JP2004339246A - Ultraviolet curing type epoxy resin composition - Google Patents

Ultraviolet curing type epoxy resin composition Download PDF

Info

Publication number
JP2004339246A
JP2004339246A JP2003088184A JP2003088184A JP2004339246A JP 2004339246 A JP2004339246 A JP 2004339246A JP 2003088184 A JP2003088184 A JP 2003088184A JP 2003088184 A JP2003088184 A JP 2003088184A JP 2004339246 A JP2004339246 A JP 2004339246A
Authority
JP
Japan
Prior art keywords
epoxy resin
represented
general formula
formula
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003088184A
Other languages
Japanese (ja)
Other versions
JP4426198B2 (en
Inventor
Hideyuki Usui
英之 薄井
Takashi Fukushima
喬 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2003088184A priority Critical patent/JP4426198B2/en
Publication of JP2004339246A publication Critical patent/JP2004339246A/en
Application granted granted Critical
Publication of JP4426198B2 publication Critical patent/JP4426198B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultraviolet curing type epoxy resin composition which is the ultraviolet curing type useful in optical applications with extremely slight generation of vaporized gas, further useful as an ultraviolet curing type adhesive for optical part materials such as an array waveguide or a lens and for fixing optical parts without requiring a treatment at high temperatures and having transparency for optical signals. <P>SOLUTION: The ultraviolet curing type epoxy resin composition comprises the following (A) and (B). (A) is an epoxy resin containing at least one of a straight-chain type aliphatic epoxy resin represented by general formula (1) and a straight-chain type fluorinated epoxy resin represented by general formula (2) with the content of the epoxy resin set at 40-90 wt.% based on the whole epoxy resin component. (B) is a photopolymerization initiator. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、光通信分野で使用される光学部品や光学部品組み立て用に使用される透明樹脂において、光信号を低損失で通す透明性と優れた接着力を有し、他の部品を汚染するアウトガス(高温条件下で揮発するガス)の発生が低い紫外線硬化型の透明エポキシ樹脂組成物に関するものであり、特に、レンズの固定、光デバイスパッケージのシールやV溝基板への光ファイバーの固定、光導波路(Alley Wave Guide:AWG)やレンズ等の光学部品材料として好適な紫外線硬化型エポキシ樹脂組成物に関するものである。
【0002】
【従来の技術】
近年、精密な光ファイバーコネクタ部品の組立においては、接着剤を使用する方法が用いられるようになってきた。この組立の際には、接着剤に関して、短時間硬化とともに、石英ガラスや光ファイバーに対する優れた接着性、さらに長期信頼性の観点から高温高湿環境下に置かれても優れた接着性を保持することが要望されていた。また、位置決めのためのアライメントマークやファイバーの視認性から透明なものが使用されており、加えて光学部品が熱応力を嫌うため、紫外線硬化等の光硬化型接着剤が多く用いられている。また、従来、光導波路は、石英等のガラスが主流であったが、近年、高分子製導波路の開発が進んでおり、例えば、アクリレート、エポキシ樹脂、ポリイミドやポリシラン等の様々な材料での研究が進められている。
【0003】
このような用途に有機材料を用いる場合、樹脂成分から揮発してくるアウトガスの問題がある。例えば、上記エポキシ樹脂やアクリレート等では、一般に高温に曝されると低分子量成分の揮発や分解等が生起し、その結果、アウトガスを発生するという問題がある。これらの揮発成分が光信号の通過する部分に配置されているレンズやフォトダイオード、レーザーダイオード等の光部品、光デバイス表面に付着すると、信号を低下させる原因となり問題とされている。
【0004】
一方、上記ポリイミドやポリシラン等は、アウトガスの発生は少ないがキュア温度が300℃以上と高く、光デバイスや光部品自体を傷めてしまうことになり実用的ではなかった。
【0005】
ところで、光学用途にマイクロレンズが広く用いられているが、コストや量産性の点から、マイクロレンズを樹脂で作製する例が増加している。このような樹脂製のマイクロレンズは、従来公知の成形方法により作製されていたが、近年、インクジェット法による成形方法が提案されている(特許文献1および特許文献2参照)。
【0006】
【特許文献1】
特開2000−180605号公報
【特許文献2】
特開2002−331532号公報
【0007】
【発明が解決しようとする課題】
このようなインクジェット法によりピコリットルレベルの微少量の液滴を射出するためには、非常に低い粘度であることが要求されるが、低粘度を達成するために希釈剤等を添加して粘度を下げると、多量のアウトガスを発生し易くなるという問題があった。
【0008】
本発明は、このような事情に鑑みなされたもので、アウトガスの発生が非常に少ない光学用の、さらには、光導波路やレンズ等の光学部品材料および光部品固定用紫外線硬化型接着剤として有用な紫外線硬化型で、高温での処理を必要としない、しかも光信号に対して透明性を備えた紫外線硬化型エポキシ樹脂組成物の提供をその目的とする。
【0009】
【課題を解決するための手段】
上記の目的を達成するため、本発明の紫外線硬化型エポキシ樹脂組成物は、下記の(A)および(B)を含有するという構成をとる。
(A)下記の一般式(1)で表される直鎖型脂肪族エポキシ樹脂および下記の一般式(2)で表される直鎖型フッ素化エポキシ樹脂の少なくとも一方を含有し、かつ下記の一般式(1)で表される直鎖型脂肪族エポキシ樹脂および下記の一般式(2)で表される直鎖型フッ素化エポキシ樹脂の少なくとも一方の含有量が、エポキシ樹脂成分全体中の40〜90重量%の範囲に設定されているエポキシ樹脂。
【化5】

