橋樹脂粒子3の水分散液の不揮発分は30%、pHは5.5、体積平均粒子径は90nmであった。これにキシレンを加えて、エバポレータで共沸させながら溶媒を水からキシレンに置換して、架橋樹脂粒子3のキシレン分散液を得た。
【0040】
製造例10 架橋樹脂粒子溶液4の製造
製造例8において、α,β−エチレン性不飽和モノマー混合物中のネオペンチルグリコールジメタクリレートの量を25部から40部に変更した以外は同様の手順により、架橋樹脂粒子4の水分散液を得た。得られた架橋樹脂粒子4の水分散液の不揮発分は30%、pHは5.0、体積平均粒子径は150nmであった。これにキシレンを加えて、エバポレータで共沸させながら溶媒を水からキシレンに置換して、架橋樹脂粒子4のキシレン分散液を得た。
【0041】
製造例11 アンモニウム基を有するアクリル樹脂以外の乳化剤を用いた架橋樹脂粒子の製造
反応容器に、乳化剤としてヘキサデシルトリメチルアンモニウムクロライド7部を加え、これを脱イオン水300部に溶かして75℃で加熱攪拌した。ここに2,2′−アゾビス(2−(2−イミダゾリン−2−イル)プロパン)1部の酢酸100%中和水溶液を5分かけて滴下した。5分間エージングした後、メチルメタクリレート10部を5分かけて滴下した。更に5分間エージングした後、ヘキサデシルトリメチルアンモニウムクロライド22部と脱イオン水270部とを混合した溶液にメチルメタクリレート140部、スチレン30部、n−ブチルメタクリレート25部、グリシジルメタクリレート5部及びネオペンチルグリコールジメタクリレート25部からなるα,β−エチレン性不飽和モノマー混合物を加え攪拌して得られたプレエマルションを40分かけて滴下した。60分間エージングした後、冷却し、不揮発分30%、pHは5.2、体積平均粒子径が120nmの架橋樹脂粒子の水分散液を得た。これにキシレンを加えて、エバポレータで共沸させながら溶媒を水からキシレンに置換して、架橋樹脂粒子5のキシレン分散液を得た。
【0042】
製造例12 非架橋樹脂粒子の製造
反応容器に、製造例4で製造したアンモニウム基を有するアクリル樹脂1を20部と脱イオン水300部とを加え、75℃で加熱攪拌した。ここに2,2′−アゾビス(2−(2−イミダゾリン−2−イル)プロパン)1部の酢酸100%中和水溶液を5分かけて滴下した。5分間エージングした後、メチルメタクリレート10部を5分かけて滴下した。更に5分間エージングした後、アンモニウム基を有するアクリル樹脂1 55部、脱イオン水270部の水溶液にメチルメタクリレート140部、スチレン30部、n−ブチルメタクリレート25部及びグリシジルメタクリレート5部からなる、ポリ(メタ)アクリレートを含有しないα,β−エチレン性不飽和モノマー混合物を加え攪拌して得られたプレエマルションを40分かけて滴下した。60分間エージングした後、冷却し、非架橋樹脂粒子の水分散液を得た。得られた非架橋樹脂粒子の水分散液の不揮発分は32.8%、pHは5.0、体積平均粒子径は106nmであった。これにキシレンを加えて、エバポレータで共沸させながら溶媒を水からキシレンに置換して、非架橋樹脂粒子のキシレン分散液を得た。
【0043】
製造例13 絶縁塗料組成物の製造
NEOHEAT A1(東特塗料社製ポリアミドイミド樹脂系塗料、塗料樹脂固形分40質量%)に対して、塗料中の樹脂固形分に対して20質量%となるように製造例7で得られた架橋樹脂粒子1のキシレン分散液を加え、ミキサーで1時間撹拌した後、固形分濃度が15質量%となるようにキシレンを加えて、絶縁塗料組成物を得た。
【0044】
製造例14〜17 絶縁塗料組成物の製造
製造例7で得られた架橋樹脂粒子1のキシレン分散液に代えて、それぞれ製造例8〜11で得られた架橋樹脂粒子2〜5のキシレン分散液としたこと以外は製造例13と同様にして、絶縁塗料組成物を得た。
【0045】
製造例18 塗料組成物
製造例7で得られた架橋樹脂粒子1のキシレン分散液に代えて、製造例12で得られた非架橋樹脂粒子のキシレン分散液としたこと以外は製造例13と同様にして、塗料組成物を得た。
【0046】
実施例1〜5
製造例13〜17で得られた絶縁塗料組成物を、エッジ部を有する銅製の四角線(断面形状が0.3mm×0.3mmの正方形、曲率10%)に、上記絶縁塗料組成物を塗布した後、190℃で8分間加熱した。この絶縁塗料組成物の塗布及び加熱硬化のサイクルを10回繰り返すことによって絶縁皮膜を形成し、絶縁電線1〜5を得た。
【0047】
比較例1
絶縁塗料組成物としてNEOHEAT AIを用いたこと以外は、実施例1と同様にして絶縁電線を得た。
【0048】
比較例2
絶縁塗料組成物として製造例18で得られた塗料組成物を用いたこと以外は、実施例1と同様にして絶縁電線を得た。
〔評価〕
実施例1〜5及び比較例1、2で得られた絶縁電線の絶縁破壊電圧を耐電圧絶縁試験器MODEL8525(鶴賀電機社製)を用いて、JIS C 3003の金属はく法に準拠して評価した。結果を表1に示した。
【0049】
【表1】

