JP2004335723A - Composition for polishing semiconductor wafer - Google Patents

Composition for polishing semiconductor wafer Download PDF

Info

Publication number
JP2004335723A
JP2004335723A JP2003129292A JP2003129292A JP2004335723A JP 2004335723 A JP2004335723 A JP 2004335723A JP 2003129292 A JP2003129292 A JP 2003129292A JP 2003129292 A JP2003129292 A JP 2003129292A JP 2004335723 A JP2004335723 A JP 2004335723A
Authority
JP
Japan
Prior art keywords
polishing
composition
acid
abrasive particles
semiconductor wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003129292A
Other languages
Japanese (ja)
Other versions
JP4546039B2 (en
Inventor
Tadashi Teramoto
匡志 寺本
Koichi Yoshida
光一 吉田
Tomohito Tamagawa
智史 玉川
Hiroshi Makino
弘 牧野
Tomoyuki Toda
智之 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitta DuPont Inc
Original Assignee
Rodel Nitta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rodel Nitta Inc filed Critical Rodel Nitta Inc
Priority to JP2003129292A priority Critical patent/JP4546039B2/en
Publication of JP2004335723A publication Critical patent/JP2004335723A/en
Application granted granted Critical
Publication of JP4546039B2 publication Critical patent/JP4546039B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composition for polishing a semiconductor wafer in which durability of a pad can be enhanced by preventing occurrence of glazing without sacrifice of polishing speed of the wafer, planarity of the polished wafer, and dispersion stability of abrasive powder. <P>SOLUTION: The composition comprises silica based polish particles, a polish accelerator, and the remainder of water wherein the content of the silica based polish particles is 0.05-3.0 wt% of the total quantity of the composition and the weight ratio of the silica based polish particles and the polish accelerator (polish accelerator/silica based polish particles) is 0.8-20. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【従来の技術とその課題】
本発明は、半導体ウェハ研磨用組成物に関する。
【0002】
【従来の技術】
CMP(Chemical Mechanical Polishing)は、半導体ウェハの平坦化を行う技術であり、半導体の高性能化および高集積化を達成する上で、必要不可欠なものになっている。
【0003】
CMP工程では、図4に示すように、研磨定盤1に貼付されたパッド2に、ウェハ3の被研磨面がパッド2に接するようにウェハ3を載せ、ウェハ3に加圧ヘッド4を押し付けてウェハ3に一定の荷重をかけかつ研磨用組成物5をパッド2表面に供給しながら、パッド2と加圧ヘッド4とを回転させることによって、ウェハ3の研磨が行われる。
【0004】
研磨用組成物は、研磨剤を含む水性スラリーであり、ウェハの被研磨面に形成される膜の材質などに応じて、種々の研磨剤の中から適当なものが選択される。その中でも、コロイダルシリカ、ヒュームドシリカなどのシリカ系研磨粒子を含む水性スラリーである研磨用組成物(たとえば、特許文献1参照)が汎用されている。シリカ系研磨粒子とともに、ウェハの研磨速度を向上させるために、ピペラジン、水溶性アルキルアミン、第4級アンモニウム塩などの研磨促進剤を含む研磨用組成物も知られている(たとえば、特許文献2、特許文献3および特許文献4参照)。しかしながら、シリカ系研磨粒子を含む研磨用組成物を用いてウェハを研磨すると、パッド表面にシリカ被膜が形成されるグレージングという現象が起こり、パッド表面がガラス化される。その結果、パッドそのものの研磨能力が著しく低下し、パッドの耐用性が損なわれ、パッド寿命が短くなる。
【0005】
従来の研磨用組成物において、高濃度の研磨促進剤もしくは無機系のアルカリ剤を加えて組成物のpHを11より高く調整することによって、パッドの耐用性を向上できることは知られている。ところが、pH11を超える高アルカリ領域では、シリカ系研磨粒子の分散安定性が低下し、研磨粒子が凝集およびケイ酸イオンとなって溶解し、研磨速度およびウェハ表面状態に悪影響を及ぼす問題が起こる。加えて、研磨促進剤として有用なピペラジンは、水に対して高い溶解度を有するけれども、シリカ系研磨粒子の存在する系では濃度が高くなるほど溶解性が不安定になり、気温および気圧の変化などによって析出を起こすので、高濃度の添加はできない。
【0006】
さらに、シリカ系研磨粒子とピペラジンとを含み、シリカ系研磨粒子とピペラジンとの重量比(ピペラジン/シリカ系研磨粒子)が0.1〜0.8の範囲にある研磨用組成物が知られている(たとえば、特許文献5)。この研磨用組成物を用いてウェハの研磨を行うと、高い研磨速度が達成され、しかも研磨後のウェハの表面は平坦化度および清浄度が高い。しかしながら、この研磨用組成物においても、シリカ系研磨粒子を含む研磨用組成物に共通する、パッドの耐用性が損なわれるという欠点は、解決されるには至っていない。
【0007】
【特許文献1】
特開昭52−47369号公報
【特許文献2】
特開昭62−30333号公報
【特許文献3】
米国特許第4169337号明細書
【特許文献4】
特開昭58−225177号公報
【特許文献5】
特開平5−154760号公報
【0008】
【発明が解決しようとする課題】
本発明の目的は、ウェハの研磨速度、研磨後のウェハの平坦化度および研磨剤の分散安定性を損なうことなく、グレージングの発生を防止し、パッドの耐用性を向上させることができる半導体ウェハ研磨用組成物を提供することである。
【0009】
【課題を解決するための手段】
本発明は、シリカ系研磨粒子および研磨促進剤を含み、残部が水である組成物であって、シリカ系研磨粒子の含有量が組成物全量の0.05〜3.0重量%でありかつシリカ系研磨粒子と研磨促進剤との重量比(研磨促進剤/シリカ系研磨粒子)が0.8〜20であることを特徴とする半導体ウェハ研磨用組成物である。
【0010】
本発明に従えば、シリカ系研磨粒子と研磨促進剤とを含む研磨用組成物において、シリカ系研磨粒子を0.05〜3.0重量%という比較的低い濃度で含有させ、かつシリカ系研磨粒子と研磨促進剤との重量比が0.8〜20という特定範囲になるように研磨促進剤を含有させることによって、ウェハの研磨作業に悪影響をおよぼすような程度まで研磨速度を低下させることなく、また研磨後のウェハ表面の平坦化度を損なうことなく、研磨後のウェハ表面に表面荒れが発生することなく、さらにシリカ系研磨粒子の分散安定性が低下し、該研磨粒子が凝集および溶解を起こすことなく、グレージングの発生が防止され、パッドの耐用性を向上させることができる半導体ウェハ研磨用組成物が提供される。
【0011】
本発明に従えば、シリカ系研磨粒子を非常に低い濃度で含有させることによって、ウェハの耐用性をさらに向上させながら、研磨速度の低下をさらに少なくすることができる。
【0012】
また本発明の半導体ウェハ研磨用組成物は、前述の研磨促進剤が、ピペラジン、炭素数1〜6の第1級アミン化合物および第4級アンモニウム塩から選ばれる1種または2種以上のアミン化合物であることを特徴とする。
【0013】
本発明に従えば、研磨促進剤として特定のアミン化合物を使用することによって、グレージングが一層防止され、パッドの耐用性向上が顕著であるとともに、研磨速度の低下を一層少なくすることができる。
【0014】
また本発明の半導体ウェハ研磨用組成物は、pH調整剤としてさらに有機酸および錯化剤を含むことを特徴とする。
【0015】
また本発明の半導体ウェハ研磨用組成物は、前述の有機酸が炭素数2〜6のモノカルボン酸、炭素数2〜6のジカルボン酸、炭素数3〜6のトリカルボン酸、芳香族カルボン酸およびアスコルビン酸から選ばれる1種または2種以上であることを特徴とする。
【0016】
