JP2004335753A - Method and apparatus for drying coating film - Google Patents

Method and apparatus for drying coating film Download PDF

Info

Publication number
JP2004335753A
JP2004335753A JP2003129922A JP2003129922A JP2004335753A JP 2004335753 A JP2004335753 A JP 2004335753A JP 2003129922 A JP2003129922 A JP 2003129922A JP 2003129922 A JP2003129922 A JP 2003129922A JP 2004335753 A JP2004335753 A JP 2004335753A
Authority
JP
Japan
Prior art keywords
film
drying
measuring
observation
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003129922A
Other languages
Japanese (ja)
Inventor
Yoshihiro Uehara
良浩 上原
Akira Imaizumi
陽 今泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003129922A priority Critical patent/JP2004335753A/en
Publication of JP2004335753A publication Critical patent/JP2004335753A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Drying Of Solid Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for drying a coating film which is able to readily determine conditions of drying processes, and steadily form uniform films in a manufacturing site as well as in a development site. <P>SOLUTION: The method for drying a coating film comprises steps of observing the surface of the film, measuring the shape of the film surface or the in-plane deviation distribution of the film thickness, and controlling drying processes based on the result of the previous step. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ウェット塗布膜を乾燥させる乾燥方法、及び乾燥装置に関する。
【0002】
【従来の技術】
半導体や液晶表示装置等のデバイスの製造過程では、リソグラフィ工程をおこなうために、レジストの塗布、乾燥、露光、エッチングがおこなわれる。塗布し乾燥された塗布膜の膜厚や平坦度は、作成されるパターンの幅や位置、高さ等に大きく影響するパラメータであるため高い精度が求められる。
【0003】
従来の乾燥プロセスを決定する方法は、ホットプレートやオーブン等の乾燥装置で温度や乾燥時間等を規定の条件に制御して焼成し、乾燥後の塗布膜を観察あるいは計測することで、設定した条件の良否を判断する。そして条件を変えた試行を繰り返すことで、乾燥プロセス条件を求めていた。
【0004】
しかしこの方法では、乾燥プロセス条件を決定するのに無数の試行が必要で、開発に時間とコストを要する。またプロセス条件は同じでも、実験機と生産機で乾燥装置の種類・規格が異なれば、乾燥後の塗布膜品質は異なってしまう。また同一規格の乾燥装置を使用しても装置個々の特性差により、塗布膜品質にばらつきがでる。また同じ乾燥装置で同条件で運転しても、個々の乾燥させる膜の形状や性状に多少なりのばらつきがあるため、乾燥後に必ずしも同品質の膜ができるわけではない。
【0005】
そこで特開平7−40354号公報では、膜厚測定装置が付設されているオーブンを使用し、乾燥中に液膜厚の変化をモニタしてオーブンの加熱プロセスを制御している。
【0006】
【発明が解決しようとする課題】
塗布液膜の乾燥過程では、塗布液中の対流によってベナールセルと呼ばれるセルが発生することがある。このセルは液面表面に凸凹を作るため、乾燥後の表面粗さも大きくなってしまう。そこでベナールセルが出来始めたら、セルの活動を押さえるようなプロセス制御をおこないたい。しかし、液膜厚をモニタするだけでは、ベナールセルの発生や活動状況はわからない。
【0007】
また乾燥前、乾燥中の塗布液膜形状は、基板内で均一ではなく、また対称であるわけでもなく、ばらつきが存在する。その主な理由を以下に示す。
【0008】
例えばスリットコートでテレビモニタ等の用途向けの大型基板にレジスト液を塗布する場合、基板に塗布を開始してから、終了するまでには一定の時間がかかるため、塗り初めの部分は塗り終わりの部分よりも乾燥が進展している。
【0009】
乾燥は、蒸発面における揮発溶媒の蒸気圧に依存する。揮発溶媒の蒸気圧は、雰囲気温度と気流に左右される。そのため塗布装置内の温度むらや気流分布などの雰囲気環境の影響により、基板内で乾燥速度のばらつきが生じる可能性がある。また塗布装置から乾燥装置に至る搬送工程においては、基板を移動させることで液面上に気流が生じる。基板面上で気流状態が均一だとは考えられないため、発生する気流による乾燥の影響が液面の位置により異なり、基板内で乾燥速度のばらつきを生んでいると考えられる。
【0010】
また液膜は搬送中加減速による慣性力を受けるが、加減速の方向と大きさにより基板位置によって液膜形状の変化も異なる。
【0011】
また、乾燥装置内ではヒーターの配置位置と内部の気流分布により、液膜の乾燥速度が基板内でばらついている。
【0012】
以上あげた例でも明らかなように、乾燥開始時、乾燥中において液膜形状は基板内の位置によりばらつきが存在する。よって、従来例のように単に膜厚だけモニタしても、モニタする位置によりそもそも膜厚が異なるのだから、乾燥プロセスの制御指標にするには十分とは言えない。
【0013】