Figure 2004339251
【0050】
表1から、実施例により得られた絶縁電線は、比較例により得られたものに比べて、高い絶縁破壊電圧を有するものであった。
【0051】
【発明の効果】
本発明の絶縁塗料組成物は、上述した構成よりなるので、高い絶縁破壊電圧を有する絶縁皮膜を得ることができるものである。上記絶縁塗料組成物は、四角線又は真四角線等のエッジ部を有する電線の塗装にも好適に用いられ、高い絶縁破壊電圧を有する絶縁電線を得ることができる。また、上記絶縁電線は占積率が高くなるため、架橋樹脂粒子を含有しない絶縁塗料を用いて塗装した場合に比べて、性能を向上させることができ、例えば、マグネットワイヤ等として好適に用いることができる。従って、本発明の絶縁塗料組成物を用いて得られる絶縁電線は、高い絶縁破壊電圧を有するものとして各種用途に好適に用いることができるものである。
【図面の簡単な説明】
【図1】本発明の絶縁塗料組成物により塗装された絶縁電線の概略図の一例。
【図2】架橋樹脂粒子を用いない場合に得られる絶縁電線の概略図の一例。
【符号の説明】
1 四角線
2 絶縁皮膜
3 絶縁電線
4 エッジ部
5 絶縁電線[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an insulating coating composition and an insulated wire.
[0002]
[Prior art]
In the fields of electric and electronic equipment, it is often necessary to form an insulating film. Such an insulating film is generally obtained by an insulating coating containing an organic resin such as various synthetic resins and natural resins.
[0003]
An example of an object to be coated on which such an insulating film is required to be formed is an electric wire having an edge portion such as a square wire. When an electric wire having such an edge portion is used as a magnet wire or the like, the space factor is increased, and the coil can be wound at a higher density. Therefore, the magnet can be reduced in size and weight, or a stronger magnetic force can be obtained. It has better performance than conventional round electric wires in that it is obtained, has a large current, and is excellent in heat dissipation.
[0004]
As an insulating paint used for forming such an insulating film, for example, as disclosed in Patent Document 1, etc., aromatic polyamide, polybenzimidazole, polyamideimide, and polyimide resin-based paints are known. ing.
[0005]
However, when an electric wire having an edge portion such as a square wire is coated using the above-described insulating paint, the thickness of the insulating film formed at the edge portion becomes small, and as a result, a sufficient insulation is obtained. It may not be possible to obtain an insulated electric wire having a property.
Furthermore, since the thickness of the insulating film formed at the edge portion is small, the cross-sectional shape of the obtained insulated wire is different from the cross-sectional shape of the object to be coated, and as a result, the space factor is reduced. In some cases, it cannot be sufficiently improved.
[0006]
Therefore, when coated on a substrate having an edge portion, an insulating coating composition capable of forming an insulating film with a sufficient thickness also on the edge portion and obtaining an insulating film having high insulating properties. The development of was desired.
[0007]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2000-235818
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and provides an insulating coating composition capable of obtaining an insulating film having a high dielectric breakdown voltage, and an insulated wire having an excellent insulating property and space factor coated thereby. It is the purpose.
[0009]
[Means for Solving the Problems]
The present invention provides an insulating coating composition comprising a crosslinked resin particle, and at least one insulating resin selected from the group consisting of polyvinyl formal resin, polyamideimide resin, polyamide resin, polyimide resin and polyesterimide resin. Things.
The content of the crosslinked resin particles is preferably 0.5 to 40% by mass based on the solid content of the coating resin.
[0010]
The present invention also provides an insulated wire having an edge, which is coated with the insulating coating composition.
The object to be coated in the insulated wire having the edge is preferably a square wire or a square wire.
Hereinafter, the present invention will be described in detail.
[0011]
The insulating coating composition of the present invention comprises crosslinked resin particles, and at least one insulating resin selected from the group consisting of polyvinyl formal resin, polyamide imide resin, polyamide resin, polyimide resin and polyester imide resin. An insulating paint composition capable of obtaining an insulating film having a higher dielectric breakdown voltage than an insulating film obtained from an insulating paint.
[0012]
That is, since the insulating film formed by applying the insulating coating composition is uniformly coated on the entire surface, the film thickness does not become small even at the edge portion, and is obtained only by applying the conventional insulating coating. It has an excellent dielectric breakdown voltage as compared with the insulating film to be obtained.
[0013]
The crosslinked resin particles have a function of imparting thixotropic properties to the paint. Therefore, when the applied film is baked and cured to form an insulating film, the insulating film can be sufficiently coated even on the edge of the object to be coated, and as a result, a high dielectric breakdown voltage can be obtained. Can be obtained.
[0014]
The crosslinked resin particles are not particularly limited, and are cross-linked by emulsion polymerization of a polymerizable monomer in an aqueous medium in the presence of a resin having an emulsifying ability and a polymerization initiator, which is well known by those skilled in the art. What is obtained by the so-called emulsion method, and obtained by the so-called NAD method, in which a polymerizable monomer is crosslinked while copolymerizing in a mixed solution of an organic solvent and a dispersion-stable resin soluble in the organic solvent. And the like. Here, in the case of being obtained by the above-mentioned NAD method, a mixture containing a polymerizable monomer copolymerized and crosslinked and a dispersion-stable resin is referred to as crosslinked resin particles.
[0015]
In addition, when the form of the insulating coating composition of the present invention is an organic solvent type, the crosslinked resin particles obtained by the above-mentioned NAD method can be directly contained, but when obtained by the above-mentioned emulsion method, Can be contained in an organic solvent form by removing water by solvent replacement, azeotropic distillation, centrifugal separation, filtration, drying and the like.