また本発明の半導体ウェハ研磨用組成物は、前述の錯化剤がエチレンジアミン4酢酸、ヒドロキシエチルエチレンジアミン3酢酸、ジエチレントリアミン5酢酸、ニトリロ3酢酸、トリエチレンテトラミン6酢酸、ヒドロキシエチルイミノ2酢酸、ジヒドロキシエチルグリシン、エチレングリコール−ビス(β−アミノエチルエーテル)−N,N’−4酢酸および1,2−ジアミノシクロヘキサン−N,N,N’,N’−4酢酸から選ばれる1種または2種以上であることを特徴とする。
【0017】
また本発明の半導体ウェハ研磨用組成物は、前述の有機酸および錯化剤から選ばれる1種または2種以上の含有量が、組成物全量の0.005〜0.5重量%であることを特徴とする。
【0018】
本発明に従えば、本発明の研磨用組成物に有機酸および錯化剤から選ばれる1種または2種以上、好ましくは特定のものから選ばれる1種または2種以上をさらに配合することによって、研磨速度、パッドの耐用性などを低下させることなく、研磨剤の分散安定性、研磨後のウェハ表面で表面荒れが起こるのを一層防止し、研磨後のウェハの平坦化度をさらに向上させることができる。
【0019】
【発明の実施の形態】
本発明の半導体ウェハ研磨用組成物は、シリカ系研磨粒子および研磨促進剤を含み、残部が水である組成物である。
【0020】
本発明の研磨用組成物は、シリカ系研磨粒子の含有量が通常0.01〜3.0重量%であり、好ましくは0.3〜1.0重量%であり、シリカ系研磨粒子の含有量が0.01重量%未満では、充分な研磨速度を得ることができない。一方、3.0重量%を超えると、グレージングが発生しやすく、パッドの耐用性を損なうおそれがある。
【0021】
また本発明の研磨用組成物は、シリカ系研磨粒子と研磨促進剤との重量比(研磨促進剤/シリカ系研磨粒子)が通常0.8〜20、好ましくは0.8〜5.0であることを特徴とする。重量比が0.8未満では、グレージング防止効果が不十分になり、パッドの耐用性を向上させることができない。一方20を超えると、ウェハの研磨速度が低下するとともに、研磨後のウェハ表面における表面荒れが顕著になるおそれがある。
【0022】
本発明の研磨用組成物のpHは特に制限されないけれども、研磨速度、パッドの耐用性、研磨後のウェハの表面状態(平坦化度、表面荒れの発生の有無など)、研磨粒子の分散安定性などを考慮すると、10.0〜11.0の範囲が好ましい。
【0023】
本発明の研磨用組成物は、各成分の含有量を研磨に用いるのに適した範囲に調整された場合でもよく、各成分を高濃度で含有するように調製し、それを1〜30倍程度に希釈し、各成分の含有量を研磨に用いるのに適した範囲に調整してもよい。
【0024】
本発明の研磨用組成物において、シリカ系研磨粒子としてはこの分野で常用されるものを使用でき、たとえば、コロイダルシリカ、ヒュームドシリカなどが挙げられる。これらの中でも、コロイダルシリカが好ましい。シリカ系研磨粒子は1種を単独で使用できまたは2種以上を併用できる。シリカ系研磨粒子の粒子径は特に制限されず、研磨対象であるウェハの種類などに応じて広い範囲から適宜選択できるけれども、通常は10〜300nm程度、好ましくは50〜100nm程度である。
【0025】
研磨促進剤としてはこの分野で常用されるものを使用でき、たとえば、ピペラジン、炭素数1〜6の第1級アミン化合物、第4級アンモニウム塩などのアミン化合物が挙げられる。ピペラジンには、置換基を有するピペラジンを包含される。置換基を有するピペラジンとしては、たとえば、N−アミノエチルピペラジン、1,4−ビス(3−アミノプロピル)ピペラジン、無水ピペラジン、ピペラジン6水和物などの、水酸基、アミノ基などを有することのある炭素数1〜4の直鎖または分岐鎖状のアルキル基が窒素原子に置換したピペラジンなどが挙げられる。炭素数1〜6の第1級アミンとしては、たとえば、α−オキシエチルアミン(α−アミノエチルアルコール)、モノエタノールアミン(β−アミノエチルアルコール)、アミノエチルエタノールアミン、トリエチレンテトラミン、エチレンジアミンなどが挙げられる。第4級アンモニウム塩としては、たとえば、テトラメチルアンモニウム塩化物、テトラメチルアンモニウム水酸化物、ジメチルジエチルアンモニウム塩化物、N,N−ジメチルモルホリニウム硫酸塩、テトラブチルアンモニウム臭化物などが挙げられる。これらの中でも、無水ピペラジンが好ましい。研磨促進剤は、1種を単独で使用できまたは2種以上を併用できる。
【0026】
研磨促進剤の含有量は、前述のとおり、シリカ系研磨粒子と研磨促進剤との重量比(研磨促進剤/シリカ系研磨粒子)が0.8〜20になる量である。
【0027】
本発明の研磨用組成物は、有機酸および錯化剤から選ばれる1種または2種以上を含んでいてもよい。これらは、本発明の研磨用組成物において、たとえば、pH調整剤、pH緩衝剤として作用する。
【0028】
有機酸としてはこの分野で常用されるものを使用でき、たとえば、ギ酸、酢酸、プロピオン酸、酪酸、バレリン酸、乳酸などの炭素数2〜6のモノカルボン酸、シュウ酸、マロン酸、コハク酸、酒石酸、リンゴ酸、フマル酸などの炭素数2〜6のジカルボン酸、クエン酸、イソクエン酸などの炭素数3〜6のトリカルボン酸、サリチル酸などの芳香族カルボン酸、アスコルビン酸などが挙げられる。有機酸には、前記カルボン酸類およびアスコルビン酸の塩も包含される。有機酸は1種を単独で使用できまたは2種以上を併用できる。
【0029】
錯化剤としてはこの分野で常用されるものを使用でき、たとえば、エチレンジアミン4酢酸(EDTA)、ヒドロキシエチルエチレンジアミン3酢酸(HEDTA)、ジエチレントリアミン5酢酸(DTPA)、ニトリロ3酢酸(NTA)、トリエチレンテトラミン6酢酸(TTHA)、ヒドロキシエチルイミノ2酢酸(HIDA)、ジヒドロキシエチルグリシン(DHEG)、エチレングリコール−ビス(β−アミノエチルエーテル)−N,N’−4酢酸(EGTA)、1,2−ジアミノシクロヘキサン−N,N,N’,N’−4酢酸(CDTA)などが挙げられる。これらの中でも、研磨後のウェハが研磨の際などに生じる金属イオンによって汚染されることを防止するという観点から、EDTA、DTPA、TTHAなどが好ましく、TTHAが特に好ましい。錯化剤は1種を単独で使用できまたは2種以上を併用できる。
【0030】
有機酸および錯化剤の含有量は特に制限されず、研磨剤の種類、粒子径、含有量、研磨促進剤の種類、含有量、研磨対象であるウェハの種類などの各種条件に応じて広い範囲から適宜選択することができる。しかしながら、通常は、研磨用組成物のpHが10〜11の範囲になる量が使用される。研磨用組成物のpHを10〜11の範囲に調整するための有機酸および錯化剤の含有量は、通常は研磨用組成物全量の0.005〜0.5重量%である。
【0031】
本発明の研磨用組成物は、その好ましい特性を損なわない範囲で、アルコール類を含んでいてもよい。アルコール類は、たとえば、ピペラジンなどの研磨促進剤および他成分の溶解助剤として作用する。すなわちアルコール類を加えることによって、研磨促進剤などの溶解安定性をさらに向上させることができる。アルコール類としては公知のものを使用できるけれども、その中でも、炭素数1〜6の脂肪族飽和アルコールが好ましい。炭素数1〜6の脂肪族飽和アルコールとしては、たとえば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、tert−ブタノール、ペンタノール、ヘキサノールなどの炭素数1〜6の直鎖または分岐鎖状の脂肪族飽和アルコールなどが挙げられる。これらのアルコールは、アルキル部分に水酸基などの置換基を有していてもよい。これらの中でも、メタノール、エタノール、プロパノールなどの炭素数1〜3のものが特に好ましい。アルコール類は1種を単独で使用できまたは2種以上を併用できる。
【0032】
アルコール類の含有量は、アルコール類そのものの種類、他の成分の種類および含有量、研磨対象である半導体の種類などの各種条件に応じて広い範囲から適宜選択できるけれども、たとえばシリカ系研磨粒子の分散安定性など、他の特性に悪影響を及ぼすことなく、研磨促進剤の溶解安定性を向上させることを考慮すると、通常は研磨用組成物全量の0.01〜0.5重量%である。
【0033】
本発明の研磨組成物は、研磨剤および研磨促進剤の適量ならびに有機酸および錯化剤の適量さらに必要に応じて他の添加剤の適量を用い、かつ水を用いて全量を100重量%とし、これらの成分を一般的な混合手段に従って混合することによって製造することができる。ここで使用する水は特に制限されないけれども、用途を考慮すると、超純水、純水、イオン交換水、蒸留水などが好ましい。
【0034】
本発明の半導体ウェハ研磨用組成物の好ましい形態では、コロイダルシリカ、研磨促進剤ならびに有機酸および錯化剤から選ばれる1種または2種以上を含み、残部が水であり、コロイダルシリカの含有量が組成物全量の0.05〜3.0重量%でありかつコロイダルシリカと研磨促進剤の重量比(研磨促進剤/シリカ)が0.8〜20である。
【0035】
本発明の研磨用組成物を用いてウェハの研磨を行うに際しては、従来の研磨用組成物に代えて本発明の研磨用組成物を用いる以外は、従来のウェハ研磨と同様に行うことができる。
【0036】
本発明の研磨用組成物は、ウェハのCMP加工全般において研磨用組成物として使用できる。具体的には、ウェハに形成された薄膜、たとえば、W、Cu、Ti、Taなどの金属膜、TiN、TaN、Siなどのセラミックス膜、SiO、p−TEOSなどの酸化膜、HSQ膜、メチル化HSQ膜、SiLK膜、ポーラス膜などの低誘電膜などの薄膜が形成されたウェハの研磨に好適に使用できる。
【0037】
また本発明の研磨用組成物は、半導体ウェハのCMP加工に限定されず、それ以外の用途で金属、セラミックスなどを研磨する際にも、好適に使用できる。
【0038】
[実施例]
以下に実施例、比較例および試験例を挙げ、本発明を具体的に説明する。
【0039】
実施例1〜3および比較例1〜3
表1に示す割合(重量%)で、コロイダルシリカ(平均粒子径70nm)、ピペラジン、クエン酸、EDTA、メタノールおよび水を用い、これらの成分を混合し、本発明および比較例の研磨用組成物を調製した。
【0040】
【表1】