Figure 2004339246
【化6】
Figure 2004339246
(B)光重合開始剤。
【0010】
すなわち、本発明者らは、アウトガス発生の低減化が図られ、硬化後に高い透明性を備えた紫外線硬化型のエポキシ樹脂組成物を得るために鋭意検討を重ねた。その過程で、光カチオン重合の場合、ジグリシジルエーテル型エポキシ樹脂は高温雰囲気下においてアウトガスを多量に発生するという知見を得た。この知見に基づきさらに研究を重ねた結果、エーテル結合を持たないエポキシ樹脂を用いると、アウトガスの発生が大きく低減されることを突き止め、上記一般式(1)で表される直鎖型脂肪族エポキシ樹脂および上記一般式(2)で表される直鎖型フッ素化エポキシ樹脂の少なくとも一方を用い、しかもその含有量をエポキシ樹脂成分全体中の40〜90重量%の範囲に設定すると、所期の目的が達成されることを見出し本発明に到達した。
【0011】
【発明の実施の形態】
つぎに、本発明の実施の形態について詳しく説明する。
【0012】
本発明の紫外線硬化型エポキシ樹脂組成物は、特殊な直鎖型脂肪族エポキシ樹脂および特殊な直鎖型フッ素化エポキシ樹脂の少なくとも一方を含有するエポキシ樹脂(A)と、光重合開始剤(B)とを用いることにより得られる。
【0013】
上記特殊な直鎖型脂肪族エポキシ樹脂は、下記の一般式(1)で表されるものである。この式(1)で表される特殊な直鎖型脂肪族エポキシ樹脂は、例えば、つぎのようにして製造される。すなわち、両末端にビニル基を有する所望の化合物を酸化することによって得ることができる。上記酸化反応は、過安息香酸等の有機過酸化物による直接酸化や、ヘテロポリ酸を触媒とした過酸化水素や気体酸素による酸化で行うこともできる。
【0014】
【化7】
Figure 2004339246
【0015】
また、上記特殊な直鎖型フッ素化エポキシ樹脂は、下記の一般式(2)で表されるものである。この式(2)で表される特殊な直鎖型フッ素化エポキシ樹脂は、例えば、上記と同様、両末端にビニル基を有する所望の化合物を酸化することによって得ることができる。上記酸化反応は、過安息香酸等の有機過酸化物による直接酸化や、ヘテロポリ酸を触媒とした過酸化水素や気体酸素による酸化で行うこともできる。
【0016】
【化8】
Figure 2004339246
【0017】
上記式(1)で表される直鎖型脂肪族エポキシ樹脂および式(2)で表される直鎖型フッ素化エポキシ樹脂の少なくとも一方の含有量は、エポキシ樹脂(A)全体中40〜90重量%を占めるように設定する必要がある。より好ましくは50〜70重量%である。すなわち、40重量%未満では、アウトガスの発生量が増加し、逆に90重量%を超えると、硬化性が悪くなり作業性が低下するからである。
【0018】
そして、上記式(1)で表される直鎖型脂肪族エポキシ樹脂および式(2)で表される直鎖型フッ素化エポキシ樹脂の使用に際しては、式(1)で表される直鎖型脂肪族エポキシ樹脂のみの使用であっても、あるいは式(2)で表される直鎖型フッ素化エポキシ樹脂のみの使用であっても、さらに両者を併用する場合であってもその併用割合に関係なくアウトガス発生の低減化が実現する。
【0019】
さらに、エポキシ樹脂(A)には、上記式(1)で表される直鎖型脂肪族エポキシ樹脂および式(2)で表される直鎖型フッ素化エポキシ樹脂の少なくとも一方以外に他のエポキシ樹脂が用いられる。他のエポキシ樹脂としては、例えば、下記の式(3)で表されるアリルエポキシ樹脂、下記の式(4)で表されるナフタレンエポキシ樹脂があげられる。このように、式(3)で表されるアリルエポキシ樹脂や式(4)で表されるナフタレンエポキシ樹脂を併用することにより、より一層アウトガス発生量の低減と反応性の向上を付与する効果が得られる。
【0020】
【化9】
Figure 2004339246
【0021】
【化10】
Figure 2004339246
【0022】
なお、上記式(3)で表されるアリルエポキシ樹脂および式(4)で表されるナフタレンエポキシ樹脂は、黄色の半固体状を示すエポキシ樹脂であり、多量に添加すると透過率の低下と粘度の上昇につながる傾向がみられるため、その使用量を、エポキシ樹脂(A)全体の60重量%以下に設定することが好ましい。より好ましくは40重量%以下である。
【0023】
さらに、エポキシ樹脂(A)には、上記各エポキシ樹脂とともに脂環式エポキシ樹脂を併用することができる。上記脂環式エポキシ樹脂を併用することにより、硬化性の向上が図られる。そして、上記脂環式エポキシ樹脂としては、特に限定するものではないが、反応性が高く透明なものを用いることが好ましい。具体的には、3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキサンカルボキシレート、3,4−エポキシシクロヘキシルエチル−3,4−エポキシシクロヘキサンカルボキシレート等が、透明性,高粘性、反応性の観点から好ましい。これらは単独でもしくは2種以上併せて用いられる。そして、上記脂環式エポキシ樹脂の使用量は、エポキシ樹脂(A)全体の60重量%以下に設定することが好ましい。より好ましくは40重量%以下である。
【0024】
本発明において、エポキシ樹脂(A)としては、上記式(1)で表される直鎖型脂肪族エポキシ樹脂および式(2)で表される直鎖型フッ素化エポキシ樹脂の少なくとも一方を必須成分とし、これに先に述べた各エポキシ樹脂である、式(3)で表されるアリルエポキシ樹脂、式(4)で表されるナフタレンエポキシ樹脂、脂環式エポキシ樹脂を併用したエポキシ樹脂系で構成されていてもよいが、さらに従来公知のエポキシ樹脂を用いてもよい。具体的には、汎用のビスフェノール型エポキシ樹脂、水添ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂、グリシジルエーテル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂等を用いることができる。
【0025】
上記エポキシ樹脂(A)とともに用いられる光重合開始剤(B)としては、特に限定するものではなく、芳香族ジアゾニウム塩、芳香族スルホニウム塩、芳香族ヨードニウム塩、芳香族スルホキソニウム塩、メタロセン化合物あるいは鉄アレーン系化合物等を用いることができる。その中でも、光硬化性の観点から、芳香族スルホニウム塩が好ましく、特に芳香族スルホニウム・ヘキサフロロホスホニウム化合物、芳香族スルホニウム・ヘキサフロロアンチモネート化合物、またはその両者の併用が、硬化性、接着性、アウトガスの観点から好ましい。さらに、上記光重合開始剤(B)とともに、光増感剤や酸増殖剤等も必要に応じて添加することができる。
【0026】
上記光重合開始剤(B)の含有量は、上記エポキシ樹脂(A)100重量部(以下「部」と略す)に対して1〜15部に設定することが好ましく、特に好ましくは2〜10部である。
【0027】
また、本発明の紫外線硬化型エポキシ樹脂組成物には、上記各成分以外に、接着性を高めるためにシラン系あるいはチタン系のカップリング剤、合成ゴムやシリコーン化合物等の可撓性付与剤等の化合物、さらに酸化防止剤、消泡剤等の他の添加剤を必要に応じて適宜に配合することができる。
【0028】
本発明の紫外線硬化型エポキシ樹脂組成物は、例えば、前記一般式(1)で表される特殊な直鎖型脂肪族エポキシ樹脂および一般式(2)で表される特殊な直鎖型フッ素化エポキシ樹脂の少なくとも一方を含有するエポキシ樹脂(A)と、光重合開始剤(B)、さらに必要に応じて他の添加剤を所定の割合で配合し混合することにより作製することができる。
【0029】
このようにして得られた紫外線硬化型エポキシ樹脂組成物は、例えば、UVランプ等により紫外線を照射した後、所定の温度でのポストキュアを行うことにより硬化させることができる。
【0030】
つぎに、実施例について比較例と併せて説明する。
【0031】
まず、下記に示す各成分を準備した。
【0032】
〔エポキシ樹脂1〕
前記一般式(1)で表される直鎖型脂肪族エポキシ樹脂〔式(1)中、n=4〕
【0033】
〔エポキシ樹脂2〕
前記一般式(1)で表される直鎖型脂肪族エポキシ樹脂〔式(1)中、n=10〕
【0034】
〔エポキシ樹脂3〕
前記一般式(2)で表される直鎖型フッ素化エポキシ樹脂〔式(2)中、n=4〕
【0035】
〔エポキシ樹脂4〕
前記式(3)で表されるアリル基含有エポキシ樹脂
【0036】
〔エポキシ樹脂5〕
前記式(4)で表されるナフタレンエポキシ樹脂
【0037】
〔エポキシ樹脂6〕
下記の式(a)で表されるジグリシジルエーテル型の直鎖エポキシ樹脂(JER社製、YED−216D)
【化11】
Figure 2004339246
【0038】
〔エポキシ樹脂7〕
下記の式(b)で表されるビスフェノールA型エポキシ樹脂(JER社製、エピコート825)
【化12】
Figure 2004339246
【0039】
〔脂環式エポキシ樹脂〕
下記の式(c)で表される脂環式エポキシ樹脂(ダイセル化学社製、セロキサイド2021P)
【化13】
Figure 2004339246
【0040】
〔光重合開始剤〕
スルホニウム・ヘキサフロロアンチモン系重合開始剤(旭電化社製、SP−170)
【0041】
〔酸化防止剤〕
HCA(三光化学社製)
【0042】
〔消泡剤〕
KS−68(信越シリコーン社製)
【0043】
〔カップリング剤〕
γ−グリシドキシプロピルトリメトキシシラン
【0044】
【実施例1〜23、比較例1〜6】
下記の表1〜表6に示す各成分を、同表に示す割合で配合し混合することにより紫外線硬化型エポキシ樹脂組成物を作製した。
【0045】
【表1】
Figure 2004339246
【0046】
【表2】
Figure 2004339246
【0047】
【表3】
Figure 2004339246
【0048】
【表4】
Figure 2004339246
【0049】
【表5】
Figure 2004339246
【0050】
【表6】
Figure 2004339246
【0051】
このようにして得られた実施例および比較例の各紫外線硬化型エポキシ樹脂組成物を用いて、25℃でのエポキシ樹脂組成物の粘度、アウトガス量、光透過率、硬化後の初期接着強度・耐湿接着強度を下記の方法に従って測定・評価した。
これらの結果を後記の表7〜表12に併せて示す。
【0052】
〔エポキシ樹脂組成物の粘度〕
E型粘度計を用いて25℃での粘度を測定した。
【0053】
〔アウトガス量〕
500WのUVランプ(高圧水銀ランプ)を用いて60秒間光照射した後、100℃で1時間のポストキュアを行うことにより、厚み100μmのフィルムを作製した。そして、このフィルムの初期重量を測定した後、125℃の乾燥機に入れ、24時間放置した後取り出してその重量を測定した。これら重量変化(重量減少率)から、125℃におけるアウトガス量を算出した。
【0054】
〔光透過率〕
厚み100μmのフィルムを作製し(硬化条件は上記と同様)、分光光度計(UV−3101PC、島津製作所社製)を用いて、波長1300nmの光透過率を25℃で測定した。
【0055】
〔初期接着強度・耐湿接着強度〕
まず、柱状の石英ガラス板(縦3.3mm×横3.3mm×厚み5mm)に、紫外線硬化型エポキシ樹脂組成物を接着剤として塗布した後、石英ガラス板(縦20mm×横35mm×厚み2mm)に圧着して貼り合わせ、つぎの硬化条件で接着剤を硬化させることにより接着片を作製した。すなわち、硬化は、500WのUVランプ(高圧水銀ランプ)を用いて60秒間光照射した後、100℃で1時間のポストキュアを行うことにより硬化させた。
【0056】
そして、初期接着強度は、上記接着片を用い、25℃にてプッシュプルゲージを用いて、剪断の接着強度を測定した。
【0057】
また、耐湿接着強度は、上記接着片を、PCT条件下(121℃×202.6kPa)に24時間放置して吸湿させた後、25℃にてプッシュプルゲージを用いて、剪断の接着強度を測定した。
【0058】
【表7】
Figure 2004339246
【0059】
【表8】
Figure 2004339246
【0060】
【表9】
Figure 2004339246