[0016]
Specifically, the volume average particle diameter of the crosslinked resin particles is preferably in the range of a lower limit of 0.05 μm and an upper limit of 1 μm. If it is less than 0.05 μm, the edge portion may be insufficiently covered, and if it exceeds 1 μm, the appearance of the insulating film may be deteriorated. More preferably, the lower limit is 0.07 μm and the upper limit is 0.5 μm. The volume average particle diameter can be adjusted, for example, by adjusting the composition of the polymerizable monomer and the polymerization conditions. The volume particle diameter can be determined, for example, by a laser light scattering method or the like.
[0017]
The insulating coating composition of the present invention preferably contains the crosslinked resin particles obtained as described above in an amount of 0.5 to 40% by mass based on the solid content of the coating resin. If the content is less than 0.5% by mass, the coating at the edge may be insufficient, and if it exceeds 40% by mass, the appearance of the insulating film may be deteriorated. The lower limit is more preferably 1% by mass, and the upper limit is more preferably 30% by mass.
[0018]
As the insulating coating composition of the present invention, at least one kind of insulating resin selected from the group consisting of polyvinyl formal resin, polyamide imide resin, polyamide resin, polyimide resin and polyester imide resin can be used.
[0019]
Above all, the insulating resin is preferably a polyamideimide resin or a polyamide resin in that the obtained insulated wire has a higher dielectric breakdown voltage.
[0020]
Examples of the insulating coating containing the polyamideimide resin include coatings obtained by reacting tricarboxylic anhydride and diisocyanate. Commercially available products include NEOHEAT AI (Totoku Paint Co., Ltd.) Manufactured).
Examples of the insulating paint containing the polyamide resin include an aramid (fully aromatic polyamide) paint and a nylon MXD6 paint. Above all, an aramid-based paint is preferred in terms of heat resistance, mechanical strength, and the like.
[0021]
The insulating coating composition may further include other components used in ordinary insulating coatings, if necessary. The other components are not particularly limited, and include, for example, a pigment, a rust inhibitor, a pigment-dispersed resin, a surfactant, an antioxidant, and an ultraviolet absorber. However, when using the above components, it is preferable to adjust the blending amount while paying attention to maintaining the dielectric breakdown voltage.
[0022]
INDUSTRIAL APPLICABILITY The insulating coating composition of the present invention can be suitably applied to an object to be coated having an edge portion, and is also preferably applied to an electric wire having a small curvature at an edge portion in a cross-sectional shape where coating is particularly difficult. can do. In addition, the curvature in the present specification refers to the radius of the curve of the edge portion / the length of the shorter side of the two sides sandwiching the edge portion between the edge portion and the two sides sandwiching the edge portion in the cross section of the electric wire. It is represented by × 100.
[0023]
The object to be coated with the insulating coating composition of the present invention is not particularly limited, and examples thereof include iron, copper, aluminum, gold, silver, nickel, tin, zinc, titanium, and tungsten, and alloys containing these metals. be able to.
[0024]
The method for applying the insulating coating composition of the present invention is not particularly limited, and includes conventionally known methods such as coating and baking. Examples of the coating method include a die method and a felt method.
[0025]
The above-mentioned insulating paint composition can be suitably used particularly for producing an insulated wire having an edge portion. The insulated wire has a high dielectric breakdown voltage because the insulating film is formed with a substantially uniform thickness on the entire surface of the object to be coated, that is, on the entire surface including the edge portion by the action of the crosslinked resin particles. . Therefore, an insulated wire having an edge portion coated with this insulating coating composition can be suitably used as having a high dielectric breakdown voltage. An insulated wire having such an edge is also one aspect of the present invention.
[0026]
Furthermore, it is preferable that the coated object of the insulated wire having the edge portion of the present invention is a square wire or a square wire. Using the insulating coating composition of the present invention, when coating on a square wire or a square wire, because the shape change is small, it is possible to maintain the space factor of the object to be coated, as a result, The space factor of the obtained insulated wire can be improved. For this reason, performance can be improved as compared with the case where round electric wires having the same volume are used.
[0027]
One example of a conceptual diagram of an insulating film obtained by using the insulating coating composition containing the crosslinked resin particles of the present invention is shown in FIG. FIG. 1 shows an insulated wire 3 in which an insulating film 2 obtained from an insulating coating composition containing crosslinked resin particles is formed on a square wire 1. In the insulating coating formed by the insulating coating composition of the present invention, the insulating coating 2 is sufficiently formed even at the edge 4 of the square wire 1. For this reason, the insulated wire 3 obtained by the coating composition of the present invention can be suitably used for applications requiring a higher dielectric breakdown voltage. Further, the insulated wire 3 formed by the insulating coating composition of the present invention has a small change in shape and has a rectangular cross section. For this reason, when the insulated wires 3 are used in a bundle, the space is small because of the rectangular wire, and a high space factor can be maintained.
