JP2004335553A - Semiconductor device and its manufacturing method - Google Patents

Semiconductor device and its manufacturing method Download PDF

Info

Publication number
JP2004335553A
JP2004335553A JP2003125709A JP2003125709A JP2004335553A JP 2004335553 A JP2004335553 A JP 2004335553A JP 2003125709 A JP2003125709 A JP 2003125709A JP 2003125709 A JP2003125709 A JP 2003125709A JP 2004335553 A JP2004335553 A JP 2004335553A
Authority
JP
Japan
Prior art keywords
insulating film
semiconductor substrate
source
gate
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003125709A
Other languages
Japanese (ja)
Inventor
Takeshi Kajiyama
山 健 梶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003125709A priority Critical patent/JP2004335553A/en
Publication of JP2004335553A publication Critical patent/JP2004335553A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7841Field effect transistors with field effect produced by an insulated gate with floating body, e.g. programmable transistors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device in which a measure is devised against the junction leakage of the memory cell in a mixedly pelletized DRAM or FBC memory cell, and to provide a method of manufacturing the device. <P>SOLUTION: The semiconductor device is provided with a memory cell array having a cell array in which a plurality of memory transistors is arranged and a peripheral transistor having a plurality of peripheral transistors. Each memory transistor in the memory cell array is provided with a pair of source-drain diffusion layers formed in a semiconductor substrate, gate electrodes formed on the semiconductor substrate through a gate insulating film as word lines, and an insulating film covering the surface of the semiconductor substrate. The memory transistor is also provided with a contact which is in contact with the source and drain-diffusion layers through the insulating film. The surface of the semiconductor substrate is covered with the insulating film except the contact. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、半導体装置に係り、特に、DRAM混載素子やFBC(Floating−Body Cell)メモリ素子のセル構造およびこのセル構造を実現するための製造方法に関する。
【0002】
【従来技術】
近年、半導体メモリの分野においては高集積化を実現するために、セル内に電荷蓄積領域を配置した構造のものが研究されている。
【0003】
かかる半導体装置としては、FBCメモリが知られている。このFBCとは、Floating−Body Cellの略であり、例えば、ISSCC2002(International Solid―State Circuit Conference 2002年:2002年2月3日から7日にわたりサンフランシスコで開催)における講演で紹介された。その詳細は、講演番号9.1の「FBC Cell」によって明らかにされている(非特許文献1参照)。
【0004】
このFBCメモリはSOI(シリコンオンインシュレータ)に形成されたMOSトランジスタからなるセル構造を有し、トランジスタの下に電荷を蓄える電荷蓄積領域を設けている。
【0005】
このようなFBCメモリで、特に電荷蓄積領域境界にPNジャンクションが形成される構造のものにおいては、ジャンクションリークを低減するために、PNジャンクション上のプラグ及び配線としては、ポリシリコンプラグ等を用いることが多く、最終的にはその上に金属プラグが形成される。しかし、微細化を図るものにあっては、面積的な余裕が少なく、コンタクトの合わせずれ余裕を十分に取ることができない。このため、合わせずれを生じた場合にオーバーエッチングに起因して異形状を生じてしまうこともある。
【0006】
図18は、本発明者の知得する半導体装置として例示するFBCメモリの構成を示すものであり、同図(A)は平面図、同図(B)は、同図(A)のA−A線断面図である。
【0007】
各図18(A),(B)において、UCはMOSトランジスタを構成するユニットセルを示す。図18(B)に示すように、支持基板(基板)1の上に、埋め込み酸化膜(絶縁層)2を配置し、その上にシリコン層3を形成することでSOI構造としている。この基板1は、ここでは、P型シリコンの支持基板本体1b上にn型のウェル(1A)を配置したものとして構成される。シリコン層3には、ソース・ドレイン領域(拡散層領域)4,4とそれらに挟まれたチャネル領域5が形成されている。拡散層領域4の上方には、ソース線SLとビット線BLのいずれかが形成されている。チャネル領域5の上には、ゲート絶縁膜7を介してゲート電極6(ワード線WL)が形成されている。拡散層4(D)(ドレイン)とビット線BLはコンタクトプラグCPで相互に接続される。コンタクトプラグCPとソース線SLはポリシリコンで作られている。ソース線SLはグランドに接続される。図中8は層間絶縁膜(BPSG)である。
【0008】
FBCメモリの斜視図は図19(C)に示される(例えば、非特許文献2参照)。
【0009】
例えば、図19において示すように、FBCメモリは、セル内に電荷蓄積用の容量を持たず、フローティングボディ部と呼ばれる電荷蓄積領域に電荷を蓄積することによりメモリ機能を果たすように構成される。
【0010】
このメモリからデータを呼び出す場合、ワード線WLによってこれにつながる複数のセルを選択する。各セル中に蓄積された電荷は、対応するビット線BLからそれにつながるセンス増幅器31を通じてVoutとして読み出す。なお、各センス増幅器31の入力側には負荷容量32が存在する。このため、読み出しに先立ち、リードリセット信号read resetにより動作するリセットトランジスタ33により、この負荷容量32の電荷を放電する。
【0011】
また、データ書き込み時には、基板のVg2端子を通じて書き込みリセット信号write resetを与えて、フローティングボディ部の電荷をリセットし、その後、ビット線BLを通じてデータの書き込みを行う。
【0012】
以上のような構造を持つFBCメモリおいては、例えば、図18(B)を参照して、拡散層領域4(ドレインD)からチャネル領域5を介して拡散層領域(ソースS)へ電流が流れると、チャネル領域5内にホットホールが発生する。このホットホールはこのチャネル領域5内に蓄積される。つまり、チャネル領域5を、データ(ホール)を蓄積するための容量、つまり電荷蓄積領域とすることでメモリ動作を行わせている。つまり電荷蓄積領域はMOS型トランジスタであるユニットセルUCにおけるゲート(ワード線WL)の下に配置されることとなる。FBCメモリには、回路面積を大幅に低減でき、高集積化を図ることができるという利点がある。
【0013】
しかしFBCには、データの蓄積時間が従来のDRAMにおけるキャパシタと比較して短い。この蓄積時間を延ばすためには、拡散層領域4部分のジャンクションリークを低減することが考えられる。同時に、電荷蓄積領域においてはホットホールを発生させる必要があるために、グランドに接続されるソース線SLや、ビット線BLを低抵抗にすることも考えられる。
【0014】
このため、それぞれポリシリコンからなる、ソース線SLと、ビット線BLコンタクトプラグCPとを、それぞれサリサイドを介して支持基板に接続することにより、低配線抵抗としたものの、本発明者の知得する一例が図20(A)、(B)に示される。これらの2つの図は1つの半導体装置のそれぞれ異なる部分の断面図である。特に、図20(A)はFBCセル部分、(B)はFBC周辺回路部分を示す。これらの図において示すように、ポリシリコンで構成される電極に対してサリサイドプロセスを適用し、サリサイド部11を形成し、配線の低抵抗化を実現している。図中、12,13,14はゲート側壁である。
【0015】
しかし、このような構成によれば、図20(A)からも明らかなように、シリコン層3の表面が直接的にサリサイド化されてしまう。このため、接合部分に界面反応や結晶欠陥部分が発生してしまい、結局ジャンクションリークの多い構造となってしまう。その結果、メモリ動作に重要な電荷の蓄積能力に問題を生じてしまう。
【0016】
また、バルクシリコンを用いた半導体装置について考えてみる。例えば、特開平3−171768号公報にはバルクシリコンを用いたメモリセルが開示されている。この場合も、ジャンクションリークの低減に関連して、同様の問題点を内包しているのがわかる。
【0017】
【非特許文献1】
ISSCC 2002 / SESSION 9 / DRAM AND FERROELECTRIC MEMORIES / 9.1 Memory Design Using One Transistor Gain Cell on SOI / TAKASHI Ohsawa et al.