【0061】
【表10】
Figure 2004339246
【0062】
【表11】
Figure 2004339246
【0063】
【表12】
Figure 2004339246
【0064】
上記結果から、実施例品は、可視光領域である1300nmにおいて光透過率が全て90%以上と高く透明性に優れていることがわかる。また、初期接着強度および耐湿接着強度とも高い数値が得られた。しかもアウトガス量も全て0.5重量%未満と少なかった。
【0065】
これに対して、一般式(1)および一般式(2)で表される各エポキシ樹脂の含有量がエポキシ樹脂成分全体の90重量%を超える比較例1,3品では、未硬化状態となり測定不可能であった。また、一般式(1)および一般式(2)で表される各エポキシ樹脂の含有量がエポキシ樹脂成分全体の40重量%未満の比較例2品では、実施例品よりもアウトガス量が多く、かつ光透過率の低下と粘度の上昇がみられた。そして、ジグリシジルエーテル型の直鎖エポキシ樹脂やビスフェノールA型エポキシ樹脂を用いた比較例4〜6品は、透明性に劣り、しかも、アウトガス量が高く、かつ耐湿接着強度も低いものであった。
【0066】
【発明の効果】
以上のように、本発明は、前記一般式(1)で表される直鎖型脂肪族エポキシ樹脂および前記一般式(2)で表される直鎖型フッ素化エポキシ樹脂の少なくとも一方を含有し、かつ一般式(1)で表される直鎖型脂肪族エポキシ樹脂および一般式(2)で表される直鎖型フッ素化エポキシ樹脂の少なくとも一方の含有量が、エポキシ樹脂成分全体中の40〜90重量%の範囲に設定されているエポキシ樹脂(A)を用いた紫外線硬化型エポキシ樹脂組成物である。このため、適度な透明性を有し、かつ初期および吸湿後の耐湿接着強度も高く優れた実用性を備えている。しかも、その硬化物は、高温条件下でのアウトガスの発生量が抑制されることとなる。したがって、光通信系における光導波路やVグルーヴ等の精密光部品の接着およびファイバーアレイの接着用途、また光導波路やマイクロレンズ等の光学部品材料の用途として用いると、他の光学素子や電子デバイス、光学部品等を汚染することなく、良好な光学系を得ることができる。
【0067】
そして、上記(A)であるエポキシ樹脂中に、さらに前記式(3)で表されるアリルエポキシ樹脂を含有すると、より一層アウトガス発生の低減が図られ、また反応性の向上が図られる。
【0068】
また、上記(A)であるエポキシ樹脂中に、さらに前記式(4)で表されるナフタレンエポキシ樹脂を含有すると、上記式(3)で表されるアリルエポキシ樹脂と同様、より一層アウトガス発生の低減が図られ、また反応性の向上が図られる。
【0069】
さらに、上記(A)であるエポキシ樹脂中に、脂環式エポキシ樹脂を含有すると、良好な硬化性の向上効果が得られる。[0001]
BACKGROUND OF THE INVENTION
The present invention is an optical component used in the field of optical communication and a transparent resin used for assembling an optical component, which has transparency and excellent adhesive strength to pass optical signals with low loss, and contaminates other components. The present invention relates to a UV-curable transparent epoxy resin composition that generates low outgas (gas that volatilizes under high temperature conditions), and in particular, fixing lenses, sealing optical device packages, fixing optical fibers to V-groove substrates, and light The present invention relates to an ultraviolet curable epoxy resin composition suitable as an optical component material such as a waveguide (AWG) or a lens.
[0002]
[Prior art]
In recent years, a method using an adhesive has been used in the assembly of precision optical fiber connector parts. At the time of this assembly, the adhesive retains excellent adhesion to quartz glass and optical fiber as well as high-temperature and high-humidity environment from the viewpoint of long-term reliability, as well as short-time curing. It was requested. Moreover, since the alignment mark for positioning and the visibility of the fiber are used, and optical components are disliked by thermal stress, photo-curing adhesives such as ultraviolet curing are often used. Conventionally, glass such as quartz has been the mainstream for optical waveguides, but in recent years, development of polymer waveguides has been progressing, and for example, various materials such as acrylates, epoxy resins, polyimides, and polysilanes are used. Research is ongoing.
[0003]
When an organic material is used for such an application, there is a problem of outgas that volatilizes from the resin component. For example, the above epoxy resins and acrylates generally have a problem that when exposed to high temperatures, low molecular weight components volatilize or decompose, resulting in outgassing. When these volatile components adhere to the surface of an optical component such as a lens, a photodiode, or a laser diode, or an optical device disposed in a portion through which an optical signal passes, it is a problem that causes the signal to decrease.
[0004]
On the other hand, the polyimide, polysilane and the like are not practical because they generate less outgas but have a high curing temperature of 300 ° C. or higher, which damages optical devices and optical components themselves.
[0005]
By the way, although microlenses are widely used for optical applications, examples of producing microlenses with resin are increasing from the viewpoint of cost and mass productivity. Such a resin microlens has been produced by a conventionally known molding method, but in recent years, a molding method by an inkjet method has been proposed (see Patent Document 1 and Patent Document 2).
[0006]
[Patent Document 1]
JP 2000-180605 A [Patent Document 2]
JP 2002-331532 A
[Problems to be solved by the invention]
In order to eject a small amount of droplets of picoliter level by such an ink jet method, it is required to have a very low viscosity, but in order to achieve a low viscosity, the viscosity is increased by adding a diluent or the like. When the value is lowered, there is a problem that a large amount of outgas is easily generated.
[0008]
The present invention has been made in view of such circumstances, and is useful as an optical component that generates very little outgas. Further, it is useful as an optical component material such as an optical waveguide and a lens, and an ultraviolet curable adhesive for fixing an optical component. It is an object of the present invention to provide an ultraviolet curable epoxy resin composition that is an ultraviolet curable type that does not require high-temperature treatment and that is transparent to optical signals.
[0009]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the ultraviolet curable epoxy resin composition of the present invention has a configuration containing the following (A) and (B).