[0028]
On the other hand, FIG. 2 shows an example of a conceptual diagram of an insulated wire obtained by forming an insulating film using an insulating paint containing no crosslinked resin particles. The insulating film 2 obtained when a paint containing no crosslinked resin particles is used is not sufficiently formed at the edge 4 of the square wire 1. Therefore, the insulated wire 5 obtained by the insulating paint containing no crosslinked resin particles has a smaller breakdown voltage than that obtained by the insulating resin paint containing the crosslinked resin particles of the present invention. Further, the insulated wire 5 formed of a paint containing no crosslinked resin particles has a large change in shape, and its cross section has a gradual edge and approaches a round shape. For this reason, if the insulated wires 5 are used in a bundle, the gap becomes large, and a high space factor cannot be maintained.
[0029]
By applying the insulating coating composition of the present invention, a film having a uniform film thickness can be obtained, and the dielectric breakdown voltage is significantly reduced as compared with an insulating film obtained only by applying a conventional insulating coating. Can be enhanced. When the object to be coated is a square wire or a square wire, the space factor of the obtained insulated wire can be maintained. Thus, for example, when used as a magnet wire, the cross-sectional area of the wire is increased, so that the current is increased. A magnetic force can be obtained, the electric resistance decreases, and the heat dissipation improves. Therefore, the insulating film obtained by the insulating coating composition of the present invention has a high dielectric breakdown voltage, and the insulated wire having the insulating film can be suitably used for various applications.
[0030]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. In the examples, “parts” means “parts by mass” unless otherwise specified.
[0031]
Production Example 1 Production of Acrylic Resin Having Epoxy Group 120 parts of butyl cellosolve was put into a reaction vessel and heated and stirred at 120 ° C. A solution obtained by mixing 2 parts of t-butyl peroxy-2-ethylhexanoate and 10 parts of butyl cellosolve with 40 parts of glycidyl methacrylate, 150 parts of 2-ethylhexyl methacrylate, 50 parts of 2-hydroxyethyl methacrylate and n-butyl A monomer mixture consisting of 65 parts of methacrylate was added dropwise over 3 hours. After aging for 30 minutes, a mixed solution of 0.5 part of t-butylperoxy-2-ethylhexanoate and 5 parts of butyl cellosolve was added dropwise over 30 minutes, and aging was further performed for 2 hours to obtain a nonvolatile matter of 42%. % Acrylic resin 1 solution having an epoxy group was obtained. The acrylic resin 1 having an epoxy group, determined by GPC in terms of polystyrene, had a number average molecular weight of 11,000 as measured by GPC (gel permeation chromatography, in terms of polystyrene).
[0032]
Production Example 2 Production of quaternizing agent 1 To a reaction vessel, 220 parts of isophorone diisocyanate, 40 parts of methyl isobutyl ketone, and 0.22 part of dibutyltin laurate were added, and 135 parts of 2-ethylhexanol was added dropwise at 55 ° C., and then 60 ° C. For 1 hour to obtain a half-blocked isocyanate solution. This was further heated to 80 ° C., and a solution in which 90 parts of N, N-dimethylaminoethanol and 10 parts of methyl isobutyl ketone were mixed was added dropwise over 30 minutes. After confirming the disappearance of the isocyanate group by IR, it was cooled to room temperature to obtain a tertiary amine having a blocked isocyanate group. Further, 180 parts of a 50% aqueous lactic acid solution was added for neutralization to obtain a quaternizing agent 1 solution.
[0033]
Production Example 3 Production of Quaternizing Agent 2 Instead of 135 parts of 2-ethylhexanol used as a blocking agent in Production Example 2, 160 parts of triethylene glycol monomethyl ether was used, and the amount of methyl isobutyl ketone as a solvent was increased from 40 parts. A quaternizing agent 2 solution was obtained in the same manner except that the amount was changed to 25 parts.
[0034]
Production Example 4 Production of Acrylic Resin 1 Having Ammonium Group In a reaction vessel, 120 parts of butyl cellosolve was put and heated and stirred at 120 ° C. A solution obtained by mixing 2 parts of t-butyl peroxy-2-ethylhexanoate and 10 parts of butyl cellosolve, 15 parts of glycidyl methacrylate, 50 parts of 2-ethylhexyl methacrylate, 40 parts of 2-hydroxyethyl methacrylate and n- A monomer mixture consisting of 15 parts of butyl methacrylate and having a solubility parameter of 10.1 was added dropwise over 3 hours. After aging for 30 minutes, a solution obtained by mixing 0.5 part of t-butylperoxy-2-ethylhexanoate and 5 parts of butyl cellosolve was added dropwise over 30 minutes, and after aging for 2 hours, the mixture was cooled. . The acrylic resin 1 having an ammonium group had a number average molecular weight of 12,000 and a weight average molecular weight of 28,000 by GPC measurement. Quaternization was performed by adding 7 parts of N, N-dimethylaminoethanol and 15 parts of a 50% lactic acid aqueous solution and heating and stirring the mixture at 80 ° C. When the acid value became 1 or less and the increase in viscosity stopped, heating was stopped to obtain an acrylic resin 1 solution having an ammonium group having a nonvolatile content of 30%. The number of ammonium groups per molecule of the acrylic resin 1 having this ammonium group was 6.0.
[0035]
