JP2004335874A - Nonaqueous electrolyte for electric double layer capacitor - Google Patents

Nonaqueous electrolyte for electric double layer capacitor Download PDF

Info

Publication number
JP2004335874A
JP2004335874A JP2003131933A JP2003131933A JP2004335874A JP 2004335874 A JP2004335874 A JP 2004335874A JP 2003131933 A JP2003131933 A JP 2003131933A JP 2003131933 A JP2003131933 A JP 2003131933A JP 2004335874 A JP2004335874 A JP 2004335874A
Authority
JP
Japan
Prior art keywords
electrolyte
double layer
electric double
layer capacitor
nonaqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003131933A
Other languages
Japanese (ja)
Other versions
JP4419431B2 (en
Inventor
Yutaka Kanbara
豊 神原
Minoru Takagawa
實 高川
Tomoo Tsujimoto
智雄 辻本
Genki Nogami
玄器 野上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2003131933A priority Critical patent/JP4419431B2/en
Publication of JP2004335874A publication Critical patent/JP2004335874A/en
Application granted granted Critical
Publication of JP4419431B2 publication Critical patent/JP4419431B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide nonaqueous electrolyte for an electric double layer capacitor in which cycle characteristics are enhanced at the time of charging/discharging. <P>SOLUTION: Nonaqueous electrolyte for an electric double layer capacitor exhibiting enhanced characteristics at the time of charging/discharging is obtained by adding a specified diamine compound to the nonaqueous electrolyte consisting of nonaqueous solvent and electrolyte. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は充放電特性に優れた電気二重層キャパシタ用非水電解液に関する。さらに詳しくは、非水溶媒と電解質からなる非水電解液に、ジアミン化合物を含有させた電気二重層キャパシタ用非水電解液に関する。電気二重層キャパシタは、これまでに主として用いられてきた小型の電子機器バックアップ電源用途の他に、電気自動車やハイブリッド自動車、電力貯蔵システム等の大型のエネルギー貯蔵用途への応用が期待され注目されている。
【0002】
【従来の技術】
電気二重層キャパシタは分極性電極と電解液との境界面に形成される電気二重層の蓄電作用を利用した蓄電デバイスである。このような電気二重層キャパシタは一般に短絡防止のための多孔質のセパレータを挟んで対向させた高表面積の活性炭電極に、電解液を含浸させることにより構成される。電解液には非水系と水系があるが、非水電解液は水系に比べて耐電圧が高いためエネルギー密度を高くできる特徴がある。一般に電気二重層キャパシタは物理吸着により電気を蓄えることから、二次電池に比べてサイクル特性が優れている。しかしながら充放電を長期間繰り返すことにより経時的に静電容量が減少することが知られており静電容量劣化の少ない、サイクル特性の向上した電気二重層キャパシタが求められている。
【0003】
電気二重層キャパシタに使用される従来の非水電解液としては、非水溶媒であるプロピレンカーボネートに電解質である四級アルキルアンモニウムBF塩を溶解させたものが知られている。この非水電解液を改良してサイクル特性を改善しようとする試みもなされており、電気二重層キャパシタ用非水電解液に可溶性の高分子物質を含ませたものが記載されている(例えば、特許文献1参照)。しかしながら、ジアミン化合物を電気二重層キャパシタ電解液に含有させることにより、サイクル特性が向上する事は従来知られていない。