(A) contains at least one of a linear aliphatic epoxy resin represented by the following general formula (1) and a linear fluorinated epoxy resin represented by the following general formula (2), and The content of at least one of the linear aliphatic epoxy resin represented by the general formula (1) and the linear fluorinated epoxy resin represented by the following general formula (2) is 40% in the entire epoxy resin component. Epoxy resin set in the range of ~ 90% by weight.
[Chemical formula 5]
Figure 2004339246
[Chemical 6]
Figure 2004339246
(B) Photopolymerization initiator.
[0010]
That is, the present inventors have made extensive studies in order to obtain an ultraviolet curable epoxy resin composition having reduced outgas generation and having high transparency after curing. In the process, in the case of cationic photopolymerization, it was found that the diglycidyl ether type epoxy resin generates a large amount of outgas in a high temperature atmosphere. As a result of further research based on this knowledge, it was found that generation of outgas is greatly reduced when an epoxy resin having no ether bond is used, and the linear aliphatic epoxy represented by the above general formula (1) When at least one of the resin and the linear fluorinated epoxy resin represented by the general formula (2) is used and the content is set in the range of 40 to 90% by weight in the entire epoxy resin component, The inventors have found that the object is achieved and have reached the present invention.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in detail.
[0012]
The ultraviolet curable epoxy resin composition of the present invention comprises an epoxy resin (A) containing at least one of a special linear aliphatic epoxy resin and a special linear fluorinated epoxy resin, and a photopolymerization initiator (B ).
[0013]
The special linear aliphatic epoxy resin is represented by the following general formula (1). The special linear aliphatic epoxy resin represented by the formula (1) is produced, for example, as follows. That is, it can be obtained by oxidizing a desired compound having vinyl groups at both ends. The oxidation reaction can also be performed by direct oxidation with an organic peroxide such as perbenzoic acid, or by oxidation with hydrogen peroxide or gaseous oxygen using a heteropolyacid as a catalyst.
[0014]
[Chemical 7]
Figure 2004339246
[0015]
The special linear fluorinated epoxy resin is represented by the following general formula (2). The special linear fluorinated epoxy resin represented by the formula (2) can be obtained, for example, by oxidizing a desired compound having vinyl groups at both ends, as described above. The oxidation reaction can also be performed by direct oxidation with an organic peroxide such as perbenzoic acid, or by oxidation with hydrogen peroxide or gaseous oxygen using a heteropolyacid as a catalyst.
[0016]
[Chemical 8]
Figure 2004339246
[0017]
The content of at least one of the linear aliphatic epoxy resin represented by the formula (1) and the linear fluorinated epoxy resin represented by the formula (2) is 40 to 90 in the entire epoxy resin (A). It is necessary to set so as to occupy% by weight. More preferably, it is 50 to 70% by weight. That is, when the amount is less than 40% by weight, the amount of outgas generated increases, whereas when it exceeds 90% by weight, the curability deteriorates and the workability decreases.
[0018]
When the linear aliphatic epoxy resin represented by the formula (1) and the linear fluorinated epoxy resin represented by the formula (2) are used, the linear type represented by the formula (1) is used. Even if only the aliphatic epoxy resin is used, or only the linear fluorinated epoxy resin represented by the formula (2) is used, even if both are used in combination, Regardless of the reduction in outgas generation.
[0019]
Furthermore, the epoxy resin (A) includes other epoxy other than at least one of the linear aliphatic epoxy resin represented by the above formula (1) and the linear fluorinated epoxy resin represented by the formula (2). Resin is used. Examples of the other epoxy resins include allyl epoxy resins represented by the following formula (3) and naphthalene epoxy resins represented by the following formula (4). Thus, the combined use of the allyl epoxy resin represented by formula (3) and the naphthalene epoxy resin represented by formula (4) has the effect of further reducing the outgas generation amount and improving the reactivity. can get.
[0020]
[Chemical 9]
Figure 2004339246
[0021]
[Chemical Formula 10]
Figure 2004339246
[0022]
The allyl epoxy resin represented by the above formula (3) and the naphthalene epoxy resin represented by the formula (4) are epoxy resins showing a yellow semi-solid state. Therefore, the amount used is preferably set to 60% by weight or less of the entire epoxy resin (A). More preferably, it is 40% by weight or less.
[0023]
Furthermore, an alicyclic epoxy resin can be used together with an epoxy resin (A) with said each epoxy resin. By using the alicyclic epoxy resin in combination, the curability can be improved. And although it does not specifically limit as said alicyclic epoxy resin, It is preferable to use a highly reactive and transparent thing. Specifically, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, 3,4-epoxycyclohexylethyl-3,4-epoxycyclohexanecarboxylate and the like are transparent, highly viscous, and reactive. It is preferable from the viewpoint. These may be used alone or in combination of two or more. And it is preferable to set the usage-amount of the said alicyclic epoxy resin to 60 weight% or less of the whole epoxy resin (A). More preferably, it is 40% by weight or less.
[0024]
In the present invention, as the epoxy resin (A), at least one of the linear aliphatic epoxy resin represented by the formula (1) and the linear fluorinated epoxy resin represented by the formula (2) is an essential component. It is an epoxy resin system using the allyl epoxy resin represented by the formula (3), the naphthalene epoxy resin represented by the formula (4), and the alicyclic epoxy resin, which are the epoxy resins described above. Although it may be configured, a conventionally known epoxy resin may be further used. Specifically, general-purpose bisphenol type epoxy resins, hydrogenated bisphenol type epoxy resins, novolac type epoxy resins, glycidyl ether type epoxy resins, glycidyl ester type epoxy resins and the like can be used.
[0025]
The photopolymerization initiator (B) used together with the epoxy resin (A) is not particularly limited, and is an aromatic diazonium salt, aromatic sulfonium salt, aromatic iodonium salt, aromatic sulfoxonium salt, metallocene compound. Alternatively, an iron arene compound or the like can be used. Among them, from the viewpoint of photocurability, an aromatic sulfonium salt is preferable, and in particular, an aromatic sulfonium / hexafluorophosphonium compound, an aromatic sulfonium / hexafluoroantimonate compound, or a combination of both, curability, adhesiveness, It is preferable from the viewpoint of outgas. Furthermore, a photosensitizer, an acid proliferating agent, etc. can be added with the said photoinitiator (B) as needed.
[0026]
The content of the photopolymerization initiator (B) is preferably set to 1 to 15 parts, particularly preferably 2 to 10 parts per 100 parts by weight (hereinafter abbreviated as “part”) of the epoxy resin (A). Part.
[0027]
In addition to the above components, the ultraviolet curable epoxy resin composition of the present invention includes a silane-based or titanium-based coupling agent, a flexibility imparting agent such as a synthetic rubber or a silicone compound, etc., in order to enhance adhesion. In addition, other additives such as an antioxidant and an antifoaming agent can be appropriately blended as necessary.
[0028]
The ultraviolet curable epoxy resin composition of the present invention includes, for example, a special linear aliphatic epoxy resin represented by the general formula (1) and a special linear fluorination represented by the general formula (2). The epoxy resin (A) containing at least one of the epoxy resins, the photopolymerization initiator (B), and, if necessary, other additives can be blended at a predetermined ratio and mixed.
[0029]
The ultraviolet curable epoxy resin composition thus obtained can be cured by, for example, irradiating ultraviolet rays with a UV lamp or the like and then performing post-curing at a predetermined temperature.
[0030]
Next, examples will be described together with comparative examples.
[0031]
First, each component shown below was prepared.
[0032]
[Epoxy resin 1]
Linear aliphatic epoxy resin represented by the general formula (1) [in formula (1), n = 4]
[0033]
[Epoxy resin 2]
Linear aliphatic epoxy resin represented by the general formula (1) [in formula (1), n = 10]
[0034]
[Epoxy resin 3]
Linear fluorinated epoxy resin represented by the general formula (2) [n = 4 in the formula (2)]
[0035]
[Epoxy resin 4]
Allyl group-containing epoxy resin represented by the formula (3)
[Epoxy resin 5]
Naphthalene epoxy resin represented by the formula (4)
[Epoxy resin 6]
Diglycidyl ether type linear epoxy resin represented by the following formula (a) (manufactured by JER, YED-216D)
Embedded image
Figure 2004339246
[0038]
[Epoxy resin 7]
Bisphenol A type epoxy resin represented by the following formula (b) (JERO Co., Epicoat 825)
Embedded image
Figure 2004339246
[0039]
[Alicyclic epoxy resin]
Alicyclic epoxy resin represented by the following formula (c) (Dacel Chemical Co., Celoxide 2021P)
Embedded image
Figure 2004339246
[0040]
(Photopolymerization initiator)
Sulfonium hexafluoroantimony polymerization initiator (Asahi Denka Co., SP-170)
[0041]
〔Antioxidant〕
HCA (manufactured by Sanko Chemical Co., Ltd.)
[0042]
[Defoamer]
KS-68 (manufactured by Shin-Etsu Silicone)
[0043]
[Coupling agent]
γ-Glycidoxypropyltrimethoxysilane
Examples 1 to 23, Comparative Examples 1 to 6
Each component shown in the following Tables 1 to 6 was blended and mixed in the proportions shown in the same table to prepare an ultraviolet curable epoxy resin composition.
[0045]
[Table 1]
Figure 2004339246
[0046]
[Table 2]
Figure 2004339246
[0047]
[Table 3]
Figure 2004339246
[0048]
[Table 4]
Figure 2004339246
[0049]
[Table 5]
Figure 2004339246
[0050]
[Table 6]
Figure 2004339246
[0051]
Using the ultraviolet curable epoxy resin compositions of Examples and Comparative Examples thus obtained, the viscosity, outgas amount, light transmittance, and initial adhesive strength after curing at 25 ° C. The moisture resistance adhesive strength was measured and evaluated according to the following method.