Production Example 5 Production of Acrylic Resin 2 Having Ammonium Group To 240 parts of the acrylic resin 1 having an epoxy group produced in Production Example 1, 100 parts of the solution of the quaternizing agent 1 produced in Production Example 2 was added, and the mixture was heated at 80 ° C. To perform quaternization. When the acid value became 1 or less and the increase in viscosity was no longer observed, heating was stopped to obtain a solution of acrylic resin 2 having an ammonium group having a nonvolatile content of 39%. The number of ammonium groups per molecule of the acrylic resin 2 having this ammonium group was 8.5.
[0036]
Production Example 6 Production of Acrylic Resin 3 Having Ammonium Group Except for using 80 parts of the solution of quaternizing agent 2 produced in Production Example 3 in place of 100 parts of the solution of quaternizing agent 1 in Production Example 5, Similarly, an acrylic resin 3 solution having an ammonium group having a nonvolatile content of 36% was obtained. The number of ammonium groups per molecule of the acrylic resin 3 having this ammonium group was 4.0.
[0037]
Production Example 7 20 parts of the acrylic resin 1 having an ammonium group produced in Production Example 4 and 270 parts of deionized water were added to a reaction vessel for producing crosslinked resin particles 1 and heated and stirred at 75 ° C. A 1.5% solution of 2,2'-azobis (2- (2-imidazolin-2-yl) propane) in 100% acetic acid was added dropwise over 5 minutes. After aging for 5 minutes, 30 parts of methyl methacrylate was added dropwise over 5 minutes. After further aging for 5 minutes, 170 parts of methyl methacrylate, 40 parts of styrene, 30 parts of n-butyl methacrylate, 5 parts of glycidyl methacrylate and 5 parts of a solution obtained by mixing 70 parts of ammonium group-containing acrylic resin 1 and 250 parts of deionized water were added. An α, β-ethylenically unsaturated monomer mixture consisting of 30 parts of neopentyl glycol dimethacrylate was added, and the resulting pre-emulsion was added dropwise over 40 minutes with stirring. After aging for 60 minutes, the mixture was cooled to obtain an aqueous dispersion of crosslinked resin particles 1. The aqueous dispersion of the obtained crosslinked resin particles 1 had a nonvolatile content of 35%, a pH of 5.0, and a volume average particle size of 100 nm. Xylene was added thereto, and the solvent was replaced with xylene from water while azeotroping with an evaporator to obtain a xylene dispersion of crosslinked resin particles 1.
[0038]
Production Example 8 20 parts of the acrylic resin 2 having an ammonium group produced in Production Example 5 and 300 parts of deionized water were added to a reaction vessel for producing crosslinked resin particles 2 and heated and stirred at 75 ° C. To this, 1 part of 2,2'-azobis (2- (2-imidazolin-2-yl) propane)) was added dropwise over 5 minutes. After aging for 5 minutes, 25 parts of methyl methacrylate was added dropwise over 5 minutes. After further aging for 5 minutes, 140 parts of methyl methacrylate, 30 parts of styrene, 25 parts of n-butyl methacrylate, 5 parts of glycidyl methacrylate and 5 parts of a solution obtained by mixing 55 parts of an ammonium group-containing acrylic resin 2 and 270 parts of deionized water were added. A pre-emulsion obtained by adding an α, β-ethylenically unsaturated monomer mixture consisting of 25 parts of neopentyl glycol dimethacrylate and stirring was added dropwise over 40 minutes. After aging for 60 minutes, the mixture was cooled to obtain an aqueous dispersion of crosslinked resin particles 2. The obtained aqueous dispersion of crosslinked resin particles 2 had a nonvolatile content of 30%, a pH of 5.5, and a volume average particle size of 100 nm. Xylene was added thereto, and the solvent was replaced with xylene from water while azeotroping with an evaporator to obtain a xylene dispersion of crosslinked resin particles 2.
[0039]
Production Example 9 Production of Crosslinked Resin Particle Solution 3 In Production Example 8, except that the same amount of ammonium group-containing acrylic resin 3 was used instead of ammonium group-containing acrylic resin 2 used as an emulsifier, the same procedure was followed. Was obtained. The aqueous dispersion of the obtained crosslinked resin particles 3 had a nonvolatile content of 30%, a pH of 5.5, and a volume average particle size of 90 nm. Xylene was added thereto, and the solvent was replaced with xylene from water while azeotroping with an evaporator to obtain a xylene dispersion of crosslinked resin particles 3.
[0040]
Production Example 10 Production of Crosslinked Resin Particle Solution 4 In Production Example 8, except that the amount of neopentyl glycol dimethacrylate in the α, β-ethylenically unsaturated monomer mixture was changed from 25 parts to 40 parts, the same procedure was followed. An aqueous dispersion of the crosslinked resin particles 4 was obtained. The aqueous dispersion of the obtained crosslinked resin particles 4 had a nonvolatile content of 30%, a pH of 5.0, and a volume average particle size of 150 nm. Xylene was added thereto, and the solvent was replaced with xylene from water while azeotroping with an evaporator to obtain a xylene dispersion of crosslinked resin particles 4.
[0041]
Production Example 11 Production of Crosslinked Resin Particles Using Emulsifier Other than Acrylic Resin Having Ammonium Group To a reaction vessel, 7 parts of hexadecyltrimethylammonium chloride was added as an emulsifier, dissolved in 300 parts of deionized water, and heated at 75 ° C. Stirred. To this, a 100% neutralized acetic acid aqueous solution of 1 part of 2,2'-azobis (2- (2-imidazolin-2-yl) propane) was added dropwise over 5 minutes. After aging for 5 minutes, 10 parts of methyl methacrylate was added dropwise over 5 minutes. After aging for another 5 minutes, 140 parts of methyl methacrylate, 30 parts of styrene, 25 parts of n-butyl methacrylate, 5 parts of glycidyl methacrylate and 5 parts of neopentyl glycol were added to a solution obtained by mixing 22 parts of hexadecyltrimethylammonium chloride and 270 parts of deionized water. An α, β-ethylenically unsaturated monomer mixture comprising 25 parts of dimethacrylate was added, and the resulting pre-emulsion was added dropwise over 40 minutes with stirring. After aging for 60 minutes, the mixture was cooled to obtain an aqueous dispersion of crosslinked resin particles having a nonvolatile content of 30%, a pH of 5.2 and a volume average particle size of 120 nm. Xylene was added thereto, and the solvent was replaced with xylene from water while azeotroping with an evaporator to obtain a xylene dispersion of crosslinked resin particles 5.