Figure 2004335723
【0041】
比較例4
市販の研磨用組成物(商品名:Nalco2350、Nalco社製)を比較のために用いた。この研磨組成物は、水で20倍に希釈してコロイダルシリカ 約2.5重量%として研磨に用いた。
【0042】
試験例1(パッドの耐用性評価)
研磨装置(Strasbagh6CA)を用い、研磨パッド(Suba800、ロデール・ニッタ社製)に実施例3ならびに比較例1および2の研磨用組成物を100ml/分の割合で供給し、かつ直径4インチ×3枚のシリコンウェハに約29.4×10Pa(300gf/cm)の圧力をかけながら、研磨定盤を115rpmおよび加圧ヘッドを100rpmでそれぞれ回転させ、40分間研磨を行った。
【0043】
研磨終了後、ウェハ重量を測定し、1分間平均除去量を算出して研磨速度(μm/分)とした。上記の研磨を繰り返し行い、シリコンウェハは1回ごとに未研磨のものに取替え、パッドは同一のものを用いた。結果を図1に示す。
【0044】
図1において、○は実施例3の組成物、●は比較例1の組成物および△は比較例2の組成物の結果をそれぞれ示す。図1から明らかなように実施例1の方が比較例1より同等もしくはそれ以上の研磨レートを維持し、パッドのグレージングに対し効果があることを示した。
【0045】
試験例2(研磨速度評価)
研磨装置(Strasbagh6CA)を用い、研磨パッド(Suba600、ロデール・ニッタ(株)製)に実施例1〜3および比較例1、3および4の研磨用組成物を5リットル/分の割合で供給しかつ4インチ×3枚のシリコンウェハに約29.4×10Pa(300gf/cm)の圧力をかけながら、研磨定盤を115rpmおよび加圧ヘッドを100rpmでそれぞれ回転させ、30分間研磨を行った。
【0046】
研磨終了後、ウェハ重量を測定し、1分間平均除去量を算出して研磨速度(μm/分)とした。上記の研磨を繰り返し行い、シリコンウェハは1回ごとに未研磨のものに取替え、パッドは同一のものを用いた。
【0047】
比較例1の組成物の研磨速度を1とし、これに対する相対値として各組成物の研磨速度を求めた。結果を図2に示す。
【0048】
図2において、(a)は比較例3、(b)は実施例1、(c)は実施例2、(d)は実施例3、(e)比較例1および(f)は比較例4の組成物の研磨速度(相対値)をそれぞれ示す。図2から、本発明組成物による研磨速度は、比較用組成物(比較例1)とほぼ同等であり、従来の組成物(比較例3)より著しく高いことが明らかである。
【0049】
試験例4(研磨剤の分散安定性)
実施例1〜3および比較例1の研磨用組成物について、研磨剤の分散安定性を比較するために、ゼータ電位測定計(商品名:DT−1200、ディスバージョン・テクノロジー(Dispersion Technology)社製、測定原理:超音波(コロイド振動電流)法)を用いて、それぞれの研磨剤のゼータ電位を測定した。ゼータ電位の絶対値が大きいほど、分散性が良好であることになる。結果を図3に示す。図3から、本発明の研磨用組成物においては、研磨剤であるコロイダルシリカが、比較例の研磨用組成物と同等またはそれ以上の安定性を持って分散していることが明らかである。
【0050】
図1〜3の結果を総合すると、本発明の構成を採用することによって、ウェハの研磨速度および研磨剤の分散安定性を損なうことなく、特に研磨剤の分散安定性についてはさらに向上させながら、パッドの耐用性を向上させることができる。
【0051】
【発明の効果】
本発明によれば、シリカ系研磨粒子と研磨促進剤とを含む研磨用組成物においてシリカ系研磨粒子と研磨促進剤との重量比が0.8〜20という特定範囲になるように研磨促進剤を含有させることによって、ウェハの研磨作業に悪影響をおよぼすような程度まで研磨速度を低下させることなく、また研磨後のウェハ表面の平坦化度を損なうことなく、研磨後のウェハ表面に表面荒れが発生することなく、さらにシリカ系研磨粒子の分散安定性が低下し、該研磨粒子が凝集、沈降を起こすことなく、グレージングの発生が防止され、パッドの耐用性を向上させることができる半導体ウェハ研磨用組成物が提供される。
【0052】
本発明によれば、研磨促進剤として特定のアミン化合物を使用することによって、グレージングが一層防止され、パッドの耐用性向上が顕著であるとともに、研磨速度の低下を一層少なくすることができる。
【0053】
本発明によれば、本発明の研磨用組成物に有機酸および錯化剤から選ばれる1種または2種以上、好ましくはそれぞれ特定のものから選ばれる1種または2種以上をさらに配合することによって、研磨速度、パッドの耐用性などを低下させることなく、研磨剤の分散安定性、研磨後のウェハ表面で表面荒れが起こるのを一層防止し、研磨後のウェハの平坦化度をさらに向上させることができる。
【図面の簡単な説明】
【図1】本発明および比較例の研磨用組成物を用いて研磨を行う際の研磨パッドの耐用性を示すグラフである。
【図2】本発明および比較例の研磨用組成物を用いて研磨を行う際の研磨速度を示すグラフである。
【図3】本発明および比較例の研磨用組成物における、研磨剤のゼータ電位を示すグラフである。
【図4】CMP工程を簡略的に示す図面である。[0001]
[Prior art and its problems]
The present invention relates to a composition for polishing a semiconductor wafer.
[0002]
[Prior art]
CMP (Chemical Mechanical Polishing) is a technique for flattening a semiconductor wafer, and is indispensable for achieving high performance and high integration of a semiconductor.
[0003]
In the CMP step, as shown in FIG. 4, the wafer 3 is placed on the pad 2 attached to the polishing platen 1 so that the polished surface of the wafer 3 is in contact with the pad 2, and the pressure head 4 is pressed against the wafer 3. The wafer 3 is polished by rotating the pad 2 and the pressure head 4 while applying a constant load to the wafer 3 and supplying the polishing composition 5 to the surface of the pad 2.
[0004]
The polishing composition is an aqueous slurry containing an abrasive, and an appropriate one is selected from various abrasives according to the material of a film formed on the surface to be polished of the wafer. Among them, a polishing composition (for example, see Patent Literature 1), which is an aqueous slurry containing silica-based abrasive particles such as colloidal silica and fumed silica, is widely used. A polishing composition containing a polishing accelerator such as piperazine, a water-soluble alkylamine, or a quaternary ammonium salt in order to improve the polishing rate of a wafer together with silica-based polishing particles is also known (for example, Patent Document 2). , Patent Document 3 and Patent Document 4). However, when a wafer is polished using a polishing composition containing silica-based abrasive particles, a phenomenon called glazing in which a silica film is formed on the pad surface occurs, and the pad surface is vitrified. As a result, the polishing ability of the pad itself is significantly reduced, the durability of the pad is impaired, and the pad life is shortened.
[0005]
It is known that in conventional polishing compositions, the durability of the pad can be improved by adjusting the pH of the composition to be higher than 11 by adding a high concentration of a polishing accelerator or an inorganic alkali agent. However, in a high alkali region exceeding pH 11, the dispersion stability of the silica-based abrasive particles is reduced, and the abrasive particles are aggregated and dissolved as silicate ions, thereby causing a problem that adversely affects the polishing rate and the wafer surface state. In addition, piperazine, which is useful as a polishing accelerator, has a high solubility in water, but in a system in which silica-based abrasive particles are present, the higher the concentration, the more unstable the solubility becomes. High concentration cannot be added because precipitation occurs.
[0006]
Further, there is known a polishing composition containing silica-based abrasive particles and piperazine, wherein the weight ratio of silica-based abrasive particles to piperazine (piperazine / silica-based abrasive particles) is in the range of 0.1 to 0.8. (For example, Patent Document 5). When a wafer is polished using this polishing composition, a high polishing rate is achieved, and the surface of the polished wafer has high flatness and cleanliness. However, even with this polishing composition, the disadvantage that the durability of the pad is impaired, which is common to polishing compositions containing silica-based abrasive particles, has not been solved.
[0007]
[Patent Document 1]
JP-A-52-47369 [Patent Document 2]
JP-A-62-30333 [Patent Document 3]
US Pat. No. 4,169,337 [Patent Document 4]
JP-A-58-225177 [Patent Document 5]
JP-A-5-154760
[Problems to be solved by the invention]
An object of the present invention is to provide a semiconductor wafer capable of preventing occurrence of glazing and improving pad durability without impairing the polishing rate of the wafer, the flatness of the polished wafer, and the dispersion stability of the abrasive. It is to provide a polishing composition.
[0009]
[Means for Solving the Problems]
The present invention is a composition comprising silica-based abrasive particles and a polishing accelerator, the balance being water, wherein the content of the silica-based abrasive particles is 0.05 to 3.0% by weight of the total amount of the composition, and A semiconductor wafer polishing composition, wherein the weight ratio of the silica-based abrasive particles to the polishing accelerator (polishing accelerator / silica-based abrasive particles) is 0.8 to 20.
[0010]