【0004】
【特許文献1】
特開2001−102268号公報
【0005】
【発明が解決しようとする課題】
本発明の目的は、充放電する際のサイクル特性を高めた電気二重層キャパシタ用非水電解液を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは、上記のような課題を有する電気二重層キャパシタ用非水電解液について鋭意検討した結果、非水溶媒と電解質からなる非水電解液に、特定のジアミン化合物を含有させることにより、電位窓が広がること及びサイクル特性が向上することを見出し本発明に到達した。
【0007】
すなわち、本発明は、以下の(1)、(2)に示す非水溶媒と電解質からなる非水電解液に、一般式1の中から選ばれる一種以上のジアミン化合物を含有させた電気二重層キャパシタ用非水電解液に関するものである。
(1)非水溶媒と電解質からなる非水電解液に、一般式1の中から選ばれる一種以上のジアミン化合物を含有させた、電気二重層キャパシタ用非水電解液。
R−(NH (1)
(式中、Rは炭素数1〜12の有機基を表す)
(2)一般式1の中から選ばれるジアミン化合物が、1,6−ジアミノヘキサン及び/又は1,3−ビス(アミノメチル)シクロヘキサンである、(1)記載の電気二重層キャパシタ用非水電解液。
【0008】
【発明の実施の形態】
以下、発明の実施の形態を詳細に説明する。本発明の非水電解液は、通常、非水溶媒に電解質を溶解させた非水電解液中に、ジアミン化合物を添加することにより製造できる。
ジアミン化合物は前記一般式(1)で表され、具体的にはエチレンジアミン、1,2−、1,3−プロパンジアミン、1,2−、1,3−、1,4−、2,3−ブタンジアミン、1,2−、1,3−、1,4−、1,5−、2,3−、2,4−ペンタンジアミン、1,2−、1,3−、1,4−、1,5−、1,6−、2,3−、2,4−、2,5−、3,4−ヘキサンジアミン、ヘプタンジアミン、オクタンジアミン、ノナンジアミン、デカンジアミン、ウンデカジアミン等の飽和炭化水素ジアミン類、o、m、p−フェニレンジアミン等の芳香族ジアミン類、o,m,p−キシリレンジアミン、1,2−、1,3−、1,4−シクロヘキサンジアミン、1,2−、1,3−、1,4−ビス(アミノメチル)シクロヘキサン、イソホロンジアミン、ノルボルナンジアミン等の脂環式ジアミン類、4,5−ビス(アミノメチル)ジオキソラン−2−オン、ジアミノピリジン、3、4−ビス(アミノメチル)スルホラン等の複素環ジアミン類が挙げられる。これらの中でも入手の容易さから1,6−ヘキサンジアミン及び/又は1,3−ビス(アミノメチル)シクロヘキサンが好ましい。なお、以上に示したこれらの化合物は単独又は2種以上を混合して用いることもできる。
【0009】
本発明に用いるジアミン化合物の量は、ジアミン化合物の種類による他、非水溶媒と電解質からなる非水電解液に用いられている電解質や溶媒の種類、濃度、或いは使用する電極等により異なるが、電解液に対して通常1ppm〜20wt%、好ましくは10ppm〜10wt%の範囲が適当である。ジアミン化合物の量がこれより少ない場合には、充電した際のエネルギー密度及び充放電する際のサイクル特性に対する添加効果が少なく、これより多い場合にはジアミン化合物の電気分解によるとみられる漏れ電流の増加やガスの発生が多くなる。
本発明の電解液について耐電圧の指標となる電位窓を測定すると、添加剤がない場合に比べ電位窓が広がり、これらの添加剤は電解液の分解を抑制する効果を持つことが分かった。これはジアミン化合物が電極表面で何らかの反応を起こして電極表面を不活性化するためと考えられる。
【0010】
本発明で用いる非水電解液の非水溶媒としては特に限定されるものではないが、例えばプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、1,3−ジオキソラン−2−オン等の環状カーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等の鎖状カーボネート、γ−ブチロラクトン、γ−バレロラクトン、酢酸メチル、プロピオン酸メチル等の環状及び鎖状エステル化合物、2−メチルテトラヒドロフラン、1,2−ジメトキシエタン等の環状及び鎖状エーテル類、アセトニトリル、3−メトキシプロピオニトリル等のニトリル類、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等のアミド類、スルホラン、3−メチルスルホラン、ジメチルスルホキシド、エチレンスルフィド等の含硫黄化合物、ニトロメタン、ニトロエタン等のニトロ化合物、3−メチル−2−オキサゾリジノン等の環状ウレタン、リン酸トリメチル等の含リン化合物等が挙げられ、好ましくはプロピレンカーボネート、エチレンカーボネート、γ−ブチロラクトン、アセトニトリル、スルホランであり、より好ましくはプロピレンカーボネートである。これらの非水溶媒は単独又は混合物として使用することもできる。また、脱水剤、ハロゲン除去剤、難燃剤等のその他の添加剤と混合して使用することもできる。
【0011】