These results are also shown in Tables 7 to 12 below.
[0052]
[Viscosity of epoxy resin composition]
The viscosity at 25 ° C. was measured using an E-type viscometer.
[0053]
[Outgas amount]
The film was irradiated with light for 60 seconds using a 500 W UV lamp (high pressure mercury lamp) and then post-cured at 100 ° C. for 1 hour to produce a film having a thickness of 100 μm. And after measuring the initial weight of this film, it put into 125 degreeC dryer, left for 24 hours, took out, and measured the weight. From these weight changes (weight reduction rate), the outgas amount at 125 ° C. was calculated.
[0054]
(Light transmittance)
A film having a thickness of 100 μm was prepared (the curing conditions were the same as above), and the light transmittance at a wavelength of 1300 nm was measured at 25 ° C. using a spectrophotometer (UV-3101PC, manufactured by Shimadzu Corporation).
[0055]
[Initial adhesive strength / moisture resistant adhesive strength]
First, an ultraviolet curable epoxy resin composition was applied as an adhesive to a columnar quartz glass plate (length 3.3 mm × width 3.3 mm × thickness 5 mm), and then a quartz glass plate (length 20 mm × width 35 mm × thickness 2 mm). ) And bonded together, and the adhesive was cured under the following curing conditions to produce an adhesive piece. That is, the curing was performed by irradiating light for 60 seconds using a 500 W UV lamp (high pressure mercury lamp) and then performing a post cure at 100 ° C. for 1 hour.
[0056]
And the initial adhesive strength measured the adhesive strength of shear using the said adhesive piece and using the push pull gauge at 25 degreeC.
[0057]
Further, the moisture-resistant adhesive strength is determined by allowing the above-mentioned adhesive piece to stand for 24 hours under PCT conditions (121 ° C. × 202.6 kPa) to absorb moisture and then using a push-pull gauge at 25 ° C. It was measured.
[0058]
[Table 7]
Figure 2004339246
[0059]
[Table 8]
Figure 2004339246
[0060]
[Table 9]
Figure 2004339246
[0061]
[Table 10]
Figure 2004339246
[0062]
[Table 11]
Figure 2004339246
[0063]
[Table 12]
Figure 2004339246
[0064]
From the above results, it can be seen that the example products have a high light transmittance of 90% or more at 1300 nm in the visible light region and are excellent in transparency. Moreover, high numerical values were obtained for both the initial adhesive strength and the moisture-resistant adhesive strength. Moreover, the amount of outgas was also low, less than 0.5% by weight.
[0065]
On the other hand, in Comparative Examples 1 and 3 in which the content of each epoxy resin represented by the general formula (1) and the general formula (2) exceeds 90% by weight of the entire epoxy resin component, the measurement results in an uncured state It was impossible. Moreover, in the comparative example 2 goods whose content of each epoxy resin represented by General formula (1) and General formula (2) is less than 40 weight% of the whole epoxy resin component, there is more outgas amount than an Example goods, In addition, the light transmittance decreased and the viscosity increased. And the comparative examples 4-6 products using the diglycidyl ether type linear epoxy resin and the bisphenol A type epoxy resin were inferior in transparency, and had a high outgas amount and low moisture-resistant adhesive strength. .
[0066]
【The invention's effect】
As described above, the present invention contains at least one of a linear aliphatic epoxy resin represented by the general formula (1) and a linear fluorinated epoxy resin represented by the general formula (2). And the content of at least one of the linear aliphatic epoxy resin represented by the general formula (1) and the linear fluorinated epoxy resin represented by the general formula (2) is 40% in the entire epoxy resin component. It is an ultraviolet curable epoxy resin composition using the epoxy resin (A) set in the range of ˜90% by weight. For this reason, it has moderate transparency and high practicality with high moisture-resistant adhesive strength after initial and after moisture absorption. And the generation | occurrence | production amount of the outgas under high temperature conditions will be suppressed in the hardened | cured material. Therefore, when used as an optical waveguide or V-groove for bonding optical fibers and fiber arrays in optical communication systems, or for optical component materials such as optical waveguides and microlenses, other optical elements and electronic devices, A good optical system can be obtained without contaminating optical components and the like.
[0067]
If the allyl epoxy resin represented by the formula (3) is further contained in the epoxy resin (A), the outgas generation can be further reduced and the reactivity can be improved.
[0068]
Further, when the naphthalene epoxy resin represented by the above formula (4) is further contained in the epoxy resin which is the above (A), as in the case of the allyl epoxy resin represented by the above formula (3), further outgas generation occurs. Reduction is achieved, and reactivity is improved.
[0069]
Furthermore, when the alicyclic epoxy resin is contained in the epoxy resin (A), a good curability improving effect can be obtained.

Claims (4)

下記の(A)および(B)を含有することを特徴とする紫外線硬化型エポキシ樹脂組成物。
(A)下記の一般式(1)で表される直鎖型脂肪族エポキシ樹脂および下記の一般式(2)で表される直鎖型フッ素化エポキシ樹脂の少なくとも一方を含有し、かつ下記の一般式(1)で表される直鎖型脂肪族エポキシ樹脂および下記の一般式(2)で表される直鎖型フッ素化エポキシ樹脂の少なくとも一方の含有量が、エポキシ樹脂成分全体中の40〜90重量%の範囲に設定されているエポキシ樹脂。
Figure 2004339246
Figure 2004339246
(B)光重合開始剤。
An ultraviolet curable epoxy resin composition comprising the following (A) and (B):
(A) contains at least one of a linear aliphatic epoxy resin represented by the following general formula (1) and a linear fluorinated epoxy resin represented by the following general formula (2), and The content of at least one of the linear aliphatic epoxy resin represented by the general formula (1) and the linear fluorinated epoxy resin represented by the following general formula (2) is 40 in the entire epoxy resin component. Epoxy resin set in the range of ~ 90% by weight.
Figure 2004339246
Figure 2004339246
(B) Photopolymerization initiator.
上記(A)であるエポキシ樹脂中に、さらに下記の式(3)で表されるアリルエポキシ樹脂を含有する請求項1記載の紫外線硬化型エポキシ樹脂組成物。
Figure 2004339246
The ultraviolet curable epoxy resin composition according to claim 1, further comprising an allyl epoxy resin represented by the following formula (3) in the epoxy resin (A).
Figure 2004339246
上記(A)であるエポキシ樹脂中に、さらに下記の式(4)で表されるナフタレンエポキシ樹脂を含有する請求項1または2記載の紫外線硬化型エポキシ樹脂組成物。
Figure 2004339246
The ultraviolet curable epoxy resin composition of Claim 1 or 2 which contains the naphthalene epoxy resin represented by following formula (4) further in the epoxy resin which is said (A).
Figure 2004339246
上記(A)であるエポキシ樹脂中に、さらに脂環式エポキシ樹脂を含有する請求項1〜3のいずれか一項に記載の紫外線硬化型エポキシ樹脂組成物。The ultraviolet curable epoxy resin composition according to any one of claims 1 to 3, further comprising an alicyclic epoxy resin in the epoxy resin (A).
JP2003088184A 2003-03-19 2003-03-27 UV curable epoxy resin composition Expired - Lifetime JP4426198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003088184A JP4426198B2 (en) 2003-03-19 2003-03-27 UV curable epoxy resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003076156 2003-03-19
JP2003088184A JP4426198B2 (en) 2003-03-19 2003-03-27 UV curable epoxy resin composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009153594A Division JP5116730B2 (en) 2003-03-19 2009-06-29 UV curable epoxy resin composition

Publications (2)

Publication Number Publication Date
JP2004339246A true JP2004339246A (en) 2004-12-02
JP4426198B2 JP4426198B2 (en) 2010-03-03

Family

ID=33542976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003088184A Expired - Lifetime JP4426198B2 (en) 2003-03-19 2003-03-27 UV curable epoxy resin composition

Country Status (1)

Country Link
JP (1) JP4426198B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006299025A (en) * 2005-04-19 2006-11-02 Sumitomo Electric Ind Ltd Epoxy resin composition
JP2007084771A (en) * 2004-12-13 2007-04-05 Hitachi Chem Co Ltd Resin composition for optical material, resin film for optical material, and optical waveguide using the same
JP2011021177A (en) * 2009-06-18 2011-02-03 Nitto Denko Corp Photocurable resin composition and optical component using the same
US8326110B2 (en) 2004-10-07 2012-12-04 Hitachi Chemical Company, Ltd. Flexible optical waveguide having a cladding layer composed of a resin for forming a cladding layer and a base material film
US9056941B2 (en) 2009-06-18 2015-06-16 Nitto Denko Corporation Photocurable resin composition and optical component using the same
WO2015087807A1 (en) * 2013-12-11 2015-06-18 積水化学工業株式会社 Curable resin composition for sealing organic electroluminescent display element, curable resin sheet for sealing organic electroluminescent display element, and organic electroluminescent display element
CN106751455A (en) * 2015-11-19 2017-05-31 常州强力电子新材料股份有限公司 The preparation method of cation photocuring composite
JP2023507866A (en) * 2020-11-23 2023-02-28 ソリュース先端素材株式会社 resin composition

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8326110B2 (en) 2004-10-07 2012-12-04 Hitachi Chemical Company, Ltd. Flexible optical waveguide having a cladding layer composed of a resin for forming a cladding layer and a base material film
JP2007084771A (en) * 2004-12-13 2007-04-05 Hitachi Chem Co Ltd Resin composition for optical material, resin film for optical material, and optical waveguide using the same
JP2006299025A (en) * 2005-04-19 2006-11-02 Sumitomo Electric Ind Ltd Epoxy resin composition
JP4595646B2 (en) * 2005-04-19 2010-12-08 住友電気工業株式会社 Epoxy resin composition
JP2011021177A (en) * 2009-06-18 2011-02-03 Nitto Denko Corp Photocurable resin composition and optical component using the same
US9056941B2 (en) 2009-06-18 2015-06-16 Nitto Denko Corporation Photocurable resin composition and optical component using the same
WO2015087807A1 (en) * 2013-12-11 2015-06-18 積水化学工業株式会社 Curable resin composition for sealing organic electroluminescent display element, curable resin sheet for sealing organic electroluminescent display element, and organic electroluminescent display element
JPWO2015087807A1 (en) * 2013-12-11 2017-03-16 積水化学工業株式会社 Curable resin composition for sealing organic electroluminescence display element, curable resin sheet for sealing organic electroluminescence display element, and organic electroluminescence display element
CN106751455A (en) * 2015-11-19 2017-05-31 常州强力电子新材料股份有限公司 The preparation method of cation photocuring composite
CN106751455B (en) * 2015-11-19 2019-08-06 常州强力电子新材料股份有限公司 The preparation method of cation photocuring composite material
JP2023507866A (en) * 2020-11-23 2023-02-28 ソリュース先端素材株式会社 resin composition
JP7475012B2 (en) 2020-11-23 2024-04-26 ソリュース先端素材株式会社 Resin composition

Also Published As

Publication number Publication date
JP4426198B2 (en) 2010-03-03

Similar Documents

Publication Publication Date Title
JP5919574B2 (en) UV curable resin composition, optical component adhesive, and organic EL device sealing material
JP5401767B2 (en) Curable composition and optical device
JP5153498B2 (en) Resin composition
EP2258741A1 (en) Resin composition for optical components and optical component using the same
KR102006993B1 (en) Energy-beam-curable resin composition
JP2010018797A (en) Curable composition for optical parts, adhesive agent for optical parts, and sealing agent for organic electroluminescence element
JP4589211B2 (en) UV curable liquid resin composition for optics
JPWO2008153076A1 (en) Optical adhesive for substrate bonding, and cured optical adhesive for substrate bonding
JPWO2011152126A1 (en) Cationic polymerizable composition, adhesive containing the same, and cured product and polarizing plate obtained using the same
KR20120111955A (en) Energy ray-curable epoxy resin composition having excellent fast curing properties
JP4426198B2 (en) UV curable epoxy resin composition
KR20100136434A (en) Photocurable resin composition and optical component using the same
JP4421938B2 (en) UV curable resin composition
JP4439017B2 (en) Curable resin composition for molded body, molded body and method for producing the same
JP5116730B2 (en) UV curable epoxy resin composition
JP2006008740A (en) Ultraviolet curable resin composition
CN110582540A (en) Photocurable epoxy composition
WO2020026970A1 (en) Photosensitive epoxy resin composition for forming optical waveguide, photosensitive film for forming optical waveguide, optical waveguide using same, and mixed flexible printed circuit board for optical and electric transmission
JP2008056848A (en) Active energy ray-curable sealant and photosemiconductor device using the same
KR20200132926A (en) Encapsulant for display element and cured product thereof
WO2015151782A1 (en) Resin composition for use in optical component and optical component using same
JP2004010674A (en) Ultraviolet light-curable adhesive
JP4142981B2 (en) UV-curable epoxy resin composition and process for producing the same
JP4331644B2 (en) UV curable resin composition
JP5448358B2 (en) Resin composition, optical material, and optical member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080908

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091210

R150 Certificate of patent or registration of utility model

Ref document number: 4426198

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151218

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term