[0042]
Production Example 12 Production of Non-Cross-Linked Resin Particles In a reaction vessel, 20 parts of the acrylic resin 1 having an ammonium group produced in Production Example 4 and 300 parts of deionized water were added, and heated and stirred at 75 ° C. To this, a 100% neutralized acetic acid aqueous solution of 1 part of 2,2'-azobis (2- (2-imidazolin-2-yl) propane) was added dropwise over 5 minutes. After aging for 5 minutes, 10 parts of methyl methacrylate was added dropwise over 5 minutes. After further aging for 5 minutes, an aqueous solution of 155 parts of an acrylic resin having an ammonium group, 270 parts of deionized water, 140 parts of methyl methacrylate, 30 parts of styrene, 25 parts of n-butyl methacrylate, and 5 parts of glycidyl methacrylate, poly ( A pre-emulsion obtained by adding an α, β-ethylenically unsaturated monomer mixture containing no meth) acrylate and stirring was added dropwise over 40 minutes. After aging for 60 minutes, the mixture was cooled to obtain an aqueous dispersion of non-crosslinked resin particles. The aqueous dispersion of the obtained non-crosslinked resin particles had a nonvolatile content of 32.8%, a pH of 5.0, and a volume average particle size of 106 nm. Xylene was added thereto, and the solvent was replaced with xylene from water while azeotroping with an evaporator to obtain a xylene dispersion of non-crosslinked resin particles.
[0043]
Production Example 13 Production of Insulating Coating Composition Based on NEOHEAT A1 (polyamide imide resin-based coating made by Toku Paint Co., Ltd., coating resin solid content: 40% by mass), the content was 20% by mass with respect to the resin solid content in the coating material. Then, a xylene dispersion of the crosslinked resin particles 1 obtained in Production Example 7 was added thereto, and the mixture was stirred for 1 hour with a mixer, and then xylene was added so that the solid content concentration became 15% by mass to obtain an insulating coating composition. .
[0044]
Production Examples 14 to 17 Production of Insulating Coating Composition In place of the xylene dispersion of crosslinked resin particles 1 obtained in Production Example 7, xylene dispersions of crosslinked resin particles 2 to 5 obtained in Production Examples 8 to 11, respectively. Except having changed it, it carried out similarly to manufacture example 13, and obtained the insulating coating composition.
[0045]
Production Example 18 Same as Production Example 13 except that the xylene dispersion of non-crosslinked resin particles obtained in Production Example 12 was used instead of the xylene dispersion of crosslinked resin particles 1 obtained in Paint Composition Production Example 7. Thus, a coating composition was obtained.
[0046]
Examples 1 to 5
The insulating coating composition obtained in Production Examples 13 to 17 is applied to a copper square wire having an edge portion (a cross section of 0.3 mm × 0.3 mm square, curvature 10%). After that, it was heated at 190 ° C. for 8 minutes. The cycle of application of the insulating coating composition and heat curing was repeated 10 times to form an insulating film, and insulated wires 1 to 5 were obtained.
[0047]
Comparative Example 1
An insulated wire was obtained in the same manner as in Example 1, except that NEOHEAT AI was used as the insulating coating composition.
[0048]
Comparative Example 2
An insulated wire was obtained in the same manner as in Example 1, except that the coating composition obtained in Production Example 18 was used as the insulating coating composition.
[Evaluation]
The dielectric breakdown voltage of the insulated wires obtained in Examples 1 to 5 and Comparative Examples 1 and 2 was measured using a withstand voltage insulation tester MODEL8525 (manufactured by Tsuruga Electric Co., Ltd.) in accordance with JIS C 3003 Metal Foil Method. evaluated. The results are shown in Table 1.
[0049]
[Table 1]
Figure 2004339251
[0050]
From Table 1, the insulated wires obtained in the examples had higher breakdown voltage than those obtained in the comparative example.
[0051]
【The invention's effect】
Since the insulating coating composition of the present invention has the above-described configuration, an insulating film having a high dielectric breakdown voltage can be obtained. The insulating coating composition is suitably used for coating an electric wire having an edge portion such as a square wire or a square wire, and an insulated wire having a high dielectric breakdown voltage can be obtained. Further, since the space factor of the insulated wire is high, the performance can be improved as compared with the case where the insulated wire is coated with an insulating paint containing no crosslinked resin particles, and is preferably used as, for example, a magnet wire. Can be. Therefore, the insulated wire obtained by using the insulating coating composition of the present invention has a high dielectric breakdown voltage and can be suitably used for various applications.
[Brief description of the drawings]
FIG. 1 is an example of a schematic view of an insulated wire coated with the insulating coating composition of the present invention.
FIG. 2 is an example of a schematic view of an insulated wire obtained when no crosslinked resin particles are used.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Square wire 2 Insulation coating 3 Insulated wire 4 Edge part 5 Insulated wire