本発明で用いる非水電解液の電解質はアニオンとカチオンの塩が用いられる。電解質は特に限定されるものではないが、例えばカチオンとしてはテトラエチルアンモニウム、トリメチルエチルアンモニウム、ジメチルジエチルアンモニウム、トリメチルエチルアンモニウム、テトラメチルアンモニウム、テトラ−n−ブチルアンモニウム等のテトラアルキルアンモニウムイオン及び窒素原子をリン原子に置き換えたホスホニウムイオン、N,N−ジメチルピペリジニウム、N,N−エチルメチルピペリジニウム、N,N−ジエチルピペリジニウム、N,N−ジメチルピロリジニウム、N,N−エチルメチルピロリジニウム、N,N−ジエチルピロリジニウム、1,3−ジメチルイミダゾリウム、1−エチル−3−メチルイミダゾリウム、1−エチル−2,3−ジメチルイミダゾリニウム、1,3−ジメチル−1,4,5,6−テトラヒドロピリミジウム、1,2,3−トリメチル−1,4,5,6−テトラヒドロピリミジウム、1−メチル−1,8−ジアザビシクロ[5.4.0]ウンデセン−7、1−メチル−1,5−ジアザビシクロ[4.3.0]ノネン−5等の4級アミジニウムイオン及び窒素原子をリン原子に置き換えた化合物のイオン、トリメチルスルホニウム、トリエチルスルホニウム等のスルホニウムイオン、リチウム、ナトリウム、カリウム等のアルカリ金属イオン、カルシウム、マグネシウム等のアルカリ土類金属イオン、及びアルミニウム等の3価の金属イオン等が挙げられ、好ましくはテトラアルキルアンモニウムである。
アニオンとしては、例えばPF 、BF 、AsF 、N(RSO 、C(RSO 、SBF 、RSO 、ClO 等が挙げられ、好ましくはBF である。これらの電解質は単独又は2種以上の混合物として用いることもできる。
非水電解液中の電解質の濃度は用いる電解質と溶媒の種類により異なるが、通常0.1〜10mol/lの範囲、好ましくは0.5〜5mol/lが適当である。
また、本発明の方法は、ポリアクリロニトリル、ポリエチレンオキシド、及びポリフッ化ビニリデン等の高分子に電解液を添加しゲル化させた高分子ゲル電解質にも用いることができる。
【0012】
【実施例】
以下、実施例及び比較例によって本発明をさらに具体的に説明するが、本発明はこれらの例によって限定されるものではない。
なお、電位窓の測定と充放電試験用のセルの組み立てはグローブボックス中で行った。また、非水電解液中の電解質、添加剤として用いるジアミン化合物は何れもあらかじめ脱水したものを用い、電極、セル等は真空乾燥してから用いた。
【0013】
実施例1
(a)電解液の調製
1.8mol/lのトリエチルメチルアンモニウムテトラフルオロボレートのプロピレンカーボネート溶液に、1,6−ヘキサンジアミン(HDA)を0.5wt%添加して電解液を調製した。
(b)電位窓の測定
電気化学測定装置を用い、20mlのガラスセルに上記電解液5gを仕込み、グラッシーカーボン(直径3mm)を作用極、白金線を対極、銀線を参照極とし、5mV/secの速度でアノード側、カソード側に電位を掃引した。±10μAの電流が流れた電位の絶対値を合計して電位窓とした。その結果、電解液の電位窓は6.5Vであった。結果を表1に示す。
(c)電気二重層キャパシタの作製と評価
活性炭粉末(窒素吸着法によるBET法で測定した比表面積1,200m/g)80wt%、アセチレンブラック10wt%、ポリテトラフルオロエチレン10wt%からなる混合物を混練した後、加圧シート化した。得られたシートを円盤状に打ち抜いて活性炭電極(直径16mm、厚さ0.6mm)とした。この電極をセルロース製セパレータを介して互いに対向させ、ステンレス製ケース内に収納した。その後、減圧下で上記電解液を含浸させ封じ込めた。
得られた電気二重層キャパシタセルを25℃で5mAの定電流により2.7Vまで充電した後30分保持し、0Vまで5mAの定電流で放電して初期静電容量を求めた。初期静電容量密度は12.8F/ccであった。その後、70℃で5mAの定電流により2.7Vまで充電した後5時間保持し、0Vまで5mAの定電流で放電するサイクルを250時間繰り返し、初期容量からの容量劣化率を算出した。その結果、容量劣化率は6.3%であった。測定結果を表1に示す。
【0014】
実施例2
(a)電解液の調整
添加剤として1,3−ビス(アミノメチル)シクロヘキサン(BAC)を用いた以外は実施例1と同様にして電解液を調製した。
(b)電位窓の測定
実施例1と同様にして電解液の電位窓を測定した結果、電位窓は6.7Vであった。結果を表1に示す。
(c)電気二重層キャパシタの作製と評価
実施例1と同様にして電気二重層キャパシタの作製と評価を行った結果、初期静電容量密度は13.1F/ccであり、70℃、2.7Vで250時間充放電した後の容量劣化率は7.8%であった。測定結果を表1に示す。
【0015】
比較例1
(a)電解液の調整
添加剤を添加しない以外は実施例1と同様とした。
(b)電位窓の測定
実施例1と同様にして電解液の電位窓を測定した結果、電位窓は5.2Vであった。結果を表1に示す。
(c)電気二重層キャパシタの作製と評価
実施例1と同様にして電気二重層キャパシタの作製と評価を行った結果、初期静電容量密度は13.0F/ccであり、70℃、2.7Vで250時間充放電した後の容量劣化率は9.5%であった。測定結果を表1に示す。
【0016】
【表1】