さらに、乾燥させた塗布膜の端部にはエッジビードといわれる盛り上がりが生じやすい。エッジビード部分は規定の膜品質に適合しないことが多いため、通常はカットされる。そこで、塗布液あるいは塗布基板の使用効率を向上させるには、乾燥条件や雰囲気を制御することで、エッジビードをなくす、あるいは極力小さくする必要がある。エッジビードの形状は、液膜の成分や乾燥方法等により異なる。エッジビードの高さが同じでも、面方向の広がり、つまりエッジビードの太さが異なる。またこの高さは、塗布面内側の平坦面に対する高さなので、平坦面のz位置自体が移動する乾燥工程では、エッジビード部の膜厚が測定できてもエッジビードがどれほど大きいかを厳密に判断することはできない。よって従来例のように単に膜厚だけモニタしても、乾燥プロセスの制御指標にするには十分とは言えない。
【0014】
そこで本発明の目的は、これらの欠点を解消し、乾燥プロセス条件を容易に決定でき、また製造現場でも開発時と同様に均質な膜を安定して生成することができる、塗布膜乾燥方法及び乾燥装置を提供することである。
【0015】
【課題を解決するための手段】
本発明では、膜乾燥中に膜表面を観察できる観察手段を備えていること、及び膜乾燥工程において、膜表面を観察しその観察結果に基づいて、乾燥プロセスを制御することを特徴とする。膜表面を観察することで、ベナールセルの発生や活動状況を把握することができる。
【0016】
また本発明では、膜乾燥中に膜表面形状あるいは膜厚の面内偏差分布計測できる計測手段を備えていること、及び膜乾燥工程において、膜表面形状あるいは膜厚の面内偏差分布を計測し、その計測結果に基づいて乾燥プロセスを制御することを特徴とする。膜表面形状あるいは膜厚の面内偏差分布を計測すれば、乾燥前、乾燥中の塗布液膜形状が基板内でばらついていても、そのばらつき状態を把握し、ばらつきを補正するように乾燥プロセスを制御することで、要求スペックの膜を得ることが従来よりも容易である。また本発明であれば、膜厚という2次元情報ではなく3次元形状が得られるので、エッジビードの形状が把握でき、乾燥プロセスのより良い制御指標が得られる。
【0017】
また本発明では、前記記載の観察エリア及び計測エリアは、φ0.5〜4mmであることを特徴とする。液膜厚さ、液膜の粘度の高低に関わらず、ベナールセルの大きさはおよそサブmm単位であるので、観察及び計測エリアが上記範囲であれば、十分ベナールセルの動きを把握することが可能である。さらに観察結果をリアルタイムで判断し、ベナールセルの活動を押さえるように乾燥プロセス制御をおこなえば、乾燥後の表面粗さを小さくすることができる。
【0018】
こうした乾燥プロセス把握と制御をおこなえば、いち早くプロセス条件を決定でき開発期間の短縮が可能である。また乾燥装置や塗布基板、塗布液や塗布の状態に少々のばらつきがあっても、乾燥中にばらつき状態を把握し、ばらつきを補正するように乾燥プロセスを制御するので、要求スペックの膜を得ることが従来よりも容易である。そのため、製造現場でも開発時と同様に均質な膜を安定して生成することができる。
【0019】
【発明の実施の形態】
以下、実施形態に基づいて本発明を具体的に説明する。
【0020】
〔第1実施形態〕
図1に、本発明の第1実施形態である液膜の乾燥装置の概略構成図を示す。1は基板で、本実施形態では5インチのシリコンウェハである。2は塗布膜で、1の基板上にスリットコートにより塗布される。本実施形態では、塗布液はエポキシ樹脂溶液で、乾燥装置に設置する前の基板中央部での膜厚は130μm程である。塗布された基板はホットプレート3の上に設置される。
【0021】
4は微分干渉観察計で、倍率0.7〜4.5倍、作動距離90mmのレンズを用いており、サブμmレベルの凹凸が観察可能である。観察像は1/2インチCCD(不図示)で撮像され、5の制御機器に送られる。撮影周波数は30Hzである。なお本実施形態では、レンズ倍率は4倍で、基板1中央部分のエリアを対象に観察をおこなった。1/2インチCCDの対角線は8mmなので、この場合の観察エリアは対角2mmに相当する。制御機器5では、モニタに観察した膜表面像が映し出される。また制御機器5により、ホットプレート3の温度制御がなされる。
【0022】
ホットプレート3を100℃に設定し、塗布基板を直置きする。設置直後から微分干渉観察計4で膜表面を観察する。図2に示すようなセル状の模様が観察される。これは、膜中の対流によるもので、ベナールセルと呼ばれている。ベナールセル発生後もホットプレートの温度をそのままにしておくと、セルは形状と位置を次々と変化させていく。観察エリアは対角2mmで、セルの大きさはサブmmレベルなので、セルが動く様子が把握できる。セルの大きさは液膜の厚さ、粘度の高低に関わらずサブmmのオーダーである。観察エリアがφ0.5mmより小さいと、あるタイミングで1つのセルを観察できても、そのセルが動いて画面から外れてしまう。またφ4mm以上に大きいと、観察されるセルの数が多すぎるため、逆にセル各々の動きが把握しにくい。また撮影画像における膜面方向の横分解能が落ちるため、セル1つ1つの観察像が不鮮明になる。よってベナールセルの観察エリアはφ0.5〜4mmの範囲に設定するのが好ましい。
【0023】
ベナールセル発生後も温度を一定100℃に保つと、セル状のまま乾燥が進展し、乾燥後の表面にも微細な凸凹が残ってしまう。そこで本実施形態では、ベナールセルが発生し始めたら、制御機器5からホットプレート3を制御し、ホットプレート3の温度を50℃に下げる。温度が低下していくと、ベナールセルの動きは鈍くなりやがて消滅する。乾燥後の表面粗さは、ホットプレート温度を100℃に保った場合よりも小さい。
【0024】
〔第2実施形態〕
図3に、本発明の第2実施形態である液膜の乾燥装置の概略構成図を示す。基板1は、本実施形態では5インチサイズのガラス板で、非塗布面には反射防止膜が形成されている。塗布膜2は第1の実施形態同様にエポキシ樹脂溶液であり、スリットコートにより基板中央部で130μm程の厚さに塗布される。塗布された基板はホットプレート3の上に設置される。
【0025】
6は格子パターン投影式形状計測器で、格子パターン投影方式により三次元形状を測定する機器である。400万画素正方CCDを搭載し、測定エリアは8mm角、15Hzの周波数で格子模様画像を取り込む。取り込まれた画像データは、フーリエ変換方式により形状データに変換される。この方法により、変化する形状を3μm程度の分解能で、10Hzを超える速度で計測することができる。なおこの計測では、格子パターンを液面に投影し、液表面で反射した光を撮影するが、それ以外の外乱光は計測精度を落とす要因になる。本実施形態で注意すべき主な外乱光は、ガラスの両面で反射する反射光である。本実施形態では、塗布液の屈折率は1.48、ガラスの屈折率は1.50で、屈折率が同等であるため、塗布しているガラス面での反射は無視しうる量である。また非塗布ガラス面は反射防止膜を施すことで反射を防止している。そのため外乱の影響はほとんどなく、高い計測精度が期待できる。本実施形態では、計測エリアを塗布面端部に設定した。
【0026】
格子パターン投影式形状計測器6で計測された形状データは、制御機器5に送られる。制御機器5により、ホットプレート3の温度と電磁弁7の開閉度を制御する。電磁弁7は塗布液溶媒容器8と噴霧ノズル9を結ぶ配管上に位置し、開閉することで噴霧溶媒量を可変できる。塗布液溶媒容器8には、本実施形態の塗布液の溶媒であるキシレンが入れられている。
【0027】
ホットプレート3を100℃に設定し、塗布基板を直置きする。設置直後から格子パターン投影式形状計測器6で、塗布面端部の形状を算出する。塗布面端部は乾燥を開始すると塗布面内側の面に対して相対的に盛り上がりエッジビードが形成されていく。エッジビードの生じる主因は、液膜中央部に比べて相対的に速く溶媒が蒸発することなので、エッジビードが大きくなったら、電磁弁7を開き溶媒をエッジビード部に噴霧する。なお噴霧ノズル9はXYステージ(不図示)に設置されており、基板端面部上を移動し、塗布面周囲に形成されるエッジビードに等しく溶媒が噴霧されるようにする。エッジビードの大きさは、塗布面端面と直交するエッジビード断面の断面積を指標とする。エッジビード断面積は、格子パターン投影式形状計測器6で計測された形状データから算出される。エッジビード断面積が増加しているときは、噴霧量が多くなるように電磁弁7と噴霧ノズル9の移動スピードが制御される。
【0028】
こうして乾燥させた塗布膜は、形状計測と溶媒噴霧をおこなわずに乾燥させた場合よりもエッジビードを小さくでき、基板の使用効率を上げることができる。
【0029】
〔第3実施形態〕
図4に、本発明の第3実施形態である液膜の乾燥装置の概略構成図を示す。基板1は、本実施形態では5インチサイズのシリコンウェハであり、塗布液2はエポキシ樹脂溶液で、乾燥装置に設置する前の基板中央部での膜厚は130μm程である。
【0030】
10は干渉計で、シリコン基板面と塗布液表面から反射する光が干渉することで生じる干渉縞をCCD(不図示)に取りこむ。この干渉縞画像から、液膜厚のばらつき、膜厚むらが把握できる。本実施形態での干渉計10の測定エリアは、基板中央φ130mmで、塗布面全域を網羅している。CCDで取りこまれた縞画像は制御機器5に送られ、制御機器5のモニタに映し出される。制御機器5は、ホットプレート3につながっており、ホットプレート3の制御機能を併せ持つ。本実施形態のホットプレート3は、縦横4列づつ計16個のヒーターを持ち、それぞれ独立に制御可能である。
【0031】
16個すべてのヒーターに同じパワーを付加して温度を100℃に保ったホットプレート3に、塗布基板を直置きする。設置直後から干渉計10で塗布面の膜厚むら分布を可視化する。
【0032】
エッジビード部分は、膜厚が大きく変化するので縞が密になり、黒く塗りつぶしたように観察される。エッジビード以外のエリアも必ずしも平坦ではなく、膜厚むらが存在する。本実施形態では、エッジビード以外の塗布面が乾燥後に平坦になるように16個のヒーターのパワー制御をおこなう。シリコンウェハの切り欠き面の垂直2等分線に対して、膜厚分布が対称になるように、16個のヒーターの出力をリアルタイムで変化させる。例えば図5において、A地点近傍の膜厚がB地点近傍の膜厚より小さければ、A地点側の方が乾燥が進んでいると考えられるので、A地点近傍に位置するヒーターパワーを落とし、B地点側のヒーターパワーを上げる。
【0033】
こうした操作をおこなうことで、より均一な乾燥膜を生成できる。
【0034】
なお本実施形態では、面内の膜厚偏差をモニタしたが、もちろん膜厚自体を測定しても構わない。どちらにしても、乾燥中にインプロセスで面内分布を把握することが、より均一な乾燥膜を得るのに有効な方法である。
【0035】
【発明の効果】
液膜乾燥中に、インプロセスにて液膜表面、液膜表面形状あるいは膜厚の面内偏差分布をモニタすることで、乾燥プロセス条件を容易に決定できる。そのため本発明の装置を使用すれば、開発期間を短縮することが可能である。
【0036】
また乾燥装置や塗布基板、塗布液や塗布の状態に少々のばらつきがあっても、乾燥中にばらつき状態を把握し、ばらつきを補正するように乾燥プロセスを制御することで、要求スペックの膜を得ることが従来よりも容易である。そのため、製造現場でも開発時と同様に均質な膜を安定して生産することができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態を説明するための、液膜の乾燥装置の概略構成図である。
【図2】本発明の第2実施形態で観察されるベナールセル画像である。
【図3】本発明の第2実施形態を説明するための、液膜の乾燥装置の概略構成図である。
【図4】本発明の第3実施形態を説明するための、液膜の乾燥装置の概略構成図である。
【図5】本発明の第3実施形態で、ホットプレートのヒーターのパワー制御方法を説明するための模式図である。
【符号の説明】
1 基板
2 塗布膜
3 ホットプレート
4 微分干渉観察計
5 制御機器
6 格子パターン投影式形状計測器
7 電磁弁
8 塗布液溶媒容器
9 噴霧ノズル
10 干渉計
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a drying method for drying a wet coating film and a drying apparatus.
[0002]
[Prior art]
In a process of manufacturing a device such as a semiconductor or a liquid crystal display device, application of a resist, drying, exposure, and etching are performed in order to perform a lithography process. Since the thickness and flatness of the applied and dried coating film are parameters that greatly affect the width, position, height, and the like of the pattern to be formed, high accuracy is required.
[0003]
The conventional method for determining the drying process was set by controlling the temperature and drying time in a drying device such as a hot plate or an oven under the specified conditions, baking, and observing or measuring the applied film after drying. Determine whether the condition is good or bad. And the drying process condition was calculated | required by repeating the trial which changed the conditions.
[0004]
However, this method requires countless trials to determine the drying process conditions, and requires time and cost for development. Even if the process conditions are the same, if the type and specification of the drying device differ between the experimental machine and the production machine, the quality of the coating film after drying will be different. Further, even if a drying apparatus of the same standard is used, the quality of the coating film varies due to the characteristic difference of each apparatus. Even when the same drying apparatus is operated under the same conditions, the shapes and properties of the individual films to be dried vary somewhat, so that films of the same quality are not necessarily formed after drying.
[0005]
In Japanese Patent Application Laid-Open No. 7-40354, an oven provided with a film thickness measuring device is used, and a change in the liquid film thickness is monitored during drying to control the heating process of the oven.
[0006]
[Problems to be solved by the invention]
In the process of drying the coating liquid film, convection in the coating liquid may generate cells called Benard cells. Since this cell forms irregularities on the liquid surface, the surface roughness after drying also increases. Therefore, when the Benard cell begins to be formed, we want to control the process to suppress the activity of the cell. However, simply monitoring the liquid film thickness does not give any indication of the occurrence or activity of the Benard cell.
[0007]
In addition, the shape of the coating liquid film before and during drying is not uniform and not symmetrical within the substrate, and varies. The main reasons are as follows.
[0008]
For example, when applying a resist solution to a large substrate for applications such as a TV monitor using a slit coat, it takes a certain time from the start of application to the end of application, so the first part of the application is the end of the application. The drying is more advanced than the part.
[0009]
Drying depends on the vapor pressure of the volatile solvent on the evaporation surface. The vapor pressure of the volatile solvent depends on the ambient temperature and the air flow. For this reason, there is a possibility that the drying speed may vary within the substrate due to the influence of the atmospheric environment such as temperature unevenness and air flow distribution in the coating apparatus. Further, in the transport process from the coating device to the drying device, an air flow is generated on the liquid surface by moving the substrate. Since the airflow condition is not considered to be uniform on the substrate surface, the effect of drying due to the generated airflow varies depending on the position of the liquid surface, and it is considered that the drying speed varies within the substrate.
[0010]
Further, the liquid film receives an inertial force due to acceleration / deceleration during transport, but the shape of the liquid film changes depending on the substrate position depending on the direction and magnitude of the acceleration / deceleration.
[0011]
Further, in the drying device, the drying speed of the liquid film varies within the substrate due to the arrangement position of the heater and the air flow distribution inside.
[0012]
As is clear from the above examples, the shape of the liquid film at the start of drying and during drying varies depending on the position in the substrate. Therefore, even if only the film thickness is monitored as in the conventional example, the film thickness is different depending on the position to be monitored.
[0013]
Further, a swelling called an edge bead easily occurs at the end of the dried coating film. Edge bead portions are usually cut because they often do not conform to the specified film quality. Therefore, in order to improve the use efficiency of the coating liquid or the coated substrate, it is necessary to eliminate the edge bead or to minimize the edge bead by controlling the drying conditions and the atmosphere. The shape of the edge bead varies depending on the components of the liquid film, the drying method, and the like. Even if the height of the edge bead is the same, the width in the plane direction, that is, the thickness of the edge bead is different. Further, since this height is a height relative to the flat surface inside the application surface, in the drying step in which the z position itself of the flat surface moves, it is strictly determined how large the edge bead is even if the film thickness of the edge bead portion can be measured. It is not possible. Therefore, even if only the film thickness is monitored as in the conventional example, it cannot be said that it is sufficient as a control index for the drying process.
[0014]
Therefore, an object of the present invention is to solve these drawbacks, to easily determine the drying process conditions, and to stably produce a uniform film at the production site as well as at the time of development, a coating film drying method and It is to provide a drying device.
[0015]
[Means for Solving the Problems]
The present invention is characterized in that an observation means capable of observing the film surface during film drying is provided, and in the film drying step, the film surface is observed and the drying process is controlled based on the observation result. By observing the film surface, it is possible to grasp the occurrence and activity of Benard cells.
[0016]
Further, in the present invention, it is provided with a measuring means capable of measuring the in-plane deviation distribution of the film surface shape or the film thickness during the film drying, and in the film drying step, measuring the in-plane deviation distribution of the film surface shape or the film thickness. The drying process is controlled based on the measurement result. By measuring the film surface shape or the in-plane deviation distribution of the film thickness, even if the coating liquid film shape before and during drying varies in the substrate, the state of the variation can be grasped and the drying process is performed so as to correct the variation. , It is easier to obtain a film having the required specifications than before. According to the present invention, since a three-dimensional shape is obtained instead of two-dimensional information of a film thickness, the shape of an edge bead can be grasped, and a better control index of a drying process can be obtained.
[0017]
In the present invention, the observation area and the measurement area described above have a diameter of 0.5 to 4 mm. Regardless of the thickness of the liquid film and the viscosity of the liquid film, the size of the Benard cell is approximately in the sub-mm unit, so that if the observation and measurement area is within the above range, it is possible to sufficiently grasp the movement of the Benard cell. is there. Furthermore, if the observation result is judged in real time and the drying process is controlled so as to suppress the activity of the Benard cell, the surface roughness after drying can be reduced.
[0018]
By understanding and controlling the drying process, the process conditions can be determined quickly and the development period can be shortened. Also, even if there is a slight variation in the state of the drying device, the coating substrate, the coating liquid and the coating, the variation state is grasped during drying and the drying process is controlled so as to correct the variation, so that a film with required specifications is obtained. Is easier than before. Therefore, a uniform film can be stably generated at the manufacturing site as well as at the time of development.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be specifically described based on embodiments.
[0020]
[First Embodiment]
FIG. 1 shows a schematic configuration diagram of a liquid film drying apparatus according to a first embodiment of the present invention. Reference numeral 1 denotes a substrate, which in this embodiment is a 5-inch silicon wafer. Reference numeral 2 denotes a coating film which is applied on one substrate by slit coating. In the present embodiment, the coating liquid is an epoxy resin solution, and the film thickness at the center of the substrate before being set in the drying device is about 130 μm. The coated substrate is set on the hot plate 3.
[0021]
Reference numeral 4 denotes a differential interference observation meter, which uses a lens having a magnification of 0.7 to 4.5 times and a working distance of 90 mm, and is capable of observing sub-micron level irregularities. The observation image is picked up by a 1/2 inch CCD (not shown) and sent to the control device 5. The shooting frequency is 30 Hz. In this embodiment, the lens magnification was 4 times, and the observation was performed on the area in the center of the substrate 1. Since the diagonal line of the 1/2 inch CCD is 8 mm, the observation area in this case corresponds to 2 mm diagonal. In the control device 5, the observed film surface image is displayed on the monitor. The temperature of the hot plate 3 is controlled by the control device 5.
[0022]
The hot plate 3 is set at 100 ° C., and the coated substrate is placed directly. Immediately after the installation, the film surface is observed with the differential interference observation meter 4. A cellular pattern as shown in FIG. 2 is observed. This is due to convection in the membrane and is called a Benard cell. If the temperature of the hot plate is kept as it is after the occurrence of the Benard cell, the cell changes its shape and position one after another. Since the observation area is 2 mm diagonally and the size of the cell is sub-mm level, it is possible to grasp how the cell moves. The size of the cell is of the order of sub-mm regardless of the thickness of the liquid film and the level of the viscosity. If the observation area is smaller than 0.5 mm, even if one cell can be observed at a certain timing, the cell moves and moves off the screen. On the other hand, when the diameter is larger than φ4 mm, the number of observed cells is too large, and conversely, it is difficult to grasp the movement of each cell. Further, since the lateral resolution in the film surface direction in the photographed image is reduced, the observation image of each cell becomes unclear. Therefore, the observation area of the Benard cell is preferably set in the range of φ0.5 to 4 mm.
[0023]
If the temperature is kept at a constant 100 ° C. even after the occurrence of the Benard cell, the drying proceeds in a cellular state, and fine irregularities remain on the surface after the drying. Therefore, in the present embodiment, when the Benard cell starts to be generated, the controller 5 controls the hot plate 3 to lower the temperature of the hot plate 3 to 50 ° C. As the temperature decreases, the movement of the Benard cell slows down and eventually disappears. The surface roughness after drying is smaller than when the hot plate temperature is kept at 100 ° C.
[0024]
[Second embodiment]
FIG. 3 shows a schematic configuration diagram of a liquid film drying apparatus according to a second embodiment of the present invention. In this embodiment, the substrate 1 is a 5-inch glass plate, and an anti-reflection film is formed on the non-coated surface. The coating film 2 is an epoxy resin solution as in the first embodiment, and is applied by slit coating to a thickness of about 130 μm at the center of the substrate. The coated substrate is set on the hot plate 3.
[0025]
Reference numeral 6 denotes a grid pattern projection type shape measuring device which measures a three-dimensional shape by a grid pattern projection method. A square CCD with 4 million pixels is mounted, and the measurement area is 8 mm square and captures a grid pattern image at a frequency of 15 Hz. The captured image data is converted into shape data by a Fourier transform method. According to this method, a changing shape can be measured at a resolution of about 3 μm at a speed exceeding 10 Hz. In this measurement, the grid pattern is projected onto the liquid surface, and the light reflected on the liquid surface is photographed. However, other disturbance light causes a reduction in measurement accuracy. Main disturbance light to be noted in the present embodiment is reflected light reflected on both surfaces of the glass. In the present embodiment, the coating liquid has a refractive index of 1.48, the glass has a refractive index of 1.50, and the refractive indices are the same, so that the reflection on the glass surface being coated is negligible. The non-coated glass surface is provided with an antireflection film to prevent reflection. Therefore, there is almost no influence of disturbance, and high measurement accuracy can be expected. In the present embodiment, the measurement area is set at the end of the application surface.
[0026]
The shape data measured by the grid pattern projection type shape measuring device 6 is sent to the control device 5. The controller 5 controls the temperature of the hot plate 3 and the degree of opening and closing of the solenoid valve 7. The electromagnetic valve 7 is located on a pipe connecting the coating liquid solvent container 8 and the spray nozzle 9, and can be opened and closed to change the spray solvent amount. The coating solution solvent container 8 contains xylene which is a solvent of the coating solution of the present embodiment.
[0027]
The hot plate 3 is set at 100 ° C., and the coated substrate is placed directly. Immediately after the installation, the shape of the end portion of the application surface is calculated by the grid pattern projection type shape measuring device 6. When drying is started, the edge of the coating surface rises relatively to the inner surface of the coating surface to form an edge bead. The main cause of the edge bead is that the solvent evaporates relatively quickly as compared with the central portion of the liquid film. Therefore, when the edge bead becomes large, the electromagnetic valve 7 is opened and the solvent is sprayed on the edge bead portion. The spray nozzle 9 is installed on an XY stage (not shown), moves on the end face of the substrate, and sprays the solvent equally to the edge beads formed around the application surface. The size of the edge bead is based on the cross-sectional area of the edge bead cross section orthogonal to the end face of the application surface. The edge bead cross-sectional area is calculated from the shape data measured by the grid pattern projection type shape measuring device 6. When the edge bead cross-sectional area increases, the movement speed of the solenoid valve 7 and the spray nozzle 9 is controlled so that the spray amount increases.
[0028]
The coated film dried in this manner can reduce the edge bead as compared with the case where the coating film is dried without performing shape measurement and solvent spraying, and can increase the use efficiency of the substrate.
[0029]
[Third embodiment]
FIG. 4 shows a schematic configuration diagram of a liquid film drying apparatus according to a third embodiment of the present invention. The substrate 1 is a silicon wafer having a size of 5 inches in the present embodiment, the coating liquid 2 is an epoxy resin solution, and the film thickness at the center of the substrate before being set in a drying device is about 130 μm.
[0030]
Reference numeral 10 denotes an interferometer, which takes in an interference fringe generated by interference between light reflected from the silicon substrate surface and the coating liquid surface into a CCD (not shown). From this interference fringe image, variation in the liquid film thickness and film thickness unevenness can be grasped. The measurement area of the interferometer 10 in this embodiment is φ130 mm at the center of the substrate, and covers the entire coating surface. The stripe image captured by the CCD is sent to the control device 5 and displayed on a monitor of the control device 5. The control device 5 is connected to the hot plate 3 and has a function of controlling the hot plate 3. The hot plate 3 of the present embodiment has a total of 16 heaters in four rows and four columns, and can be independently controlled.
[0031]
The coated substrate is directly placed on the hot plate 3 in which the same power is applied to all 16 heaters and the temperature is kept at 100 ° C. Immediately after the installation, the thickness distribution of the coating surface is visualized by the interferometer 10.
[0032]
Since the edge bead portion has a large change in film thickness, the stripes become denser and are observed as if they were painted black. Areas other than the edge beads are not always flat, and there is unevenness in film thickness. In the present embodiment, the power control of the 16 heaters is performed so that the application surface other than the edge beads becomes flat after drying. The outputs of the 16 heaters are changed in real time so that the film thickness distribution is symmetrical with respect to the perpendicular bisector of the cut surface of the silicon wafer. For example, in FIG. 5, if the film thickness near the point A is smaller than the film thickness near the point B, it is considered that the drying on the side of the point A is more advanced. Increase the heater power on the point side.
[0033]
By performing such an operation, a more uniform dried film can be generated.
[0034]
In the present embodiment, the in-plane film thickness deviation is monitored, but the film thickness itself may be measured. In any case, grasping the in-plane distribution in-process during drying is an effective method for obtaining a more uniform dried film.
[0035]
【The invention's effect】
During the liquid film drying, the drying process conditions can be easily determined by monitoring the liquid film surface, the liquid film surface shape, or the in-plane deviation distribution of the film thickness in the in-process. Therefore, if the device of the present invention is used, the development period can be shortened.
[0036]
In addition, even if there is a slight variation in the state of the drying device, coating substrate, coating liquid and coating, it is possible to grasp the state of the variation during drying and control the drying process to correct the variation, thereby achieving the required specification film. It is easier to obtain than before. Therefore, a uniform film can be stably produced at the manufacturing site as well as at the time of development.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a liquid film drying apparatus for explaining a first embodiment of the present invention.
FIG. 2 is a Benard cell image observed in a second embodiment of the present invention.
FIG. 3 is a schematic configuration diagram of a liquid film drying apparatus for explaining a second embodiment of the present invention.
FIG. 4 is a schematic configuration diagram of a liquid film drying apparatus for explaining a third embodiment of the present invention.
FIG. 5 is a schematic diagram for explaining a power control method of a heater of a hot plate according to a third embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Substrate 2 Coating film 3 Hot plate 4 Differential interference observation instrument 5 Control device 6 Grid pattern projection type shape measuring instrument 7 Solenoid valve 8 Coating liquid solvent container 9 Spray nozzle 10 Interferometer

Claims (11)

膜乾燥工程において、膜表面を観察しその観察結果に基づいて、乾燥プロセスを制御することを特徴とする膜乾燥方法。In a film drying step, a film drying method characterized by observing a film surface and controlling a drying process based on the observation result. 膜乾燥工程において、膜表面形状を計測しその計測結果に基づいて、乾燥プロセスを制御することを特徴とする膜乾燥方法。In the film drying step, a film surface shape is measured, and a drying process is controlled based on the measurement result. 膜乾燥工程において、膜厚の面内偏差分布を計測しその計測結果に基づいて、乾燥プロセスを制御することを特徴とする膜乾燥方法。In a film drying step, an in-plane deviation distribution of film thickness is measured, and a drying process is controlled based on the measurement result. 請求項1に記載の観察エリア及び請求項2と3に記載の計測エリアは、φ0.5〜4mmであることを特徴とする請求項1〜3記載の膜乾燥方法。The film drying method according to any one of claims 1 to 3, wherein the observation area according to claim 1 and the measurement area according to claims 2 and 3 have a diameter of 0.5 to 4 mm. 膜乾燥中に膜表面を観察できる観察手段を備えた膜乾燥装置。A film drying device provided with an observation means capable of observing a film surface during film drying. 膜乾燥中に膜表面を観察できる観察手段を備え、該観察した結果に基づいて乾燥プロセスを制御することを特徴とする膜乾燥装置。A film drying apparatus, comprising: an observation unit capable of observing a film surface during film drying, and controlling a drying process based on the observation result. 膜乾燥中に膜表面形状を計測できる計測手段を備えた膜乾燥装置。A film drying device provided with a measuring means capable of measuring a film surface shape during film drying. 膜乾燥中に膜表面形状を計測できる計測手段を備え、該計測した結果に基づいて乾燥プロセスを制御することを特徴とする膜乾燥装置。A film drying apparatus, comprising: a measuring unit capable of measuring a film surface shape during film drying, and controlling a drying process based on a result of the measurement. 膜乾燥中に膜厚の面内偏差分布を計測できる計測手段を備えた膜乾燥装置。A film drying apparatus provided with a measuring means capable of measuring an in-plane deviation distribution of a film thickness during film drying. 膜乾燥中に膜厚の面内偏差分布を計測できる計測手段を備え、該計測結果に基づいて乾燥プロセスを制御することを特徴とする膜乾燥装置。A film drying apparatus, comprising: measuring means for measuring an in-plane deviation distribution of a film thickness during film drying, and controlling a drying process based on the measurement result. 請求項5と6に記載の観察エリア及び請求項7から10に記載の計測エリアが、φ0.5〜4mmであることを特徴とする請求項5から10記載の膜乾燥装置。The film drying apparatus according to claim 5, wherein the observation area according to claims 5 and 6 and the measurement area according to claims 7 to 10 have a diameter of 0.5 to 4 mm.
JP2003129922A 2003-05-08 2003-05-08 Method and apparatus for drying coating film Withdrawn JP2004335753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003129922A JP2004335753A (en) 2003-05-08 2003-05-08 Method and apparatus for drying coating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003129922A JP2004335753A (en) 2003-05-08 2003-05-08 Method and apparatus for drying coating film

Publications (1)

Publication Number Publication Date
JP2004335753A true JP2004335753A (en) 2004-11-25

Family

ID=33505587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003129922A Withdrawn JP2004335753A (en) 2003-05-08 2003-05-08 Method and apparatus for drying coating film

Country Status (1)

Country Link
JP (1) JP2004335753A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010003881A (en) * 2008-06-20 2010-01-07 Toppan Printing Co Ltd Substrate treatment apparatus
JP2012093184A (en) * 2010-10-26 2012-05-17 Jfe Techno Research Corp Spray device for corrosion acceleration test
CN110715607A (en) * 2019-10-10 2020-01-21 东莞市国瓷新材料科技有限公司 Automatic measurement method for high-thermal-conductivity DPC ceramic substrate with thick copper plated on dry film
CN114054307A (en) * 2020-07-30 2022-02-18 中外炉工业株式会社 Edge portion flattening apparatus and coating and drying system including the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010003881A (en) * 2008-06-20 2010-01-07 Toppan Printing Co Ltd Substrate treatment apparatus
JP2012093184A (en) * 2010-10-26 2012-05-17 Jfe Techno Research Corp Spray device for corrosion acceleration test
CN110715607A (en) * 2019-10-10 2020-01-21 东莞市国瓷新材料科技有限公司 Automatic measurement method for high-thermal-conductivity DPC ceramic substrate with thick copper plated on dry film
CN110715607B (en) * 2019-10-10 2022-11-01 西安柏芯创达电子科技有限公司 Automatic measurement method for high-thermal-conductivity DPC ceramic substrate with thick copper plated on dry film
CN114054307A (en) * 2020-07-30 2022-02-18 中外炉工业株式会社 Edge portion flattening apparatus and coating and drying system including the same
TWI798599B (en) * 2020-07-30 2023-04-11 日商中外爐工業股份有限公司 Edge flattening equipment and coating drying system including the equipment

Similar Documents

Publication Publication Date Title
TWI260046B (en) Temperature-sensing wafer position detection system and method
US20160260623A1 (en) Method and Apparatus for Planarization of Substrate Coatings
JP2015204419A (en) Imprint device, and manufacturing method of article
KR100969636B1 (en) Process controls for improved wafer uniformity using integrated or standalone metrology
JP2004335753A (en) Method and apparatus for drying coating film
JP5231072B2 (en) Film formation method
JP2005114615A (en) Method and apparatus for measuring wetting properties on solid surface
TW200400543A (en) Spin-coating method, determination method for spin-coating condition and mask blank
US9941177B2 (en) Pattern accuracy detecting apparatus and processing system
JP2009253165A (en) Coating apparatus and coating method
JP2005334754A (en) Coating film forming apparatus
CN105988310A (en) Photo-etching method and wafer
Vdovin et al. Flexible reflecting membranes micromachined in silicon
JP6095405B2 (en) Alignment method
JP2000033301A (en) Method and device for coating surface of substrate in uniform thickness
KR101334898B1 (en) Method of forming nano protrusion patterns
JP2006055756A (en) Resist application method
Manske et al. Dynamic measurements of film thickness over local topography in spin coating
JP3022896B2 (en) Manufacturing method of exposure mask
JP5552776B2 (en) Manufacturing method and inspection method of mold for nanoimprint
JP5201761B2 (en) Development processing evaluation method
KR101084315B1 (en) Cylindarical mold having measurement tip and coating thickness measurement method
US9217918B2 (en) Photomask, photomask manufacturing apparatus, and photomask manufacturing method
JP2005303093A (en) Heat treatment evaluating method and development processing evaluating method
Sanghvi et al. Influence of flow rate, nozzle speed, pitch and the number of passes on the thickness of S1805 photoresist in SUSS MicroTec AS8 spray coater

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060801