【非特許文献2】
IEEE TRANSACTION ON ELECTRON DEVICES、VOL.37、MAY、1990、p1373−1382
【特許文献1】
特開平3−171768号公報
【0018】
【発明が解決しようとする課題】
以上述べたように、従来は、FBC等のように電荷蓄積領域にPNジャンクションを用いたメモリ構成において、適切な構造およびプロセスのものが無かった。
【0019】
従って、本発明は、上記に鑑みてなされたもので、その目的は、例えば、混載DRAMやFBCセルにおいて、メモリセル内コンタクト部のジャンクションリークについて対策した半導体装置およびその製造方法を提供することにある。
【0020】
【課題を解決するための手段】
上記目的を達成するために、本発明の実施形態は、複数のメモリトランジスタが並べられたセルアレイを有するメモリセルアレイ部と、複数の周辺トランジスタを有する周辺トランジスタ部と、を備え、前記メモリセルアレイ部における前記各メモリトランジスタは、半導体基板中に形成された一対のソース・ドレイン拡散層と、前記半導体基板上にゲート絶縁膜を介して形成されたワードラインとしてのゲート電極と、前記半導体基板の表面を被う絶縁膜と、この絶縁膜を貫通して前記各ソース・ドレイン拡散層とコンタクトするコンタクトと、を備え、前記半導体基板の表面のうち前記コンタクト以外の面は前記絶縁膜で被われていることを特徴とする半導体装置を提供するものである。
【0021】
上記目的を達成するために、本発明の実施形態は、半導体基板上の、メモリセルアレイ部形成領域と周辺トランジスタ部形成領域とのそれぞれに、ゲート絶縁膜を介して、ポリシリコンのゲート電極を形成すると共に、前記ゲート電極を挟んだ両側に一対のソース・ドレイン領域を形成する第1工程と、少なくとも絶縁膜と窒化膜を、前記各ゲート電極の上面及び側壁と、前記半導体基板上と、に堆積する第2工程と、全体に層間絶縁膜材料を埋設し、これを前記各ゲート電極の頂部の前記窒化膜が露出するまで研磨し、続いて前記周辺トランジスタ部形成領域の前記層間絶縁膜材料のみを除去する第3工程と、前記層間絶縁膜材料をマスクとして前記絶縁膜が露出するまで前記窒化膜を除去する第4工程と、前記メモリセルアレイ部形成領域の前記一対のソース・ドレイン領域上方の絶縁膜と前記窒化膜に、これらを貫通して前記半導体基板の表面に達する開孔を形成して、この開孔にポリシリコンプラグを形成する第5工程と、前記メモリセルアレイ部形成領域のゲートの頂部の前記絶縁膜、前記周辺トランジスタ部形成領域の前記ゲートの頂部および前記ソース・ドレイン領域の前記絶縁膜を除去する第6の工程と、前記メモリセルアレイ部形成領域の前記ゲート電極の頂部および前記ポリシリコンプラグの頂部、前記周辺トランジスタ部形成領域の前記ゲート電極の頂部および前記ソース・ドレイン領域をサリサイド化する第7工程と、を備えることを特徴とする半導体装置の製造方法を提供するものである。
【0022】
【発明の実施の形態】
以下、図面を参照しながら本発明の実施の形態を説明する。
【0023】
実施形態1.
図1は、本発明の実施形態1の半導体装置として例示するFBCメモリの構成を示すものであり、同図(A)はメモリ部分(メモリセルアレイ部)、同図(B)は周辺回路部分(周辺トランジスタ部)をそれぞれ示すものである。図1(A),(B)において示すものの、図20(A),(B)に示したものと同等の要素には同一の符号を付して詳しい説明は省略する。これは、以下の他の図においても同様である。
【0024】
メモリ部においては、図1(A)に示すように、シリコン基板上は、ゲート側壁12,13が被っており、サリサイド化されていない。一方、ソース・ドレイン領域4(S),4(D)とポリシリコンプラグ21とがコンタクトしている。これらのポリシリコンプラグの上部をサリサイド化されている。しかし、ここは、多結晶部分(ポリシリコンプラグ21)をサリサイドしたものであるため、シリコン基板に直接影響してジャンクションリークを増加させることは無い。
【0025】
従って、図1(A),(B)の構成によれば、周辺回路部のロジックトランジスタの構造と、メモリ部のセル内リーク対策と、ゲート上のサリサイド化を同時に実現することが可能となる。
【0026】
実施形態2.
図2は、本発明の実施形態2の半導体装置として例示するバルクシリコンを用いたメモリの構成を示すものであり、同図(A)はメモリ部分、同図(B)は周辺回路部分をそれぞれ示すものである。
【0027】
図2が図1と異なる点は、図1の構成が、基板として支持基板1、埋め込み酸化膜層2、シリコン単結晶層3の3層のSOI構造を持つのに対して、図2の構成は、バルクのシリコン層3による1層構造となっている事であり、その他の構造は同様である。
【0028】
本実施形態2の場合も、実施形態1と同様、周辺回路部のロジックトランジスタの構造と、メモリ部のセル内リーク対策と、ゲート上のサリサイド化を同時に実現することが可能となる。
【0029】
実施形態3.
図3は、本発明の実施形態3の半導体装置として例示するトレンチDRAMの構成を示すものであり、同図(A)はメモリ部分、同図(B)は周辺回路部分をそれぞれ示すものである。
【0030】
図3が図1と異なる点は、ソース線SLは、X‘ferコンタクト25及びトレンチキャパシタ26に接続されている点にあり、その他の構成は同じである。
【0031】
つまり、図3(A)の構成においても、周辺回路部のロジックトランジスタの構造と、メモリ部のセル内リーク対策と、ゲート上のサリサイド化を同時に実現することが可能となる。
【0032】
実施形態4.
図4〜図17は本発明の実施形態4としての、半導体装置の製造方法のプロセスを説明するための工程断面図であり、これらの図における(1A)〜(14A)はメモリ部の製造プロセス、(1B)〜(14B)は周辺回路部の製造プロセスをそれぞれ示すものである。
【0033】
図4(1A),(1B)からわかるように、支持基板1、埋め込み酸化膜層2、シリコン層3からなるSOI基板に、素子分離膜25により、STI(シャロートレンチアイソレーション)を行った後、ポリシリコンによりゲート電極6(ワード線WL)を形成する。この後、このゲート電極6をマスクとしてのイオン打ち込みをした後、拡散させてソース・ドレイン領域(拡散層領域)4を形成する。
【0034】
続けて、図5(2A),(2B)からわかるように、ゲート側壁12の外側にさらにゲート電極13,14を形成するべく、平坦化絶縁材料であるTEOSを200Åと、SiN膜を700Åとをそれぞれ堆積する。これにより、ゲート側壁(酸化膜)12を介して、ゲート側壁13,14が形成される。併せて、メモリ部のソースおよびドレイン領域に、ゲート6とゲート側壁12,13,14をマスクとして、深い領域までイオンを打ち込む。
【0035】
その後に、図6(3A),(3B)からわかるように、ゲート段差を層間絶縁膜(BPSG)8により埋める。続いて、BPSG8をゲート側壁(SiN膜)14をストッパーとしてCMP(ケミカルメカニカルポリッシング)法にて、SiN膜14が顔を出すまで削る。この場合、SiN膜14は、CMPのストッパーとして十分な厚さに設定する必要があることは言うまでもない。
【0036】
続いて、図7(4A),(4B)からわかるように、(4A)のメモリ部のみをレジストで保護して、(4B)の周辺回路部のBPSGをウェットエッチング法により除去する。この場合も、(4B)のSiN膜14はエッチングのストッパーとして十分に機能する程度の厚さに設定されており、ピンホール等の不具合の無いことが求められる。
【0037】
次に、図8(5A),(5B)からわかるように、(5A)のメモリ部のSiN膜14と、(5B)の周辺回路部のSiN膜14を、RIE(反応性イオンエッチング)法にてエッチングする。この時、SiN膜のエッチング条件を、SiOが削れない条件に設定する。これにより、図8(5A),(5B)に示すように、TEOS13の表面が露出した部分はそこでエッチングがストップする。これにより、図8(5B)のように、周辺回路部では、ゲート6上も、シリコン層3上も、共にSiN膜14が除去される。これに対して、メモリ部では、図8(5A)のように、ゲート6の上の部分のみSiN膜14が除去された形となる。
【0038】
続いて、図9(6A),(6B)からわかるように、不純物の打ち込み、拡散により、高濃度のソース・ドレイン領域4(D),4(S)が形成される。
【0039】
次に、図10(7A),(7B)からわかるように、(7A)のメモリ部において、ソース線コンタクト用のコンタクト孔26を開孔する。
【0040】
次に、図11(8A),(8B)からわかるように、ビット線コンタクト用のコンタクト孔27を開孔する。
【0041】
続いて、図12(9A),(9B)からわかるように、それぞれのコンタクト孔26,27にポリシリコン21(S),21(D)を埋め込む。
【0042】
これに続いて、図13(10A),(10B)からわかるように、(10A)のゲート6上と(10B)のゲート6上とシリコン層3(基板)上のそれぞれにおいてゲート側壁12,13をRIE法およびウェットエッチング法により除去する。この後、サリサイド法によりCoによるサリサイド部11を形成する。この場合、サリサイド11が形成されるのは、(10A)のメモリ部ではゲート6の上部とポリシリコン21(S),21(D)の上部となり、(10B)の周辺回路部では、ゲート6の上部とシリコン層(基板)3上となる。つまり、(10A)のメモリ部ではシリコン基板の上にはサリサイドは形成されない。
【0043】
次に、図14(11A),(11B)からわかるように、装置の全体にBPSG8を堆積し、CMP法により平坦化する。
【0044】
続けて、図15(12A),(12B)からわかるように、(12A)のメモリ部では、サリサイド11(D)に開口する孔(8A)をRIE法により開口する。
【0045】
次に、図16(13A),(13B)からわかるように、(13B)の周辺回路部のサリサイド11に開口する孔(8B)を形成する。
【0046】
次に、図17(14A),(14B)に示すように、以上のようにして形成された孔(8A),(8B)にW(タングステン)を埋め込み、CMPすることにより、コンタクトプラグCP,CPが形成される。
【0047】
以上述べたようなプロセスを経て、周辺回路部の論理トランジスタ構造においては、ゲート上と、基板のコンタクト部分と、にサリサイド11が形成され、他方、メモリ部においてはゲート上と、基板上に植立したポリシリコンの上にサリサイド11が形成され、シリコン基板上にはサリサイド化されない構造が実現できる。これにより、メモリ部では低抵抗のゲート配線とジャンクションリーク低減を同時に達成でき、周辺回路部では、通常のサリサイド構造による論理回路の構成が可能となる。
【0048】
なお、図4に示した実施形態4では、実施形態1に示した構造を対象とした製造方法を例示したが、この工程は、実施形態2および実施形態3の製造にも同様に適用可能であり、同様効果を得ることができるものである。
【0049】
【発明の効果】
以上述べたように、本発明によれば、例えば混載DRAMやFBCセルにおいて、メモリセル内ではジャンクションリークを低減して電荷蓄積性能を向上させながら、メモリセルのワード線の低抵抗化を同時に実現でき、他方、混載される論理回路には通常のサリサイド構造のトランジスタを配置できるので、高機能な半導体装置を実現できるという効果がある。
【図面の簡単な説明】
【図1】本発明の実施形態1の半導体装置のメモリセル部分(メモリセルアレイ部)(A)と周辺回路部分(周辺トランジスタ部)(B)の断面図である。
【図2】本発明の実施形態2の半導体装置のメモリセル部分(A)と周辺回路部分(B)の断面図である。
【図3】本発明の実施形態3の半導体装置のメモリセル部分(A)と周辺回路部分(B)の断面図である。
【図4】本発明の実施形態4として示される半導体装置の製造方法を説明するための工程断面図の一部である。
【図5】本発明の実施形態4として示される半導体装置の製造方法を説明するための工程断面図の一部である。
【図6】本発明の実施形態4として示される半導体装置の製造方法を説明するための工程断面図の一部である。
【図7】本発明の実施形態4として示される半導体装置の製造方法を説明するための工程断面図の一部である。
【図8】本発明の実施形態4として示される半導体装置の製造方法を説明するための工程断面図の一部である。
【図9】本発明の実施形態4として示される半導体装置の製造方法を説明するための工程断面図の一部である。
【図10】本発明の実施形態4として示される半導体装置の製造方法を説明するための工程断面図の一部である。
【図11】本発明の実施形態4として示される半導体装置の製造方法を説明するための工程断面図の一部である。
【図12】本発明の実施形態4として示される半導体装置の製造方法を説明するための工程断面図の一部である。