Figure 2004335874
【発明の効果】
本発明のジアミン化合物を含有する非水電解液を用いることにより、電位窓が広くサイクル特性に優れた長期信頼性の高い電気二重層キャパシタが実現でき、その工業的意義は極めて大きい。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a nonaqueous electrolyte for an electric double layer capacitor having excellent charge / discharge characteristics. More specifically, the present invention relates to a nonaqueous electrolyte for an electric double layer capacitor in which a diamine compound is contained in a nonaqueous electrolyte comprising a nonaqueous solvent and an electrolyte. Electric double layer capacitors are expected to be applied to large-scale energy storage applications such as electric vehicles, hybrid vehicles, and power storage systems, in addition to small electronic device backup power supplies that have been mainly used so far. I have.
[0002]
[Prior art]
An electric double layer capacitor is an electric storage device that uses the electric storage action of an electric double layer formed at a boundary surface between a polarizable electrode and an electrolytic solution. Such an electric double layer capacitor is generally formed by impregnating an electrolyte with a high surface area activated carbon electrode opposed to a porous separator for short circuit prevention. There are non-aqueous electrolytes and aqueous electrolytes. Non-aqueous electrolytes have a higher withstand voltage than aqueous electrolytes, and therefore have a characteristic that the energy density can be increased. In general, electric double layer capacitors store electricity by physical adsorption, and therefore have better cycle characteristics than secondary batteries. However, it is known that the capacitance decreases over time by repeating charging and discharging for a long period of time, and there is a need for an electric double layer capacitor with little deterioration in capacitance and improved cycle characteristics.
[0003]
As a conventional non-aqueous electrolyte used for an electric double layer capacitor, a solution in which a quaternary alkyl ammonium BF 4 salt as an electrolyte is dissolved in propylene carbonate as a non-aqueous solvent is known. Attempts have also been made to improve the cycle characteristics by improving this non-aqueous electrolyte, and a description has been made of a non-aqueous electrolyte for an electric double layer capacitor containing a soluble polymer substance (for example, Patent Document 1). However, it has not been conventionally known that the cycle characteristics are improved by including a diamine compound in the electrolytic solution of the electric double layer capacitor.
[0004]
[Patent Document 1]
JP 2001-102268 A [0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a non-aqueous electrolyte for an electric double layer capacitor having improved cycle characteristics when charging and discharging.
[0006]
[Means for Solving the Problems]
The present inventors have conducted intensive studies on a non-aqueous electrolyte for an electric double layer capacitor having the above-mentioned problems, and as a result, by including a specific diamine compound in a non-aqueous electrolyte comprising a non-aqueous solvent and an electrolyte. The present inventors have found that the potential window is widened and the cycle characteristics are improved.
[0007]
That is, the present invention provides an electric double layer in which a nonaqueous electrolytic solution comprising a nonaqueous solvent and an electrolyte shown in the following (1) and (2) contains one or more diamine compounds selected from the general formula 1. The present invention relates to a non-aqueous electrolyte for a capacitor.
(1) A non-aqueous electrolyte for an electric double layer capacitor, wherein a non-aqueous electrolyte comprising a non-aqueous solvent and an electrolyte contains one or more diamine compounds selected from the general formula 1.
R- (NH 2) 2 (1 )
(Wherein, R represents an organic group having 1 to 12 carbon atoms)
(2) The nonaqueous electrolysis for an electric double layer capacitor according to (1), wherein the diamine compound selected from the general formula 1 is 1,6-diaminohexane and / or 1,3-bis (aminomethyl) cyclohexane. liquid.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the invention will be described in detail. The non-aqueous electrolyte of the present invention can be usually produced by adding a diamine compound to a non-aqueous electrolyte in which an electrolyte is dissolved in a non-aqueous solvent.