According to the present invention, in a polishing composition containing silica-based abrasive particles and a polishing accelerator, silica-based abrasive particles are contained at a relatively low concentration of 0.05 to 3.0% by weight, and silica-based polishing is performed. By including the polishing accelerator so that the weight ratio between the particles and the polishing accelerator is in a specific range of 0.8 to 20, without lowering the polishing rate to such an extent that the polishing operation of the wafer is adversely affected. Also, without impairing the degree of flatness of the polished wafer surface, without generating surface roughness on the polished wafer surface, the dispersion stability of the silica-based abrasive particles is further reduced, and the abrasive particles are aggregated and dissolved. The present invention provides a composition for polishing a semiconductor wafer, in which glazing is prevented from occurring without improving the durability and pad durability can be improved.
[0011]
According to the present invention, by including silica-based abrasive particles at a very low concentration, it is possible to further reduce the reduction in polishing rate while further improving the durability of the wafer.
[0012]
Further, in the composition for polishing a semiconductor wafer according to the present invention, the polishing accelerator may be one or more amine compounds selected from piperazine, a primary amine compound having 1 to 6 carbon atoms and a quaternary ammonium salt. It is characterized by being.
[0013]
According to the present invention, by using a specific amine compound as the polishing accelerator, glazing is further prevented, the durability of the pad is remarkably improved, and the reduction in polishing rate can be further reduced.
[0014]
The semiconductor wafer polishing composition of the present invention is characterized in that it further contains an organic acid and a complexing agent as a pH adjuster.
[0015]
Further, the composition for polishing a semiconductor wafer of the present invention is characterized in that the organic acid is a monocarboxylic acid having 2 to 6 carbon atoms, a dicarboxylic acid having 2 to 6 carbon atoms, a tricarboxylic acid having 3 to 6 carbon atoms, an aromatic carboxylic acid and It is characterized in that it is at least one selected from ascorbic acid.
[0016]
In the semiconductor wafer polishing composition of the present invention, the complexing agent may be ethylenediaminetetraacetic acid, hydroxyethylethylenediaminetriacetic acid, diethylenetriaminepentaacetic acid, nitrilotriacetic acid, triethylenetetraminehexaacetic acid, hydroxyethyliminodiacetic acid, dihydroxyethyl. One or more selected from glycine, ethylene glycol-bis (β-aminoethyl ether) -N, N′-4 acetic acid and 1,2-diaminocyclohexane-N, N, N ′, N′-4 acetic acid It is characterized by being.
[0017]
The composition for polishing a semiconductor wafer of the present invention is such that the content of one or more selected from the above-mentioned organic acids and complexing agents is 0.005 to 0.5% by weight of the total amount of the composition. It is characterized by.
[0018]
According to the present invention, the polishing composition of the present invention is further blended with one or more selected from organic acids and complexing agents, and preferably one or more selected from specific ones. Without lowering the polishing rate, the durability of the pad, etc., the dispersion stability of the polishing agent, further preventing the occurrence of surface roughness on the polished wafer surface, and further improving the flatness of the polished wafer. be able to.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
The semiconductor wafer polishing composition of the present invention is a composition containing silica-based abrasive particles and a polishing accelerator, with the balance being water.
[0020]
In the polishing composition of the present invention, the content of the silica-based abrasive particles is usually 0.01 to 3.0% by weight, preferably 0.3 to 1.0% by weight, and the content of the silica-based abrasive particles is If the amount is less than 0.01% by weight, a sufficient polishing rate cannot be obtained. On the other hand, if the content exceeds 3.0% by weight, glazing is likely to occur and the durability of the pad may be impaired.
[0021]
The polishing composition of the present invention has a weight ratio of the silica-based abrasive particles to the polishing accelerator (polishing accelerator / silica-based abrasive particles) of usually 0.8 to 20, preferably 0.8 to 5.0. There is a feature. If the weight ratio is less than 0.8, the effect of preventing glazing becomes insufficient, and the durability of the pad cannot be improved. On the other hand, if it exceeds 20, the polishing rate of the wafer decreases, and the surface roughness of the polished wafer surface may become remarkable.
[0022]
Although the pH of the polishing composition of the present invention is not particularly limited, the polishing rate, the durability of the pad, the surface state of the wafer after polishing (the degree of flatness, the presence or absence of surface roughness, etc.), the dispersion stability of the abrasive particles In consideration of the above, the range is preferably 10.0 to 11.0.
[0023]
The polishing composition of the present invention may be a case where the content of each component is adjusted to a range suitable for use in polishing, prepared to contain each component at a high concentration, and 1 to 30 times. It may be diluted to a certain degree, and the content of each component may be adjusted to a range suitable for use in polishing.
[0024]
In the polishing composition of the present invention, as the silica-based abrasive particles, those commonly used in this field can be used, and examples thereof include colloidal silica and fumed silica. Among these, colloidal silica is preferred. One type of silica-based abrasive particles can be used alone, or two or more types can be used in combination. The particle diameter of the silica-based abrasive particles is not particularly limited and can be appropriately selected from a wide range depending on the type of the wafer to be polished and the like, but is usually about 10 to 300 nm, preferably about 50 to 100 nm.
[0025]
As the polishing accelerator, those commonly used in this field can be used, and examples thereof include amine compounds such as piperazine, primary amine compounds having 1 to 6 carbon atoms, and quaternary ammonium salts. Piperazine includes piperazine having a substituent. Examples of the piperazine having a substituent include a hydroxyl group and an amino group such as N-aminoethylpiperazine, 1,4-bis (3-aminopropyl) piperazine, anhydrous piperazine, and piperazine hexahydrate. Examples thereof include piperazine in which a linear or branched alkyl group having 1 to 4 carbon atoms is substituted with a nitrogen atom. Examples of the primary amine having 1 to 6 carbon atoms include α-oxyethylamine (α-aminoethyl alcohol), monoethanolamine (β-aminoethyl alcohol), aminoethylethanolamine, triethylenetetramine, ethylenediamine and the like. No. Examples of the quaternary ammonium salt include tetramethylammonium chloride, tetramethylammonium hydroxide, dimethyldiethylammonium chloride, N, N-dimethylmorpholinium sulfate, and tetrabutylammonium bromide. Of these, anhydrous piperazine is preferred. As the polishing accelerator, one type can be used alone, or two or more types can be used in combination.
[0026]
As described above, the content of the polishing accelerator is such that the weight ratio between the silica-based abrasive particles and the polishing accelerator (polishing accelerator / silica-based abrasive particles) is 0.8 to 20.
[0027]
The polishing composition of the present invention may contain one or more selected from organic acids and complexing agents. These act as, for example, a pH adjuster and a pH buffer in the polishing composition of the present invention.
[0028]
As the organic acid, those commonly used in this field can be used. For example, monocarboxylic acids having 2 to 6 carbon atoms such as formic acid, acetic acid, propionic acid, butyric acid, valeric acid and lactic acid, oxalic acid, malonic acid and succinic acid And dicarboxylic acids having 2 to 6 carbon atoms such as tartaric acid, malic acid and fumaric acid; tricarboxylic acids having 3 to 6 carbon atoms such as citric acid and isocitric acid; aromatic carboxylic acids such as salicylic acid; and ascorbic acid. Organic acids also include the salts of the carboxylic acids and ascorbic acid. One type of organic acid can be used alone, or two or more types can be used in combination.
[0029]
As the complexing agent, those commonly used in this field can be used. For example, ethylenediaminetetraacetic acid (EDTA), hydroxyethylethylenediaminetriacetic acid (HEDTA), diethylenetriaminepentaacetic acid (DTPA), nitrilotriacetic acid (NTA), triethylene Tetramine hexaacetic acid (TTHA), hydroxyethyl imino diacetic acid (HIDA), dihydroxyethyl glycine (DHEG), ethylene glycol-bis (β-aminoethyl ether) -N, N′-4 acetic acid (EGTA), 1,2- Diaminocyclohexane-N, N, N ', N'-4 acetic acid (CDTA) and the like. Among these, EDTA, DTPA, TTHA, and the like are preferable, and TTHA is particularly preferable, from the viewpoint of preventing the polished wafer from being contaminated by metal ions generated during polishing or the like. One kind of complexing agent can be used alone, or two or more kinds can be used in combination.
[0030]
The content of the organic acid and the complexing agent is not particularly limited, and is wide depending on various conditions such as the type of abrasive, the particle size, the content, the type and content of the polishing accelerator, and the type of wafer to be polished. It can be appropriately selected from the range. However, usually, an amount in which the pH of the polishing composition is in the range of 10 to 11 is used. The content of the organic acid and the complexing agent for adjusting the pH of the polishing composition to the range of 10 to 11 is usually 0.005 to 0.5% by weight based on the total amount of the polishing composition.
[0031]
The polishing composition of the present invention may contain alcohols as long as the preferable properties are not impaired. Alcohols act, for example, as a polishing accelerator such as piperazine and a dissolution aid for other components. That is, the addition of alcohols can further improve the dissolution stability of the polishing accelerator and the like. Although known alcohols can be used, among them, aliphatic saturated alcohols having 1 to 6 carbon atoms are preferable. Examples of the aliphatic saturated alcohol having 1 to 6 carbon atoms include linear or branched C1 to C6 aliphatic alcohols such as methanol, ethanol, propanol, isopropanol, butanol, isobutanol, tert-butanol, pentanol and hexanol. Aliphatic saturated alcohols and the like. These alcohols may have a substituent such as a hydroxyl group in the alkyl moiety. Among them, those having 1 to 3 carbon atoms, such as methanol, ethanol and propanol, are particularly preferable. Alcohols can be used alone or in combination of two or more.
[0032]
The content of alcohols can be appropriately selected from a wide range depending on various conditions such as the type of alcohol itself, the type and content of other components, and the type of semiconductor to be polished. In consideration of improving the dissolution stability of the polishing accelerator without adversely affecting other properties such as dispersion stability, it is usually 0.01 to 0.5% by weight of the total amount of the polishing composition.
[0033]
The polishing composition of the present invention uses an appropriate amount of an abrasive and a polishing accelerator, an appropriate amount of an organic acid and a complexing agent, and further, if necessary, an appropriate amount of other additives, and adjusts the total amount to 100% by weight with water. Can be produced by mixing these components according to common mixing means. Although the water used here is not particularly limited, ultrapure water, pure water, ion-exchanged water, distilled water and the like are preferable in consideration of the application.
[0034]
In a preferred embodiment of the composition for polishing a semiconductor wafer of the present invention, the composition contains one or two or more selected from colloidal silica, a polishing accelerator and an organic acid and a complexing agent, the balance being water, and the content of colloidal silica. Is 0.05 to 3.0% by weight of the total amount of the composition, and the weight ratio of the colloidal silica to the polishing accelerator (polishing accelerator / silica) is 0.8 to 20.
[0035]
When polishing a wafer using the polishing composition of the present invention, except that the polishing composition of the present invention is used instead of the conventional polishing composition, the polishing can be performed in the same manner as the conventional wafer polishing. .
[0036]
The polishing composition of the present invention can be used as a polishing composition in general CMP processing of a wafer. Specifically, a thin film formed on a wafer, for example, a metal film such as W, Cu, Ti, Ta, a ceramic film such as TiN, TaN, Si 3 N 4 , an oxide film such as SiO 2 , p-TEOS, It can be suitably used for polishing a wafer on which a thin film such as a low dielectric film such as an HSQ film, a methylated HSQ film, a SiLK film, and a porous film is formed.
[0037]
Further, the polishing composition of the present invention is not limited to CMP processing of a semiconductor wafer, and can be suitably used when polishing metals, ceramics, and the like for other uses.
[0038]
[Example]
Hereinafter, the present invention will be specifically described with reference to Examples, Comparative Examples, and Test Examples.
[0039]
Examples 1-3 and Comparative Examples 1-3
Using the colloidal silica (average particle diameter 70 nm), piperazine, citric acid, EDTA, methanol, and water at the ratio (% by weight) shown in Table 1, these components were mixed, and the polishing composition of the present invention and a comparative example were used. Was prepared.
[0040]
[Table 1]
Figure 2004335723
[0041]
Comparative Example 4
A commercially available polishing composition (trade name: Nalco 2350, manufactured by Nalco) was used for comparison. This polishing composition was diluted 20 times with water and used for polishing as about 2.5% by weight of colloidal silica.
[0042]
Test Example 1 (Evaluation of pad durability)
Using a polishing apparatus (Strasbag 6CA), the polishing compositions of Example 3 and Comparative Examples 1 and 2 were supplied at a rate of 100 ml / min to a polishing pad (Suba800, manufactured by Rodale Nitta), and the diameter was 4 inches × 3. While applying a pressure of about 29.4 × 10 3 Pa (300 gf / cm 2 ) to the silicon wafers, the polishing platen was rotated at 115 rpm and the pressure head was rotated at 100 rpm, and polishing was performed for 40 minutes.
[0043]
After polishing, the weight of the wafer was measured, and the average removal amount per minute was calculated to obtain the polishing rate (μm / min). The above polishing was repeated, and the silicon wafer was replaced with an unpolished one each time, and the same pad was used. The results are shown in FIG.
[0044]
In FIG. 1, ○ indicates the result of the composition of Example 3, ● indicates the result of the composition of Comparative Example 1, and Δ indicates the result of the composition of Comparative Example 2, respectively. As is clear from FIG. 1, Example 1 maintained the polishing rate equal to or higher than that of Comparative Example 1 and showed that the polishing rate was more effective for the glazing of the pad.
[0045]
Test Example 2 (Evaluation of polishing rate)
Using a polishing apparatus (Strasbag 6CA), the polishing compositions of Examples 1 to 3 and Comparative Examples 1, 3 and 4 were supplied to a polishing pad (Suba600, manufactured by Rodale Nitta Co., Ltd.) at a rate of 5 L / min. While applying a pressure of about 29.4 × 10 3 Pa (300 gf / cm 2 ) to 4 inch × 3 silicon wafers, the polishing platen is rotated at 115 rpm and the pressure head is rotated at 100 rpm, and polishing is performed for 30 minutes. went.
[0046]
After polishing, the weight of the wafer was measured, and the average removal amount per minute was calculated to obtain the polishing rate (μm / min). The above polishing was repeated, and the silicon wafer was replaced with an unpolished one each time, and the same pad was used.
[0047]
The polishing rate of the composition of Comparative Example 1 was set to 1, and the polishing rate of each composition was determined as a relative value to this. FIG. 2 shows the results.
[0048]
2, (a) shows Comparative Example 3, (b) shows Example 1, (c) shows Example 2, (d) shows Example 3, and (e) Comparative Examples 1 and (f) show Comparative Example 4. Shows the polishing rate (relative value) of the composition of Example 1. From FIG. 2, it is clear that the polishing rate by the composition of the present invention is almost equal to that of the comparative composition (Comparative Example 1), and is significantly higher than that of the conventional composition (Comparative Example 3).
[0049]
Test Example 4 (Dispersion stability of abrasive)
For the polishing compositions of Examples 1 to 3 and Comparative Example 1, in order to compare the dispersion stability of the abrasive, a zeta potentiometer (trade name: DT-1200, manufactured by Disversion Technology) was used. , Measurement principle: Ultrasonic (colloidal oscillating current) method), the zeta potential of each abrasive was measured. The larger the absolute value of the zeta potential, the better the dispersibility. The results are shown in FIG. From FIG. 3, it is clear that in the polishing composition of the present invention, the colloidal silica as the polishing agent is dispersed with the same or higher stability as the polishing composition of the comparative example.
[0050]
When the results of FIGS. 1 to 3 are combined, by employing the configuration of the present invention, without impairing the polishing speed of the wafer and the dispersion stability of the abrasive, while further improving the dispersion stability of the abrasive in particular, The durability of the pad can be improved.
[0051]
【The invention's effect】
According to the present invention, in the polishing composition containing the silica-based abrasive particles and the polishing accelerator, the polishing accelerator so that the weight ratio between the silica-based abrasive particles and the polishing accelerator is in a specific range of 0.8 to 20. By reducing the polishing rate to such an extent that the polishing operation of the wafer is adversely affected, and without impairing the flatness of the polished wafer surface, the surface roughness of the polished wafer surface is reduced. Without polishing, the dispersion stability of the silica-based abrasive particles is further reduced, the abrasive particles are prevented from agglomeration and sedimentation, glazing is prevented, and the durability of the pad is improved. Compositions are provided.
[0052]
According to the present invention, by using a specific amine compound as the polishing accelerator, glazing is further prevented, the durability of the pad is significantly improved, and the reduction in polishing rate can be further reduced.
[0053]
According to the present invention, one or two or more selected from organic acids and complexing agents, preferably one or two or more selected from specific ones, are further added to the polishing composition of the present invention. By this, the dispersion stability of the abrasive, the surface roughness of the polished wafer surface is further prevented, and the flatness of the polished wafer is further improved without lowering the polishing rate and the durability of the pad Can be done.
[Brief description of the drawings]
FIG. 1 is a graph showing the durability of a polishing pad when polishing is performed using the polishing compositions of the present invention and comparative examples.
FIG. 2 is a graph showing a polishing rate when polishing is performed using the polishing compositions of the present invention and a comparative example.
FIG. 3 is a graph showing the zeta potential of an abrasive in polishing compositions of the present invention and a comparative example.
FIG. 4 is a view schematically showing a CMP process.

Claims (6)

シリカ系研磨粒子および研磨促進剤を含み、残部が水である組成物であって、研磨粒子の含有量が組成物全量の0.05〜3.0重量%でありかつ研磨粒子と研磨促進剤との重量比(研磨促進剤/研磨粒子)が0.8〜20であることを特徴とする半導体ウェハ研磨用組成物。A composition comprising silica-based abrasive particles and a polishing accelerator, the balance being water, wherein the content of the abrasive particles is 0.05 to 3.0% by weight of the total amount of the composition, and the abrasive particles and the polishing accelerator Wherein the weight ratio (polishing accelerator / abrasive particles) is 0.8 to 20. 研磨促進剤が、ピペラジン、炭素数1〜6の第1級アミン化合物および第4級アンモニウム塩から選ばれる1種または2種以上のアミン化合物であることを特徴とする請求項1記載の半導体ウェハ研磨用組成物。2. The semiconductor wafer according to claim 1, wherein the polishing accelerator is one or more amine compounds selected from piperazine, a primary amine compound having 1 to 6 carbon atoms and a quaternary ammonium salt. Polishing composition. さらにpH調整剤として有機酸および錯化剤から選ばれる1種または2種以上を含むことを特徴とする請求項1または2に記載の半導体ウェハ研磨用組成物。3. The composition for polishing a semiconductor wafer according to claim 1, further comprising one or more kinds selected from an organic acid and a complexing agent as a pH adjuster. 有機酸が炭素数2〜6のモノカルボン酸、炭素数2〜6のジカルボン酸、炭素数3〜6のトリカルボン酸、芳香族カルボン酸およびアスコルビン酸から選ばれる1種または2種以上であることを特徴とする請求項3記載の半導体ウェハ研磨用組成物。The organic acid is one or more selected from monocarboxylic acids having 2 to 6 carbon atoms, dicarboxylic acids having 2 to 6 carbon atoms, tricarboxylic acids having 3 to 6 carbon atoms, aromatic carboxylic acids and ascorbic acid The composition for polishing a semiconductor wafer according to claim 3, characterized in that: 錯化剤がエチレンジアミン4酢酸、ヒドロキシエチルエチレンジアミン3酢酸、ジエチレントリアミン5酢酸、ニトリロ3酢酸、トリエチレンテトラミン6酢酸、ヒドロキシエチルイミノ2酢酸、ジヒドロキシエチルグリシン、エチレングリコール−ビス(β−アミノエチルエーテル)−N,N’−4酢酸および1,2−ジアミノシクロヘキサン−N,N,N’,N’−4酢酸から選ばれる1種または2種以上であることを特徴とする請求項3記載の半導体ウェハ研磨用組成物。The complexing agent is ethylenediaminetetraacetic acid, hydroxyethylethylenediaminetriacetic acid, diethylenetriaminepentaacetic acid, nitrilotriacetic acid, triethylenetetraminehexaacetic acid, hydroxyethyliminodiacetic acid, dihydroxyethylglycine, ethylene glycol-bis (β-aminoethyl ether)- 4. The semiconductor wafer according to claim 3, wherein one or more kinds selected from N, N'-4 acetic acid and 1,2-diaminocyclohexane-N, N, N ', N'-4 acetic acid. Polishing composition. 有機酸および錯化剤から選ばれる1種または2種以上の含有量が、組成物全量の0.005〜0.5重量%であることを特徴とする請求項3〜5のうちのいずれかに記載の半導体ウェハ研磨用組成物。The content of one or more selected from organic acids and complexing agents is 0.005 to 0.5% by weight of the total amount of the composition. 3. The composition for polishing a semiconductor wafer according to item 1.
JP2003129292A 2003-05-07 2003-05-07 Semiconductor wafer polishing composition Expired - Lifetime JP4546039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003129292A JP4546039B2 (en) 2003-05-07 2003-05-07 Semiconductor wafer polishing composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003129292A JP4546039B2 (en) 2003-05-07 2003-05-07 Semiconductor wafer polishing composition

Publications (2)

Publication Number Publication Date
JP2004335723A true JP2004335723A (en) 2004-11-25
JP4546039B2 JP4546039B2 (en) 2010-09-15

Family

ID=33505176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003129292A Expired - Lifetime JP4546039B2 (en) 2003-05-07 2003-05-07 Semiconductor wafer polishing composition

Country Status (1)

Country Link
JP (1) JP4546039B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007207983A (en) * 2006-02-01 2007-08-16 Fujifilm Corp Polishing method
JP2009188059A (en) * 2008-02-04 2009-08-20 Nippon Chem Ind Co Ltd Polishing colloidal silica for semiconductor wafer, and method for producing same
WO2011136106A1 (en) * 2010-04-26 2011-11-03 花王株式会社 Polishing fluid composition for glass hard disc substrates
JP2019127511A (en) * 2018-01-23 2019-08-01 ニッタ・ハース株式会社 Polishing composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04313224A (en) * 1991-04-11 1992-11-05 Asahi Denka Kogyo Kk Silicon-wafer abrasives
JP2000160139A (en) * 1998-12-01 2000-06-13 Fujimi Inc Grinding composition and grinding method using the same
JP2001077063A (en) * 1999-09-07 2001-03-23 Mitsubishi Materials Silicon Corp Abrasive liquid for silicon wafer and polishing method using this

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04313224A (en) * 1991-04-11 1992-11-05 Asahi Denka Kogyo Kk Silicon-wafer abrasives
JP2000160139A (en) * 1998-12-01 2000-06-13 Fujimi Inc Grinding composition and grinding method using the same
JP2001077063A (en) * 1999-09-07 2001-03-23 Mitsubishi Materials Silicon Corp Abrasive liquid for silicon wafer and polishing method using this

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007207983A (en) * 2006-02-01 2007-08-16 Fujifilm Corp Polishing method
JP2009188059A (en) * 2008-02-04 2009-08-20 Nippon Chem Ind Co Ltd Polishing colloidal silica for semiconductor wafer, and method for producing same
WO2011136106A1 (en) * 2010-04-26 2011-11-03 花王株式会社 Polishing fluid composition for glass hard disc substrates
JP2019127511A (en) * 2018-01-23 2019-08-01 ニッタ・ハース株式会社 Polishing composition

Also Published As

Publication number Publication date
JP4546039B2 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
JP6437870B2 (en) Polishing composition and method for selectively polishing silicon nitride film on silicon oxide film
US20100090159A1 (en) Semiconductor polishing composition
JP2004266155A (en) Water dispersed element for chemical mechanical polishing and chemical mechanical polishing method using the same and method for manufacturing semiconductor device
US20080125017A1 (en) Polishing composition and polishing method
KR102617007B1 (en) Method of polishing a substrate and a set of polishing compositions
JP6691774B2 (en) Polishing composition and method for producing the same
JP4430331B2 (en) Semiconductor wafer polishing composition
JP2020117709A (en) Shallow trench isolation (sti) chemical mechanical planarization (cmp) polishing with low abrasive concentration and combination of chemical additives
JP5220428B2 (en) Polishing method using polishing composition
JP4546039B2 (en) Semiconductor wafer polishing composition
WO2005093804A1 (en) Composition for polishing semiconductor
WO2005093803A1 (en) Composition for polishing semiconductor
JP6551136B2 (en) Polishing solution for CMP and polishing method
JP2019052259A (en) Polishing composition, manufacturing method therefor, polishing method and manufacturing method of substrate
WO2005093802A1 (en) Composition for polishing semiconductor
JP2014216368A (en) Polishing agent and polishing method
JP2004288732A (en) Semiconductor polishing slurry
JP2021106246A (en) Polishing composition
JP3606806B2 (en) Polishing liquid composition
JP2004335664A (en) Polishing composition, its manufacturing method, and polishing method of wafer using it
KR100754807B1 (en) Composition of Slurry for polishing Silicon Wafer and Method of Polishing using thereby
KR102455159B1 (en) Slurry composition for metal film chemical mechanical polishing
JP2004059871A (en) Rolloff reduction agents
JP2022099056A (en) Polishing composition
JP2023093850A (en) Composition for chemical mechanical polishing and polishing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090909

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091110

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100202

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20100202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100210

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100618

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100701

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4546039

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term