【図13】本発明の実施形態4として示される半導体装置の製造方法を説明するための工程断面図の一部である。
【図14】本発明の実施形態4として示される半導体装置の製造方法を説明するための工程断面図の一部である。
【図15】本発明の実施形態4として示される半導体装置の製造方法を説明するための工程断面図の一部である。
【図16】本発明の実施形態4として示される半導体装置の製造方法を説明するための工程断面図の一部である。
【図17】本発明の実施形態4として示される半導体装置の製造方法を説明するための工程断面図の一部である。
【図18】従来の半導体装置の平面図(A)、断面図(B)である。
【図19】従来の半導体装置の斜視図である。
【図20】従来の半導体装置のメモリセル部分(A)と周辺回路部分(B)の断面図である。
【符号の説明】
1 支持基板
2 埋め込み酸化膜
3 シリコン層
4 ソース・ドレイン拡散層
6 ゲート電極
11 サリサイド
21 ポリシリコンプラグ
13,14 ゲート側壁
25 X‘ferコンタクト
26 トレンチキャパシタ
UC ユニットセル
WL ワード線
SL ソース線
BL ビット線
[0001]
[Industrial applications]
The present invention relates to a semiconductor device, and more particularly, to a cell structure of a DRAM embedded element and an FBC (Floating-Body Cell) memory element and a manufacturing method for realizing the cell structure.
[0002]
[Prior art]
2. Description of the Related Art In recent years, in the field of semiconductor memory, a structure having a charge accumulation region arranged in a cell has been studied in order to achieve high integration.
[0003]
An FBC memory is known as such a semiconductor device. The FBC is an abbreviation of Floating-Body Cell, and was introduced in, for example, a lecture at ISSCC2002 (International Solid-State Circuit Conference 2002: Held in San Francisco from February 3 to 7, 2002). The details are disclosed by the lecture number 9.1 “FBC Cell” (see Non-Patent Document 1).
[0004]
This FBC memory has a cell structure composed of MOS transistors formed in SOI (silicon-on-insulator), and has a charge storage region for storing charges below the transistors.
[0005]
In such an FBC memory, particularly in a structure in which a PN junction is formed at the boundary of a charge storage region, a polysilicon plug or the like should be used as a plug and a wiring on the PN junction in order to reduce junction leakage. And finally a metal plug is formed thereon. However, in the case of miniaturization, a margin in area is small and a margin for contact misalignment cannot be sufficiently secured. For this reason, when misalignment occurs, an irregular shape may occur due to over-etching.
[0006]
FIGS. 18A and 18B show a configuration of an FBC memory exemplified as a semiconductor device known by the present inventor. FIG. 18A is a plan view, and FIG. 18B is a view AA of FIG. It is a line sectional view.
[0007]
In each of FIGS. 18A and 18B, UC indicates a unit cell constituting a MOS transistor. As shown in FIG. 18B, a buried oxide film (insulating layer) 2 is disposed on a supporting substrate (substrate) 1 and a silicon layer 3 is formed thereon to form an SOI structure. Here, the substrate 1 is configured such that an n-type well (1A) is arranged on a P-type silicon support substrate main body 1b. In the silicon layer 3, source / drain regions (diffusion layer regions) 4, 4 and a channel region 5 interposed therebetween are formed. Above the diffusion layer region 4, one of the source line SL and the bit line BL is formed. A gate electrode 6 (word line WL) is formed on the channel region 5 with a gate insulating film 7 interposed therebetween. Diffusion layer 4 (D) (drain) and bit line BL are mutually connected by contact plug CP. The contact plug CP and the source line SL are made of polysilicon. The source line SL is connected to the ground. In the figure, reference numeral 8 denotes an interlayer insulating film (BPSG).
[0008]
A perspective view of the FBC memory is shown in FIG. 19C (for example, see Non-Patent Document 2).
[0009]
For example, as shown in FIG. 19, the FBC memory does not have a charge storage capacity in a cell, and is configured to perform a memory function by storing charges in a charge storage region called a floating body portion.
[0010]
When data is called from this memory, a plurality of cells connected to the memory are selected by a word line WL. The electric charge stored in each cell is read out as Vout from the corresponding bit line BL through the sense amplifier 31 connected thereto. Note that a load capacitance 32 exists on the input side of each sense amplifier 31. Therefore, prior to the reading, the charge of the load capacitance 32 is discharged by the reset transistor 33 that is operated by the read reset signal read reset.
[0011]
At the time of data writing, a write reset signal write reset is given through the Vg2 terminal of the substrate to reset the charge of the floating body portion, and thereafter, data writing is performed through the bit line BL.
[0012]
In the FBC memory having the above-described structure, for example, referring to FIG. 18B, a current flows from the diffusion layer region 4 (drain D) to the diffusion layer region (source S) via the channel region 5. When flowing, hot holes are generated in the channel region 5. The hot holes are accumulated in the channel region 5. That is, a memory operation is performed by setting the channel region 5 as a capacitor for storing data (holes), that is, a charge storage region. That is, the charge storage region is arranged below the gate (word line WL) in the unit cell UC which is a MOS transistor. The FBC memory has the advantage that the circuit area can be significantly reduced and high integration can be achieved.
[0013]
However, the data storage time of the FBC is shorter than that of a capacitor in a conventional DRAM. In order to extend the accumulation time, it is conceivable to reduce the junction leak in the diffusion layer region 4. At the same time, since it is necessary to generate hot holes in the charge storage region, it is conceivable to lower the resistance of the source line SL and the bit line BL connected to the ground.
[0014]
For this reason, although the source line SL and the bit line BL contact plug CP, each made of polysilicon, are connected to the supporting substrate via salicide, respectively, the wiring resistance is reduced, but an example known by the present inventors is provided. Are shown in FIGS. 20A and 20B. These two figures are cross-sectional views of different portions of one semiconductor device. In particular, FIG. 20A shows an FBC cell portion, and FIG. 20B shows an FBC peripheral circuit portion. As shown in these figures, a salicide process is applied to an electrode made of polysilicon to form a salicide portion 11, thereby realizing a reduction in wiring resistance. In the figure, 12, 13 and 14 are gate side walls.
[0015]
However, according to such a configuration, as is clear from FIG. 20A, the surface of the silicon layer 3 is directly salicidized. For this reason, an interface reaction or a crystal defect portion occurs at the joint portion, resulting in a structure having a large amount of junction leak. As a result, a problem arises in the ability to accumulate charges that are important for the memory operation.
[0016]
Also, consider a semiconductor device using bulk silicon. For example, Japanese Patent Application Laid-Open No. 3-171768 discloses a memory cell using bulk silicon. Also in this case, it can be seen that similar problems are involved in reducing the junction leak.
[0017]
[Non-patent document 1]
ISSCC 2002 / SESSION 9 / DRAM AND FERROELECTRIC MEMORIES / 9.1 Memory Design Using One Transistor Gain Cell on SOI / TAKASHIO Ohsawa et al.
[Non-patent document 2]
IEEE TRANSACTION ON ELECTRON DEVICES, VOL. 37, MAY, 1990, p1373-1382
[Patent Document 1]
JP-A-3-171768
[Problems to be solved by the invention]
As described above, conventionally, there has been no memory structure using a PN junction in a charge storage region, such as FBC, having an appropriate structure and process.
[0019]
SUMMARY OF THE INVENTION Accordingly, the present invention has been made in view of the above, and an object of the present invention is to provide a semiconductor device and a method of manufacturing the same in which, for example, in an embedded DRAM or FBC cell, a junction leak in a contact portion in a memory cell is prevented. is there.
[0020]
[Means for Solving the Problems]
In order to achieve the above object, an embodiment of the present invention includes: a memory cell array unit having a cell array in which a plurality of memory transistors are arranged; and a peripheral transistor unit having a plurality of peripheral transistors. Each of the memory transistors includes a pair of source / drain diffusion layers formed in a semiconductor substrate, a gate electrode as a word line formed on the semiconductor substrate via a gate insulating film, and a surface of the semiconductor substrate. An insulating film to cover, and a contact penetrating through the insulating film and contacting each of the source / drain diffusion layers, and a surface of the surface of the semiconductor substrate other than the contact is covered with the insulating film. A semiconductor device is provided.
[0021]
In order to achieve the above object, according to an embodiment of the present invention, a polysilicon gate electrode is formed via a gate insulating film on each of a memory cell array portion forming region and a peripheral transistor portion forming region on a semiconductor substrate. A first step of forming a pair of source / drain regions on both sides of the gate electrode, and forming at least an insulating film and a nitride film on an upper surface and side walls of each of the gate electrodes and on the semiconductor substrate. A second step of depositing, and burying an interlayer insulating film material entirely, polishing this until the nitride film on the top of each of the gate electrodes is exposed, and subsequently polishing the interlayer insulating film material in the peripheral transistor portion forming region A third step of removing only the nitride film using the interlayer insulating film material as a mask until the insulating film is exposed; and Forming a hole through the insulating film and the nitride film above the pair of source / drain regions and reaching the surface of the semiconductor substrate, and forming a polysilicon plug in the hole. A sixth step of removing the insulating film at the top of the gate in the memory cell array part forming region, the top of the gate in the peripheral transistor part forming region, and the insulating film in the source / drain region; And a seventh step of saliciding the top of the gate electrode and the top of the polysilicon plug in the portion forming region, the top of the gate electrode and the source / drain region in the peripheral transistor portion forming region. To provide a method for manufacturing a semiconductor device.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0023]
Embodiment 1 FIG.
1A and 1B show a configuration of an FBC memory exemplified as a semiconductor device according to a first embodiment of the present invention. FIG. 1A shows a memory portion (memory cell array portion), and FIG. 1B shows a peripheral circuit portion ( (Peripheral transistor section). Although shown in FIGS. 1A and 1B, the same elements as those shown in FIGS. 20A and 20B are denoted by the same reference numerals, and detailed description is omitted. This is the same in other drawings described below.
[0024]
In the memory section, as shown in FIG. 1A, the gate side walls 12 and 13 are covered on the silicon substrate and are not salicidized. On the other hand, the source / drain regions 4 (S) and 4 (D) are in contact with the polysilicon plug 21. The upper portions of these polysilicon plugs are salicided. However, since the polycrystalline portion (polysilicon plug 21) is salicided here, there is no direct influence on the silicon substrate to increase the junction leak.
[0025]
Therefore, according to the configurations shown in FIGS. 1A and 1B, it is possible to simultaneously realize the structure of the logic transistor in the peripheral circuit portion, the countermeasure against the leak in the cell in the memory portion, and the salicide on the gate. .
[0026]
Embodiment 2. FIG.
FIG. 2 shows a configuration of a memory using bulk silicon exemplified as a semiconductor device according to a second embodiment of the present invention. FIG. 2A shows a memory portion, and FIG. 2B shows a peripheral circuit portion. It is shown.
[0027]
FIG. 2 differs from FIG. 1 in that the configuration of FIG. 1 has a three-layer SOI structure of a support substrate 1, a buried oxide film layer 2, and a silicon single crystal layer 3 as a substrate, whereas the configuration of FIG. Is a one-layer structure of the bulk silicon layer 3, and the other structures are the same.
[0028]
Also in the case of the second embodiment, as in the first embodiment, it is possible to simultaneously realize the structure of the logic transistor in the peripheral circuit portion, the countermeasure for leak in the cell of the memory portion, and the salicide on the gate.
[0029]
Embodiment 3 FIG.
3A and 3B show a configuration of a trench DRAM exemplified as a semiconductor device according to a third embodiment of the present invention. FIG. 3A shows a memory portion, and FIG. 3B shows a peripheral circuit portion. .
[0030]
FIG. 3 differs from FIG. 1 in that the source line SL is connected to the X'fer contact 25 and the trench capacitor 26, and the other configuration is the same.
[0031]
That is, also in the configuration of FIG. 3A, it is possible to simultaneously realize the structure of the logic transistor in the peripheral circuit portion, the countermeasure for leak in the cell in the memory portion, and the salicide on the gate.
[0032]
Embodiment 4 FIG.
4 to 17 are process cross-sectional views for explaining a process of a method of manufacturing a semiconductor device according to a fourth embodiment of the present invention. In these drawings, (1A) to (14A) denote manufacturing processes of a memory unit. , (1B) to (14B) respectively show the manufacturing process of the peripheral circuit portion.
[0033]
As can be seen from FIGS. 4A and 4B, after performing STI (Shallow Trench Isolation) on the SOI substrate including the support substrate 1, the buried oxide film layer 2, and the silicon layer 3 by the element isolation film 25. Then, a gate electrode 6 (word line WL) is formed of polysilicon. Thereafter, ion implantation is performed using the gate electrode 6 as a mask, and then, diffusion is performed to form source / drain regions (diffusion layer regions) 4.
[0034]
Subsequently, as can be seen from FIGS. 5 (2A) and (2B), in order to further form the gate electrodes 13 and 14 outside the gate side wall 12, TEOS which is a planarization insulating material is set to 200 °, and the SiN film is set to 700 °. Are respectively deposited. Thus, gate sidewalls 13 and 14 are formed via gate sidewall (oxide film) 12. Simultaneously, ions are implanted into a deep region into the source and drain regions of the memory portion using the gate 6 and the gate side walls 12, 13, and 14 as a mask.
[0035]
Thereafter, as can be seen from FIGS. 6 (3A) and (3B), the gate step is filled with the interlayer insulating film (BPSG) 8. Subsequently, the BPSG 8 is shaved by CMP (chemical mechanical polishing) using the gate side wall (SiN film) 14 as a stopper until the SiN film 14 comes out of the face. In this case, it is needless to say that the SiN film 14 needs to be set to a sufficient thickness as a CMP stopper.