The diamine compound is represented by the general formula (1), specifically, ethylenediamine, 1,2-, 1,3-propanediamine, 1,2-, 1,3-, 1,4-, 2,3- Butanediamine, 1,2-, 1,3-, 1,4-, 1,5-, 2,3-, 2,4-pentanediamine, 1,2-, 1,3-, 1,4-, Saturated carbonization of 1,5-, 1,6-, 2,3-, 2,4-, 2,5-, 3,4-hexanediamine, heptanediamine, octanediamine, nonanediamine, decanediamine, undecadiamine, etc. Hydrogen diamines, o, m, aromatic diamines such as p-phenylenediamine, o, m, p-xylylenediamine, 1,2-, 1,3-, 1,4-cyclohexanediamine, 1,2- , 1,3-, 1,4-bis (aminomethyl) cyclohexane, isophoronedi Min, alicyclic diamines such as norbornane diamine, 4,5-bis (aminomethyl) dioxolane-2-one, diaminopyridine, 3,4-bis (aminomethyl) heterocyclic diamines such as sulfolane. Among these, 1,6-hexanediamine and / or 1,3-bis (aminomethyl) cyclohexane are preferable from the viewpoint of availability. In addition, these compounds shown above can be used alone or in combination of two or more.
[0009]
The amount of the diamine compound used in the present invention depends on the type of the diamine compound, the type and concentration of the electrolyte or the solvent used in the nonaqueous electrolytic solution composed of the nonaqueous solvent and the electrolyte, or the electrode used, An appropriate range is usually 1 ppm to 20 wt%, preferably 10 ppm to 10 wt%, based on the electrolyte. If the amount of the diamine compound is less than this, the effect of addition on the energy density at the time of charging and the cycle characteristics at the time of charging and discharging is small. And the generation of gas increase.
When the potential window as an index of the withstand voltage was measured for the electrolyte of the present invention, it was found that the potential window was wider than in the case where there was no additive, and that these additives had an effect of suppressing the decomposition of the electrolyte. This is probably because the diamine compound causes some reaction on the electrode surface to inactivate the electrode surface.
[0010]
The non-aqueous solvent of the non-aqueous electrolyte used in the present invention is not particularly limited, for example, propylene carbonate, ethylene carbonate, butylene carbonate, cyclic carbonate such as 1,3-dioxolan-2-one, dimethyl carbonate, Dicyclic carbonates such as diethyl carbonate and methyl ethyl carbonate, cyclic and linear ester compounds such as γ-butyrolactone, γ-valerolactone, methyl acetate and methyl propionate, and cyclic compounds such as 2-methyltetrahydrofuran and 1,2-dimethoxyethane And chain ethers, nitriles such as acetonitrile and 3-methoxypropionitrile, amides such as N, N-dimethylformamide and N, N-dimethylacetamide, sulfolane, 3-methylsulfolane, dimethylsulfoxide, ethylene Sulfur-containing compounds such as sulfides, nitro compounds such as nitromethane and nitroethane, cyclic urethanes such as 3-methyl-2-oxazolidinone, phosphorus-containing compounds such as trimethyl phosphate, and the like, preferably propylene carbonate, ethylene carbonate, and γ- Butyrolactone, acetonitrile and sulfolane, more preferably propylene carbonate. These non-aqueous solvents can be used alone or as a mixture. Further, it can be used by mixing with other additives such as a dehydrating agent, a halogen removing agent and a flame retardant.
[0011]
As the electrolyte of the non-aqueous electrolyte used in the present invention, a salt of an anion and a cation is used. Although the electrolyte is not particularly limited, for example, cations include tetraalkylammonium ions such as tetraethylammonium, trimethylethylammonium, dimethyldiethylammonium, trimethylethylammonium, tetramethylammonium, and tetra-n-butylammonium, and a nitrogen atom. Phosphonium ion replaced with phosphorus atom, N, N-dimethylpiperidinium, N, N-ethylmethylpiperidinium, N, N-diethylpiperidinium, N, N-dimethylpyrrolidinium, N, N-ethyl Methylpyrrolidinium, N, N-diethylpyrrolidinium, 1,3-dimethylimidazolium, 1-ethyl-3-methylimidazolium, 1-ethyl-2,3-dimethylimidazolinium, 1,3-dimethyl -1, 4, 5 6-tetrahydropyrimidium, 1,2,3-trimethyl-1,4,5,6-tetrahydropyrimidium, 1-methyl-1,8-diazabicyclo [5.4.0] undecene-7,1- Quaternary amidinium ion such as methyl-1,5-diazabicyclo [4.3.0] nonene-5, ion of a compound in which a nitrogen atom is replaced by a phosphorus atom, sulfonium ion such as trimethylsulfonium and triethylsulfonium, lithium and sodium And alkali metal ions such as potassium, alkaline earth metal ions such as calcium and magnesium, and trivalent metal ions such as aluminum. Tetraalkylammonium is preferable.
Examples of the anion include PF 6 , BF 4 , AsF 6 , N (RSO 3 ) 2 , C (RSO 3 ) 3 , SBF 6 , RSO 3 , and ClO 4 −. the BF 4 - is. These electrolytes can be used alone or as a mixture of two or more.
The concentration of the electrolyte in the non-aqueous electrolyte varies depending on the type of the electrolyte and the solvent used, but is usually in the range of 0.1 to 10 mol / l, preferably 0.5 to 5 mol / l.