Claims (4)

架橋樹脂粒子、並びに、ポリビニルホルマール樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ポリイミド樹脂及びポリエステルイミド樹脂からなる群から選択される少なくとも一種の絶縁性樹脂からなることを特徴とする絶縁塗料組成物。An insulating coating composition comprising cross-linked resin particles and at least one insulating resin selected from the group consisting of polyvinyl formal resin, polyamide imide resin, polyamide resin, polyimide resin and polyester imide resin. 架橋樹脂粒子の含有量は、塗料樹脂固形分に対して0.5〜40質量%である請求項1記載の絶縁塗料組成物。The insulating coating composition according to claim 1, wherein the content of the crosslinked resin particles is 0.5 to 40% by mass based on the solid content of the coating resin. 請求項1又は2記載の絶縁塗料組成物により塗装されることを特徴とするエッジ部を有する絶縁電線。An insulated wire having an edge portion, which is coated with the insulating coating composition according to claim 1. 被塗物は、四角線又は真四角線の電線である請求項3記載のエッジ部を有する絶縁電線。The insulated wire having an edge according to claim 3, wherein the object to be coated is a square wire or a square wire.
JP2003133714A 2003-05-12 2003-05-12 Insulating coating material composition and insulated wire Pending JP2004339251A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003133714A JP2004339251A (en) 2003-05-12 2003-05-12 Insulating coating material composition and insulated wire
TW093113124A TW200506018A (en) 2003-05-12 2004-05-11 Insulating coating composition and insulated wire
PCT/JP2004/006676 WO2004099325A1 (en) 2003-05-12 2004-05-12 Insulating coating composition and insulated wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003133714A JP2004339251A (en) 2003-05-12 2003-05-12 Insulating coating material composition and insulated wire

Publications (1)

Publication Number Publication Date
JP2004339251A true JP2004339251A (en) 2004-12-02

Family

ID=33432201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003133714A Pending JP2004339251A (en) 2003-05-12 2003-05-12 Insulating coating material composition and insulated wire

Country Status (3)

Country Link
JP (1) JP2004339251A (en)
TW (1) TW200506018A (en)
WO (1) WO2004099325A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008277045A (en) * 2007-04-26 2008-11-13 Auto Network Gijutsu Kenkyusho:Kk Insulation wire and wire harness
JP2011219754A (en) * 2010-03-25 2011-11-04 Kajima Corp Radiation paint composition, radiation coating material and method of manufacturing radiation coating material
JP2013082760A (en) * 2011-10-06 2013-05-09 Sumitomo Electric Ind Ltd Insulating varnish and insulated wire using the same
US8802231B2 (en) 2011-03-22 2014-08-12 Hitachi Metals, Ltd. Insulating coating material and insulated wire using the same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008308623A (en) * 2007-06-15 2008-12-25 Basf Coatings Japan Ltd Primer composition
JP2009001623A (en) * 2007-06-19 2009-01-08 Basf Coatings Japan Ltd Primer composition
JP2009001648A (en) * 2007-06-20 2009-01-08 Basf Coatings Japan Ltd Primer composition
JP2009001723A (en) * 2007-06-22 2009-01-08 Basf Coatings Japan Ltd Primer composition
CN102002317A (en) * 2009-08-31 2011-04-06 日立卷线株式会社 Polyamide-imide resin based insulating varnish and insulated wire covered with same
CN103725156A (en) * 2013-11-25 2014-04-16 铜陵天河特种电磁线有限公司 Nylon modified wire enamel and preparation method thereof
CN103725152A (en) * 2013-11-25 2014-04-16 铜陵天河特种电磁线有限公司 Nylon-epoxy composite wire enamel and preparation method thereof
CN105062253A (en) * 2015-09-07 2015-11-18 王璐 Paint for aluminum alloy sections
JP7312931B2 (en) * 2016-09-28 2023-07-24 東特塗料株式会社 electric insulated wire

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61151279A (en) * 1984-12-25 1986-07-09 Fujikura Ltd Self-fusible insulated wire
JPH05298934A (en) * 1992-04-22 1993-11-12 Fujikura Ltd Insulated wire
JP2002285077A (en) * 2001-03-27 2002-10-03 Nippon Paint Co Ltd Electrodeposition coating composition for edge-provided electric wire

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008277045A (en) * 2007-04-26 2008-11-13 Auto Network Gijutsu Kenkyusho:Kk Insulation wire and wire harness
JP2011219754A (en) * 2010-03-25 2011-11-04 Kajima Corp Radiation paint composition, radiation coating material and method of manufacturing radiation coating material
US8802231B2 (en) 2011-03-22 2014-08-12 Hitachi Metals, Ltd. Insulating coating material and insulated wire using the same
JP2013082760A (en) * 2011-10-06 2013-05-09 Sumitomo Electric Ind Ltd Insulating varnish and insulated wire using the same

Also Published As

Publication number Publication date
TW200506018A (en) 2005-02-16
WO2004099325A1 (en) 2004-11-18

Similar Documents

Publication Publication Date Title
JP2004339251A (en) Insulating coating material composition and insulated wire
JP2001240791A (en) Method for forming composite coating film
JP5048337B2 (en) Water-based colored paint, hydrophobic melamine resin aqueous dispersion and method for producing the same, water-based paint composition, and multilayer coating film forming method
US5643977A (en) Room-temperature curable waterbased coating compositions
TWI289686B (en) Composition for light-reflecting film and light-reflecting film using the same
JP2005120365A (en) Manufacturing method of polymer-coated particle
JP2007254558A (en) Colored microparticle and method for producing the same
JP6325111B2 (en) Pigment paste and method for producing aqueous electrodeposition material, method for using them, method for electrophoretic electrodeposition, and coated article
JP2004307722A (en) Emulsion-type electrically conductive polymer composition and manufacturing method thereof
TW201033230A (en) Process for producing polymer microparticles
JP6723379B2 (en) Emulsion
JP4757189B2 (en) Method of painting a square wire and insulated wire of a square wire
JP2000173816A (en) Surface covered electromagnetic steel sheet for sticking and its manufacture
JP2001294630A (en) Aqueous resin and method for producing the same
JP2003171579A (en) Heat polymerizing acrylic coating, precoated metal plate coated with it and manufacturing method of pre-coated metal plate
JPH10130338A (en) Acrylic resin for coating material and its production
JP4238061B2 (en) Method for coating electric wire having edge and insulated wire
JP3997493B2 (en) Room temperature curable one-part aqueous coating composition
JP2004342329A (en) Coating method of electric wire having edge part, and insulated wire
JP2002285077A (en) Electrodeposition coating composition for edge-provided electric wire
JP4513359B2 (en) Cross-linked fine particles
JP2722700B2 (en) Method for producing polymer particles
JP2003286434A (en) Water-based coating composition and method for forming multilayer coating film
TWI668238B (en) Method of fabricating cross-linked polymer microparticles using low quantity of surfactant
JP2002298674A (en) Manufacturing method of insulation wire and insulation wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060306

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080422

A131 Notification of reasons for refusal

Effective date: 20090512

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091013