[0036]
Subsequently, as can be seen from FIGS. 7 (4A) and 7 (4B), only the memory portion of (4A) is protected with a resist, and the BPSG of the peripheral circuit portion of (4B) is removed by wet etching. Also in this case, the thickness of the SiN film 14 of (4B) is set to such a degree as to sufficiently function as an etching stopper, and it is required that there is no defect such as a pinhole.
[0037]
Next, as can be seen from FIGS. 8 (5A) and (5B), the SiN film 14 of the memory section of (5A) and the SiN film 14 of the peripheral circuit section of (5B) are subjected to the RIE (reactive ion etching) method. Etching. At this time, the etching condition of the SiN film is set to a condition that does not remove SiO 2 . As a result, as shown in FIGS. 8 (5A) and (5B), the etching is stopped at the portion where the surface of the TEOS 13 is exposed. As a result, as shown in FIG. 8 (5B), in the peripheral circuit portion, the SiN film 14 is removed both on the gate 6 and on the silicon layer 3. On the other hand, in the memory section, as shown in FIG. 8 (5A), only the portion above the gate 6 has the form in which the SiN film 14 is removed.
[0038]
Subsequently, as can be seen from FIGS. 9 (6A) and (6B), high concentration source / drain regions 4 (D) and 4 (S) are formed by implantation and diffusion of impurities.
[0039]
Next, as can be seen from FIGS. 10 (7A) and (7B), a contact hole 26 for a source line contact is opened in the memory section of (7A).
[0040]
Next, as can be seen from FIGS. 11 (8A) and (8B), contact holes 27 for bit line contacts are formed.
[0041]
Subsequently, as can be seen from FIGS. 12 (9A) and (9B), polysilicons 21 (S) and 21 (D) are buried in the respective contact holes 26 and 27.
[0042]
Subsequently, as can be seen from FIGS. 13A and 13B, the gate sidewalls 12 and 13 are formed on the gate 6 of (10A), on the gate 6 of (10B), and on the silicon layer 3 (substrate). Is removed by RIE and wet etching. Thereafter, a salicide portion 11 of Co is formed by a salicide method. In this case, the salicide 11 is formed on the upper portion of the gate 6 and the upper portions of the polysilicons 21 (S) and 21 (D) in the memory portion of (10A), and in the peripheral circuit portion of (10B). And on the silicon layer (substrate) 3. That is, in the memory section of (10A), salicide is not formed on the silicon substrate.
[0043]
Next, as can be seen from FIGS. 14 (11A) and (11B), BPSG 8 is deposited on the entire device and flattened by the CMP method.
[0044]
Subsequently, as can be seen from FIGS. 15 (12A) and (12B), in the memory section of (12A), a hole (8A) opening in the salicide 11 (D) is opened by RIE.
[0045]
Next, as can be seen from FIGS. 16 (13A) and (13B), a hole (8B) opening in the salicide 11 of the peripheral circuit portion of (13B) is formed.
[0046]
Next, as shown in FIGS. 17 (14A) and (14B), W (tungsten) is buried in the holes (8A) and (8B) formed as described above, and the contact plugs CP and CP are formed by CMP. A CP is formed.
[0047]
Through the processes described above, in the logic transistor structure of the peripheral circuit portion, salicide 11 is formed on the gate and on the contact portion of the substrate, while, in the memory portion, salicide 11 is formed on the gate and on the substrate. The salicide 11 is formed on the standing polysilicon, and a structure that is not salicidized on the silicon substrate can be realized. As a result, in the memory section, low-resistance gate wiring and junction leakage reduction can be achieved at the same time, and in the peripheral circuit section, a logic circuit having a normal salicide structure can be formed.
[0048]
In the fourth embodiment shown in FIG. 4, the manufacturing method for the structure shown in the first embodiment has been exemplified. However, this step can be similarly applied to the manufacturing of the second and third embodiments. Yes, the same effect can be obtained.
[0049]
【The invention's effect】
As described above, according to the present invention, for example, in an embedded DRAM or FBC cell, the resistance of the word line of the memory cell is simultaneously reduced while reducing the junction leak in the memory cell and improving the charge storage performance. On the other hand, a transistor having a normal salicide structure can be arranged in a mixed logic circuit, so that there is an effect that a high-performance semiconductor device can be realized.
[Brief description of the drawings]
FIG. 1 is a sectional view of a memory cell portion (memory cell array portion) (A) and a peripheral circuit portion (peripheral transistor portion) (B) of a semiconductor device according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view of a memory cell portion (A) and a peripheral circuit portion (B) of a semiconductor device according to a second embodiment of the present invention.
FIG. 3 is a sectional view of a memory cell portion (A) and a peripheral circuit portion (B) of a semiconductor device according to a third embodiment of the present invention.
FIG. 4 is a part of a process cross-sectional view for illustrating the method for manufacturing the semiconductor device shown as the fourth embodiment of the present invention.
FIG. 5 is a part of a process sectional view for illustrating the method for manufacturing the semiconductor device shown as the fourth embodiment of the present invention.
FIG. 6 is a part of a process sectional view for illustrating the method for manufacturing the semiconductor device shown as the fourth embodiment of the present invention.
FIG. 7 is a part of a process sectional view for illustrating the method for manufacturing the semiconductor device shown as the fourth embodiment of the present invention.
FIG. 8 is a part of a process sectional view for illustrating the method for manufacturing the semiconductor device shown as the fourth embodiment of the present invention.
FIG. 9 is a part of a process sectional view for illustrating the method for manufacturing the semiconductor device shown as the fourth embodiment of the present invention.
FIG. 10 is a part of a process cross-sectional view for illustrating the method for manufacturing the semiconductor device shown as the fourth embodiment of the present invention.
FIG. 11 is a part of a process cross-sectional view for illustrating the method for manufacturing the semiconductor device shown as the fourth embodiment of the present invention.
FIG. 12 is a part of a process sectional view for illustrating the method for manufacturing the semiconductor device shown as the fourth embodiment of the present invention.
FIG. 13 is a part of a process cross-sectional view for illustrating the method for manufacturing the semiconductor device shown as the fourth embodiment of the present invention.
FIG. 14 is a part of a process cross-sectional view for illustrating the method for manufacturing the semiconductor device shown as the fourth embodiment of the present invention.
FIG. 15 is a part of a process sectional view for illustrating the method for manufacturing the semiconductor device shown as the fourth embodiment of the present invention.
FIG. 16 is a part of a process cross-sectional view for illustrating the method for manufacturing the semiconductor device shown as the fourth embodiment of the present invention.
FIG. 17 is a part of a process cross-sectional view for illustrating the method for manufacturing the semiconductor device shown as the fourth embodiment of the present invention.
18A and 18B are a plan view and a cross-sectional view of a conventional semiconductor device.
FIG. 19 is a perspective view of a conventional semiconductor device.
FIG. 20 is a cross-sectional view of a memory cell portion (A) and a peripheral circuit portion (B) of a conventional semiconductor device.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 support substrate 2 buried oxide film 3 silicon layer 4 source / drain diffusion layer 6 gate electrode 11 salicide 21 polysilicon plug 13, 14 gate side wall 25 X'fer contact 26 trench capacitor UC unit cell WL word line SL source line BL bit line

Claims (6)

複数のメモリトランジスタが並べられたセルアレイを有するメモリセルアレイ部と、複数の周辺トランジスタを有する周辺トランジスタ部と、を備え、
前記メモリセルアレイ部における前記各メモリトランジスタは、半導体基板中に形成された一対のソース・ドレイン拡散層と、前記半導体基板上にゲート絶縁膜を介して形成されたワードラインとしてのゲート電極と、前記半導体基板の表面を被う絶縁膜と、この絶縁膜を貫通して前記各ソース・ドレイン拡散層とコンタクトするコンタクトと、を備え、前記半導体基板の表面のうち前記コンタクト以外の面は前記絶縁膜で被われていることを特徴とする半導体装置。
A memory cell array portion having a cell array in which a plurality of memory transistors are arranged, and a peripheral transistor portion having a plurality of peripheral transistors,
Each of the memory transistors in the memory cell array section has a pair of source / drain diffusion layers formed in a semiconductor substrate, a gate electrode as a word line formed on the semiconductor substrate via a gate insulating film, and An insulating film covering the surface of the semiconductor substrate; and a contact penetrating the insulating film and contacting each of the source / drain diffusion layers. A surface of the semiconductor substrate other than the contact is an insulating film. A semiconductor device characterized by being covered with:
前記ワードラインとしての前記ゲート電極の上面部がサリサイドとされていることを特徴とする請求項1に記載の半導体装置。2. The semiconductor device according to claim 1, wherein an upper surface of the gate electrode serving as the word line is salicide. 前記周辺トランジスタ部における前記各周辺トランジスタは、前記半導体基板中に形成された一対のソース・ドレイン拡散層と、前記半導体基板上にゲート絶縁膜を介して形成されたゲート電極と、を備え、前記半導体基板表面のうちの前記一対のソース・ドレイン拡散層の表面と、前記ゲート電極の上面部がサリサイドとされていることを特徴とする請求項1または2に記載の半導体装置。Each of the peripheral transistors in the peripheral transistor portion includes a pair of source / drain diffusion layers formed in the semiconductor substrate, and a gate electrode formed on the semiconductor substrate via a gate insulating film, 3. The semiconductor device according to claim 1, wherein a surface of the pair of source / drain diffusion layers on a surface of the semiconductor substrate and an upper surface of the gate electrode are salicide. 前記半導体基板としてSOI基板を用いたことを特徴とする請求項1乃至3のいずれかに記載の半導体装置。4. The semiconductor device according to claim 1, wherein an SOI substrate is used as said semiconductor substrate. 前記メモリセルアレイ部の前記各メモリトランジスタにおける前記一対のソース・ドレイン拡散層のうちの一方にコンタクトする前記コンタクトに、前記半導体基板中に形成したトレンチキャパシタを接続させたことを特徴とする、請求項1乃至3のいずれかに記載の半導体装置。The trench capacitor formed in the semiconductor substrate is connected to the contact that contacts one of the pair of source / drain diffusion layers in each of the memory transistors in the memory cell array section. 4. The semiconductor device according to any one of 1 to 3. 半導体基板の、メモリセルアレイ部形成領域と周辺トランジスタ部形成領域とのそれぞれに、ゲート絶縁膜を介して、ポリシリコンのゲート電極を形成すると共に、前記ゲート電極を挟んだ両側に一対のソース・ドレイン領域を形成する第1工程と、
少なくとも絶縁膜と窒化膜を、前記各ゲート電極の上面及び側壁と、前記半導体基板上と、に堆積する第2工程と、
全体に層間絶縁膜材料を埋設し、これを前記各ゲート電極の頂部の前記窒化膜が露出するまで研磨し、続いて前記周辺トランジスタ部形成領域の前記層間絶縁膜材料のみを除去する第3工程と、
前記層間絶縁膜材料をマスクとして前記絶縁膜が露出するまで前記窒化膜を除去する第4工程と、
前記メモリセルアレイ部形成領域の前記一対のソース・ドレイン領域上方の絶縁膜と前記窒化膜に、これらを貫通して前記半導体基板の表面に達する開孔を形成して、この開孔にポリシリコンプラグを形成する第5工程と、
前記メモリセルアレイ部形成領域のゲートの頂部の前記絶縁膜、前記周辺トランジスタ部形成領域の前記ゲートの頂部および前記ソース・ドレイン領域の前記絶縁膜を除去する第6の工程と、
前記メモリセルアレイ部形成領域の前記ゲート電極の頂部および前記ポリシリコンプラグの頂部、前記周辺トランジスタ部形成領域の前記ゲート電極の頂部および前記ソース・ドレイン領域をサリサイド化する第7工程と、
を備えることを特徴とする半導体装置の製造方法。
A polysilicon gate electrode is formed in each of the memory cell array portion forming region and the peripheral transistor portion forming region of the semiconductor substrate with a gate insulating film interposed therebetween, and a pair of source / drain is formed on both sides of the gate electrode. A first step of forming a region;
A second step of depositing at least an insulating film and a nitride film on the upper surface and side walls of each of the gate electrodes and on the semiconductor substrate;
A third step of burying an interlayer insulating film material entirely and polishing it until the nitride film at the top of each gate electrode is exposed, and subsequently removing only the interlayer insulating film material in the peripheral transistor portion forming region When,
A fourth step of removing the nitride film using the interlayer insulating film material as a mask until the insulating film is exposed;
An opening is formed in the insulating film and the nitride film above the pair of source / drain regions in the memory cell array portion forming region to penetrate them and reach the surface of the semiconductor substrate, and a polysilicon plug is formed in the opening. A fifth step of forming
A sixth step of removing the insulating film at the top of the gate in the memory cell array portion forming region, the top of the gate in the peripheral transistor portion forming region, and the insulating film in the source / drain region;
A seventh step of saliciding the top of the gate electrode and the top of the polysilicon plug in the memory cell array formation region, the top of the gate electrode and the source / drain region in the peripheral transistor formation region,
A method for manufacturing a semiconductor device, comprising:
JP2003125709A 2003-04-30 2003-04-30 Semiconductor device and its manufacturing method Pending JP2004335553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003125709A JP2004335553A (en) 2003-04-30 2003-04-30 Semiconductor device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003125709A JP2004335553A (en) 2003-04-30 2003-04-30 Semiconductor device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004335553A true JP2004335553A (en) 2004-11-25

Family

ID=33502889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003125709A Pending JP2004335553A (en) 2003-04-30 2003-04-30 Semiconductor device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004335553A (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008226904A (en) * 2007-03-08 2008-09-25 Elpida Memory Inc Semiconductor memory device and its manufacturing method
WO2009031052A2 (en) * 2007-03-29 2009-03-12 Innovative Silicon S.A. Zero-capacitor (floating body) random access memory circuits with polycide word lines and manufacturing methods therefor
US7924630B2 (en) 2008-10-15 2011-04-12 Micron Technology, Inc. Techniques for simultaneously driving a plurality of source lines
US7933140B2 (en) 2008-10-02 2011-04-26 Micron Technology, Inc. Techniques for reducing a voltage swing
US7933142B2 (en) 2006-05-02 2011-04-26 Micron Technology, Inc. Semiconductor memory cell and array using punch-through to program and read same
US7940559B2 (en) 2006-04-07 2011-05-10 Micron Technology, Inc. Memory array having a programmable word length, and method of operating same
US7947543B2 (en) 2008-09-25 2011-05-24 Micron Technology, Inc. Recessed gate silicon-on-insulator floating body device with self-aligned lateral isolation
US7957206B2 (en) 2008-04-04 2011-06-07 Micron Technology, Inc. Read circuitry for an integrated circuit having memory cells and/or a memory cell array, and method of operating same
US7969779B2 (en) 2006-07-11 2011-06-28 Micron Technology, Inc. Integrated circuit including memory array having a segmented bit line architecture and method of controlling and/or operating same
US8014195B2 (en) 2008-02-06 2011-09-06 Micron Technology, Inc. Single transistor memory cell
US8064274B2 (en) 2007-05-30 2011-11-22 Micron Technology, Inc. Integrated circuit having voltage generation circuitry for memory cell array, and method of operating and/or controlling same
US8069377B2 (en) 2006-06-26 2011-11-29 Micron Technology, Inc. Integrated circuit having memory array including ECC and column redundancy and method of operating the same
US8085594B2 (en) 2007-06-01 2011-12-27 Micron Technology, Inc. Reading technique for memory cell with electrically floating body transistor
US8139418B2 (en) 2009-04-27 2012-03-20 Micron Technology, Inc. Techniques for controlling a direct injection semiconductor memory device
US8174881B2 (en) 2009-11-24 2012-05-08 Micron Technology, Inc. Techniques for reducing disturbance in a semiconductor device
US8189376B2 (en) 2008-02-08 2012-05-29 Micron Technology, Inc. Integrated circuit having memory cells including gate material having high work function, and method of manufacturing same
US8194487B2 (en) 2007-09-17 2012-06-05 Micron Technology, Inc. Refreshing data of memory cells with electrically floating body transistors
US8199595B2 (en) 2009-09-04 2012-06-12 Micron Technology, Inc. Techniques for sensing a semiconductor memory device
US8213226B2 (en) 2008-12-05 2012-07-03 Micron Technology, Inc. Vertical transistor memory cell and array
US8223574B2 (en) 2008-11-05 2012-07-17 Micron Technology, Inc. Techniques for block refreshing a semiconductor memory device
US8264041B2 (en) 2007-01-26 2012-09-11 Micron Technology, Inc. Semiconductor device with electrically floating body
US8310893B2 (en) 2009-12-16 2012-11-13 Micron Technology, Inc. Techniques for reducing impact of array disturbs in a semiconductor memory device
US8315099B2 (en) 2009-07-27 2012-11-20 Micron Technology, Inc. Techniques for providing a direct injection semiconductor memory device
US8319294B2 (en) 2009-02-18 2012-11-27 Micron Technology, Inc. Techniques for providing a source line plane
US8349662B2 (en) 2007-12-11 2013-01-08 Micron Technology, Inc. Integrated circuit having memory cell array, and method of manufacturing same
US8369177B2 (en) 2010-03-05 2013-02-05 Micron Technology, Inc. Techniques for reading from and/or writing to a semiconductor memory device
US8411524B2 (en) 2010-05-06 2013-04-02 Micron Technology, Inc. Techniques for refreshing a semiconductor memory device
US8411513B2 (en) 2010-03-04 2013-04-02 Micron Technology, Inc. Techniques for providing a semiconductor memory device having hierarchical bit lines
US8416636B2 (en) 2010-02-12 2013-04-09 Micron Technology, Inc. Techniques for controlling a semiconductor memory device
US8498157B2 (en) 2009-05-22 2013-07-30 Micron Technology, Inc. Techniques for providing a direct injection semiconductor memory device
US8508994B2 (en) 2009-04-30 2013-08-13 Micron Technology, Inc. Semiconductor device with floating gate and electrically floating body
US8531878B2 (en) 2011-05-17 2013-09-10 Micron Technology, Inc. Techniques for providing a semiconductor memory device
US8536628B2 (en) 2007-11-29 2013-09-17 Micron Technology, Inc. Integrated circuit having memory cell array including barriers, and method of manufacturing same
US8537610B2 (en) 2009-07-10 2013-09-17 Micron Technology, Inc. Techniques for providing a semiconductor memory device
US8547738B2 (en) 2010-03-15 2013-10-01 Micron Technology, Inc. Techniques for providing a semiconductor memory device
US8576631B2 (en) 2010-03-04 2013-11-05 Micron Technology, Inc. Techniques for sensing a semiconductor memory device
US8710566B2 (en) 2009-03-04 2014-04-29 Micron Technology, Inc. Techniques for forming a contact to a buried diffusion layer in a semiconductor memory device
US8748959B2 (en) 2009-03-31 2014-06-10 Micron Technology, Inc. Semiconductor memory device
US8773933B2 (en) 2012-03-16 2014-07-08 Micron Technology, Inc. Techniques for accessing memory cells
US8873283B2 (en) 2005-09-07 2014-10-28 Micron Technology, Inc. Memory cell and memory cell array having an electrically floating body transistor, and methods of operating same
US9559216B2 (en) 2011-06-06 2017-01-31 Micron Technology, Inc. Semiconductor memory device and method for biasing same

Cited By (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8873283B2 (en) 2005-09-07 2014-10-28 Micron Technology, Inc. Memory cell and memory cell array having an electrically floating body transistor, and methods of operating same
US10418091B2 (en) 2005-09-07 2019-09-17 Ovonyx Memory Technology, Llc Memory cell and memory cell array having an electrically floating body transistor, and methods of operating same
US11031069B2 (en) 2005-09-07 2021-06-08 Ovonyx Memory Technology, Llc Memory cell and memory cell array having an electrically floating body transistor, and methods of operating same
US8134867B2 (en) 2006-04-07 2012-03-13 Micron Technology, Inc. Memory array having a programmable word length, and method of operating same
US7940559B2 (en) 2006-04-07 2011-05-10 Micron Technology, Inc. Memory array having a programmable word length, and method of operating same
US8295078B2 (en) 2006-05-02 2012-10-23 Micron Technology, Inc. Semiconductor memory cell and array using punch-through to program and read same
US7933142B2 (en) 2006-05-02 2011-04-26 Micron Technology, Inc. Semiconductor memory cell and array using punch-through to program and read same
US8069377B2 (en) 2006-06-26 2011-11-29 Micron Technology, Inc. Integrated circuit having memory array including ECC and column redundancy and method of operating the same
US8402326B2 (en) 2006-06-26 2013-03-19 Micron Technology, Inc. Integrated circuit having memory array including ECC and column redundancy and method of operating same
US7969779B2 (en) 2006-07-11 2011-06-28 Micron Technology, Inc. Integrated circuit including memory array having a segmented bit line architecture and method of controlling and/or operating same
US8395937B2 (en) 2006-07-11 2013-03-12 Micron Technology, Inc. Integrated circuit including memory array having a segmented bit line architecture and method of controlling and/or operating same
US8492209B2 (en) 2007-01-26 2013-07-23 Micron Technology, Inc. Semiconductor device with electrically floating body
US8264041B2 (en) 2007-01-26 2012-09-11 Micron Technology, Inc. Semiconductor device with electrically floating body
US8796770B2 (en) 2007-01-26 2014-08-05 Micron Technology, Inc. Semiconductor device with electrically floating body
JP2008226904A (en) * 2007-03-08 2008-09-25 Elpida Memory Inc Semiconductor memory device and its manufacturing method
US8518774B2 (en) 2007-03-29 2013-08-27 Micron Technology, Inc. Manufacturing process for zero-capacitor random access memory circuits
WO2009031052A3 (en) * 2007-03-29 2009-08-06 Innovative Silicon Sa Zero-capacitor (floating body) random access memory circuits with polycide word lines and manufacturing methods therefor
US9276000B2 (en) 2007-03-29 2016-03-01 Micron Technology, Inc. Manufacturing process for zero-capacitor random access memory circuits
WO2009031052A2 (en) * 2007-03-29 2009-03-12 Innovative Silicon S.A. Zero-capacitor (floating body) random access memory circuits with polycide word lines and manufacturing methods therefor
US8064274B2 (en) 2007-05-30 2011-11-22 Micron Technology, Inc. Integrated circuit having voltage generation circuitry for memory cell array, and method of operating and/or controlling same
US8659956B2 (en) 2007-05-30 2014-02-25 Micron Technology, Inc. Integrated circuit having voltage generation circuitry for memory cell array, and method of operating and/or controlling same
US9257155B2 (en) 2007-05-30 2016-02-09 Micron Technology, Inc. Integrated circuit having voltage generation circuitry for memory cell array, and method of operating and/or controlling same
US8085594B2 (en) 2007-06-01 2011-12-27 Micron Technology, Inc. Reading technique for memory cell with electrically floating body transistor
US8659948B2 (en) 2007-06-01 2014-02-25 Micron Technology, Inc. Techniques for reading a memory cell with electrically floating body transistor
US8446794B2 (en) 2007-09-17 2013-05-21 Micron Technology, Inc. Refreshing data of memory cells with electrically floating body transistors
US8194487B2 (en) 2007-09-17 2012-06-05 Micron Technology, Inc. Refreshing data of memory cells with electrically floating body transistors
US8797819B2 (en) 2007-09-17 2014-08-05 Micron Technology, Inc. Refreshing data of memory cells with electrically floating body transistors
US10304837B2 (en) 2007-11-29 2019-05-28 Ovonyx Memory Technology, Llc Integrated circuit having memory cell array including barriers, and method of manufacturing same
US8536628B2 (en) 2007-11-29 2013-09-17 Micron Technology, Inc. Integrated circuit having memory cell array including barriers, and method of manufacturing same
US11081486B2 (en) 2007-11-29 2021-08-03 Ovonyx Memory Technology, Llc Integrated circuit having memory cell array including barriers, and method of manufacturing same
US8349662B2 (en) 2007-12-11 2013-01-08 Micron Technology, Inc. Integrated circuit having memory cell array, and method of manufacturing same
US9019788B2 (en) 2008-01-24 2015-04-28 Micron Technology, Inc. Techniques for accessing memory cells
US8325515B2 (en) 2008-02-06 2012-12-04 Micron Technology, Inc. Integrated circuit device
US8014195B2 (en) 2008-02-06 2011-09-06 Micron Technology, Inc. Single transistor memory cell
US8189376B2 (en) 2008-02-08 2012-05-29 Micron Technology, Inc. Integrated circuit having memory cells including gate material having high work function, and method of manufacturing same
US7957206B2 (en) 2008-04-04 2011-06-07 Micron Technology, Inc. Read circuitry for an integrated circuit having memory cells and/or a memory cell array, and method of operating same
US8274849B2 (en) 2008-04-04 2012-09-25 Micron Technology, Inc. Read circuitry for an integrated circuit having memory cells and/or a memory cell array, and method of operating same
US7947543B2 (en) 2008-09-25 2011-05-24 Micron Technology, Inc. Recessed gate silicon-on-insulator floating body device with self-aligned lateral isolation
US9553186B2 (en) 2008-09-25 2017-01-24 Micron Technology, Inc. Recessed gate silicon-on-insulator floating body device with self-aligned lateral isolation
US8790968B2 (en) 2008-09-25 2014-07-29 Micron Technology, Inc. Recessed gate silicon-on-insulator floating body device with self-aligned lateral isolation
US7933140B2 (en) 2008-10-02 2011-04-26 Micron Technology, Inc. Techniques for reducing a voltage swing
US8315083B2 (en) 2008-10-02 2012-11-20 Micron Technology Inc. Techniques for reducing a voltage swing
US7924630B2 (en) 2008-10-15 2011-04-12 Micron Technology, Inc. Techniques for simultaneously driving a plurality of source lines
US8223574B2 (en) 2008-11-05 2012-07-17 Micron Technology, Inc. Techniques for block refreshing a semiconductor memory device
US8213226B2 (en) 2008-12-05 2012-07-03 Micron Technology, Inc. Vertical transistor memory cell and array
US8319294B2 (en) 2009-02-18 2012-11-27 Micron Technology, Inc. Techniques for providing a source line plane
US9064730B2 (en) 2009-03-04 2015-06-23 Micron Technology, Inc. Techniques for forming a contact to a buried diffusion layer in a semiconductor memory device
US8710566B2 (en) 2009-03-04 2014-04-29 Micron Technology, Inc. Techniques for forming a contact to a buried diffusion layer in a semiconductor memory device
US9093311B2 (en) 2009-03-31 2015-07-28 Micron Technology, Inc. Techniques for providing a semiconductor memory device
US8748959B2 (en) 2009-03-31 2014-06-10 Micron Technology, Inc. Semiconductor memory device
US8508970B2 (en) 2009-04-27 2013-08-13 Micron Technology, Inc. Techniques for providing a direct injection semiconductor memory device
US8861247B2 (en) 2009-04-27 2014-10-14 Micron Technology, Inc. Techniques for providing a direct injection semiconductor memory device
US8139418B2 (en) 2009-04-27 2012-03-20 Micron Technology, Inc. Techniques for controlling a direct injection semiconductor memory device
US9425190B2 (en) 2009-04-27 2016-08-23 Micron Technology, Inc. Techniques for providing a direct injection semiconductor memory device
US8351266B2 (en) 2009-04-27 2013-01-08 Micron Technology, Inc. Techniques for controlling a direct injection semiconductor memory device
US8400811B2 (en) 2009-04-27 2013-03-19 Micron Technology, Inc. Techniques for providing a direct injection semiconductor memory device having ganged carrier injection lines
US8508994B2 (en) 2009-04-30 2013-08-13 Micron Technology, Inc. Semiconductor device with floating gate and electrically floating body
US9240496B2 (en) 2009-04-30 2016-01-19 Micron Technology, Inc. Semiconductor device with floating gate and electrically floating body
US8792276B2 (en) 2009-04-30 2014-07-29 Micron Technology, Inc. Semiconductor device with floating gate and electrically floating body
US8982633B2 (en) 2009-05-22 2015-03-17 Micron Technology, Inc. Techniques for providing a direct injection semiconductor memory device
US8498157B2 (en) 2009-05-22 2013-07-30 Micron Technology, Inc. Techniques for providing a direct injection semiconductor memory device
US8817534B2 (en) 2009-07-10 2014-08-26 Micron Technology, Inc. Techniques for providing a semiconductor memory device
US9331083B2 (en) 2009-07-10 2016-05-03 Micron Technology, Inc. Techniques for providing a semiconductor memory device
US8537610B2 (en) 2009-07-10 2013-09-17 Micron Technology, Inc. Techniques for providing a semiconductor memory device
US9679612B2 (en) 2009-07-27 2017-06-13 Micron Technology, Inc. Techniques for providing a direct injection semiconductor memory device
US9076543B2 (en) 2009-07-27 2015-07-07 Micron Technology, Inc. Techniques for providing a direct injection semiconductor memory device
US8947965B2 (en) 2009-07-27 2015-02-03 Micron Technology Inc. Techniques for providing a direct injection semiconductor memory device
US8964461B2 (en) 2009-07-27 2015-02-24 Micron Technology, Inc. Techniques for providing a direct injection semiconductor memory device
US8315099B2 (en) 2009-07-27 2012-11-20 Micron Technology, Inc. Techniques for providing a direct injection semiconductor memory device
US8587996B2 (en) 2009-07-27 2013-11-19 Micron Technology, Inc. Techniques for providing a direct injection semiconductor memory device
US8199595B2 (en) 2009-09-04 2012-06-12 Micron Technology, Inc. Techniques for sensing a semiconductor memory device
US9812179B2 (en) 2009-11-24 2017-11-07 Ovonyx Memory Technology, Llc Techniques for reducing disturbance in a semiconductor memory device
US8760906B2 (en) 2009-11-24 2014-06-24 Micron Technology, Inc. Techniques for reducing disturbance in a semiconductor memory device
US8174881B2 (en) 2009-11-24 2012-05-08 Micron Technology, Inc. Techniques for reducing disturbance in a semiconductor device
US8699289B2 (en) 2009-11-24 2014-04-15 Micron Technology, Inc. Techniques for reducing disturbance in a semiconductor memory device
US8310893B2 (en) 2009-12-16 2012-11-13 Micron Technology, Inc. Techniques for reducing impact of array disturbs in a semiconductor memory device
US8416636B2 (en) 2010-02-12 2013-04-09 Micron Technology, Inc. Techniques for controlling a semiconductor memory device
US8576631B2 (en) 2010-03-04 2013-11-05 Micron Technology, Inc. Techniques for sensing a semiconductor memory device
US8964479B2 (en) 2010-03-04 2015-02-24 Micron Technology, Inc. Techniques for sensing a semiconductor memory device
US8411513B2 (en) 2010-03-04 2013-04-02 Micron Technology, Inc. Techniques for providing a semiconductor memory device having hierarchical bit lines
US8369177B2 (en) 2010-03-05 2013-02-05 Micron Technology, Inc. Techniques for reading from and/or writing to a semiconductor memory device
US9019759B2 (en) 2010-03-15 2015-04-28 Micron Technology, Inc. Techniques for providing a semiconductor memory device
US9524971B2 (en) 2010-03-15 2016-12-20 Micron Technology, Inc. Techniques for providing a semiconductor memory device
US8547738B2 (en) 2010-03-15 2013-10-01 Micron Technology, Inc. Techniques for providing a semiconductor memory device
US8411524B2 (en) 2010-05-06 2013-04-02 Micron Technology, Inc. Techniques for refreshing a semiconductor memory device
US9142264B2 (en) 2010-05-06 2015-09-22 Micron Technology, Inc. Techniques for refreshing a semiconductor memory device
US8630126B2 (en) 2010-05-06 2014-01-14 Micron Technology, Inc. Techniques for refreshing a semiconductor memory device
US9263133B2 (en) 2011-05-17 2016-02-16 Micron Technology, Inc. Techniques for providing a semiconductor memory device
US8531878B2 (en) 2011-05-17 2013-09-10 Micron Technology, Inc. Techniques for providing a semiconductor memory device
US9559216B2 (en) 2011-06-06 2017-01-31 Micron Technology, Inc. Semiconductor memory device and method for biasing same
US8773933B2 (en) 2012-03-16 2014-07-08 Micron Technology, Inc. Techniques for accessing memory cells

Similar Documents

Publication Publication Date Title
JP2004335553A (en) Semiconductor device and its manufacturing method
US6297090B1 (en) Method for fabricating a high-density semiconductor memory device
US7928504B2 (en) Semiconductor memory device and method for manufacturing the same
US6815752B2 (en) Semiconductor memory device for increasing access speed thereof
US7358133B2 (en) Semiconductor device and method for making the same
JP4783027B2 (en) Semiconductor memory device
JP2001044297A (en) Semiconductor device
US20110248339A1 (en) Semiconductor device and method for manufacturing the same
TW201405640A (en) MOS capacitor, method of fabricating the same, and semiconductor device using the same
JP2003031686A (en) Semiconductor storage device and its manufacturing method
US8581315B2 (en) Semiconductor device having cylindrical lower electrode of capacitor and manufacturing method thereof
JP5076570B2 (en) Semiconductor device and manufacturing method thereof
JP2013168570A (en) Semiconductor device and manufacturing method of the same
JP5132120B2 (en) GAIN CELL AND METHOD FOR MANUFACTURING AND USING THE SAME
US7332390B2 (en) Semiconductor memory device and fabrication thereof
JP4058403B2 (en) Semiconductor device
JP2000174225A (en) Semiconductor integrated circuit device and manufacture thereof
JP4427259B2 (en) Semiconductor device and manufacturing method thereof
JP4024935B2 (en) Highly integrated semiconductor memory device and manufacturing method thereof
JPH11121712A (en) Semiconductor integrated circuit device and manufacture thereof
JP3070537B2 (en) Semiconductor device and manufacturing method thereof
JPH11284137A (en) Semiconductor storage device and its manufacture
JP2004342842A (en) Semiconductor device and manufacturing method thereof
JP2003017591A (en) Semiconductor memory
US7335933B2 (en) Dynamic random access memory cell and method for fabricating the same