The method of the present invention can also be used for a polymer gel electrolyte obtained by adding an electrolyte to a polymer such as polyacrylonitrile, polyethylene oxide, and polyvinylidene fluoride to form a gel.
[0012]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
The measurement of the potential window and the assembly of the cell for the charge / discharge test were performed in a glove box. The electrolyte in the non-aqueous electrolyte and the diamine compound used as an additive were all dehydrated in advance, and the electrodes, cells, etc. were used after being vacuum-dried.
[0013]
Example 1
(A) Preparation of Electrolyte Solution To a 1.8 mol / l triethylmethylammonium tetrafluoroborate propylene carbonate solution, 0.5 wt% of 1,6-hexanediamine (HDA) was added to prepare an electrolyte solution.
(B) Measurement of potential window Using an electrochemical measurement device, 5 g of the above-mentioned electrolyte solution was charged into a 20 ml glass cell, and 5 mV / g was measured using glassy carbon (diameter 3 mm) as a working electrode, a platinum wire as a counter electrode, and a silver wire as a reference electrode. The potential was swept to the anode side and the cathode side at a speed of sec. The absolute value of the potential at which a current of ± 10 μA flowed was summed to obtain a potential window. As a result, the potential window of the electrolyte was 6.5 V. Table 1 shows the results.
(C) Preparation and Evaluation of Electric Double Layer Capacitor A mixture consisting of 80 wt% of activated carbon powder (specific surface area measured by BET method using nitrogen adsorption method, 1,200 m 2 / g), 10 wt% of acetylene black, and 10 wt% of polytetrafluoroethylene was prepared. After kneading, it was formed into a pressure sheet. The obtained sheet was punched out in a disk shape to form an activated carbon electrode (diameter 16 mm, thickness 0.6 mm). The electrodes were opposed to each other via a cellulose separator and housed in a stainless steel case. Thereafter, the above electrolyte was impregnated and sealed under reduced pressure.
The obtained electric double layer capacitor cell was charged to 2.7 V at 25 ° C. with a constant current of 5 mA, held for 30 minutes, and discharged to 0 V with a constant current of 5 mA to obtain an initial capacitance. The initial capacitance density was 12.8 F / cc. After that, the battery was charged to 2.7 V with a constant current of 5 mA at 70 ° C., held for 5 hours, and discharged to a voltage of 0 V with a constant current of 5 mA was repeated for 250 hours, and the rate of capacity deterioration from the initial capacity was calculated. As a result, the capacity deterioration rate was 6.3%. Table 1 shows the measurement results.
[0014]
Example 2
(A) Adjustment of electrolyte solution An electrolyte solution was prepared in the same manner as in Example 1 except that 1,3-bis (aminomethyl) cyclohexane (BAC) was used as an additive.
(B) Measurement of potential window The potential window of the electrolytic solution was measured in the same manner as in Example 1, and as a result, the potential window was 6.7 V. Table 1 shows the results.
(C) Production and evaluation of electric double layer capacitor As a result of producing and evaluating an electric double layer capacitor in the same manner as in Example 1, the initial capacitance density was 13.1 F / cc, 70 ° C. The capacity deterioration rate after charging and discharging at 7 V for 250 hours was 7.8%. Table 1 shows the measurement results.
[0015]
Comparative Example 1
(A) The procedure was the same as in Example 1 except that no additive for adjusting the electrolytic solution was added.
(B) Measurement of potential window As a result of measuring the potential window of the electrolytic solution in the same manner as in Example 1, the potential window was 5.2 V. Table 1 shows the results.
(C) Production and Evaluation of Electric Double Layer Capacitor As a result of producing and evaluating an electric double layer capacitor in the same manner as in Example 1, the initial capacitance density was 13.0 F / cc, 70 ° C. The capacity deterioration rate after charging and discharging at 7 V for 250 hours was 9.5%. Table 1 shows the measurement results.
[0016]
[Table 1]
Figure 2004335874
【The invention's effect】
By using the non-aqueous electrolyte containing the diamine compound of the present invention, an electric double layer capacitor having a wide potential window and excellent cycle characteristics and high long-term reliability can be realized, and its industrial significance is extremely large.

Claims (2)

非水溶媒と電解質からなる非水電解液に、一般式1の中から選ばれる一種以上のジアミン化合物を含有させた、電気二重層キャパシタ用非水電解液。
R−(NH (1)
(式中、Rは炭素数1〜12の有機基を表す)
A non-aqueous electrolyte for an electric double layer capacitor, wherein a non-aqueous electrolyte comprising a non-aqueous solvent and an electrolyte contains one or more diamine compounds selected from the general formula 1.
R- (NH 2) 2 (1 )
(Wherein, R represents an organic group having 1 to 12 carbon atoms)
一般式1の中から選ばれるジアミン化合物が、1,6−ジアミノヘキサン及び/又は1,3−ビス(アミノメチル)シクロヘキサンである、請求項1記載の電気二重層キャパシタ用非水電解液。The non-aqueous electrolyte for an electric double layer capacitor according to claim 1, wherein the diamine compound selected from the general formula 1 is 1,6-diaminohexane and / or 1,3-bis (aminomethyl) cyclohexane.
JP2003131933A 2003-05-09 2003-05-09 Non-aqueous electrolyte for electric double layer capacitors Expired - Fee Related JP4419431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003131933A JP4419431B2 (en) 2003-05-09 2003-05-09 Non-aqueous electrolyte for electric double layer capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003131933A JP4419431B2 (en) 2003-05-09 2003-05-09 Non-aqueous electrolyte for electric double layer capacitors

Publications (2)

Publication Number Publication Date
JP2004335874A true JP2004335874A (en) 2004-11-25
JP4419431B2 JP4419431B2 (en) 2010-02-24

Family

ID=33506984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003131933A Expired - Fee Related JP4419431B2 (en) 2003-05-09 2003-05-09 Non-aqueous electrolyte for electric double layer capacitors

Country Status (1)

Country Link
JP (1) JP4419431B2 (en)

Also Published As

Publication number Publication date
JP4419431B2 (en) 2010-02-24

Similar Documents

Publication Publication Date Title
EP2037468B1 (en) Additive for electrolyte solution and electrolyte solution
US5754393A (en) Electric double layer capacitor
EP2511923A1 (en) Electric double layer capacitor
JP4904616B2 (en) Electrolytic solution and electrochemical element using the same
EP3240000A1 (en) Electricity storage device
EP1648005A1 (en) Electric double layer capacitor
JP2006024611A (en) Electric double layer capacitor
JP2016167476A (en) Power storage device
JP4419431B2 (en) Non-aqueous electrolyte for electric double layer capacitors
JP5184013B2 (en) Electrolyte for electric double layer capacitor
JP2003173936A (en) Electrolyte solution for electrochemical capacitor and electrochemical capacitor using the same
US10102982B2 (en) Electrolytes for supercapacitors
JP2008091823A (en) Electrolyte for electric double layer capacitor and electric double layer capacitor
JP2007088359A (en) Electrolyte for electrochemistry device, and electrochemistry device using the same
JP2003324038A (en) Electrolyte for electrochemical capacitor and electrochemical capacitor using it
JP4453174B2 (en) Electric double layer capacitor
JP2007281382A (en) Nonaqueous electrolyte for electric double layer capacitor
JP2011159895A (en) Electrolyte for electric double layer capacitor, and electric double layer capacitor
JP2003324039A (en) Electric double-layer capacitor and electrolyte therefor
JP2004335875A (en) Nonaqueous electrolyte for electric double layer capacitor
JP2003173935A (en) Electrolyte solution for electrochemical capacitor and electrochemical capacitor using the same
JP2003197480A (en) Nonaqueous electrolyte composition for electric double- layer capacitor
JP3690065B2 (en) Electric double layer capacitor
KR101583525B1 (en) electrolytic solution for supercapacitor and supercapacitor use the same
KR20230101517A (en) Electric double layer capacitor electrolyte and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees