JP2004335397A - Heat roller - Google Patents

Heat roller Download PDF

Info

Publication number
JP2004335397A
JP2004335397A JP2003132961A JP2003132961A JP2004335397A JP 2004335397 A JP2004335397 A JP 2004335397A JP 2003132961 A JP2003132961 A JP 2003132961A JP 2003132961 A JP2003132961 A JP 2003132961A JP 2004335397 A JP2004335397 A JP 2004335397A
Authority
JP
Japan
Prior art keywords
resistance
temperature
resistance element
roller
heat roller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003132961A
Other languages
Japanese (ja)
Inventor
Shigekazu Saito
繁一 齋藤
Nobumasa Takei
伸政 武井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Electronics Co Ltd
Original Assignee
Micron Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Electronics Co Ltd filed Critical Micron Electronics Co Ltd
Priority to JP2003132961A priority Critical patent/JP2004335397A/en
Publication of JP2004335397A publication Critical patent/JP2004335397A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat roller wherein a temperature of a roller surface is suppressed lowered than a temperature threshold of a silicone rubber. <P>SOLUTION: The heat roller comprises a resistive element 11 consisting of: a first resistive element 13 in which a combined resistance or a resistance of a resistance wire material having a temperature coefficient of resistance of 100-500 PPM/°C is set to 10-40% of the combined resistance of the resistive element 11; and a second resistive element 15 in which a combined resistance or a resistance of a resistance wire material having a temperature coefficient of resistance of 3000-10000 PPM/°C is set to 90-60% of the combined resistance of the resistive element 11, which are connected in series. Using the heat roller, the first resistive element 13 rapidly heats the heat roller in a starting range so that the temperature of the roller surface is risen to 210°C within 180 seconds, and the second resistive element 15 increases the resistance of the resistive element 11 as the temperature of the roller surface increases, to reduce the current flowing through the resistive element 11 to allow the temperature of the roller surface to be maintained within a range of 210-350°C. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、フルカラーカードプリンタ等において、画像が形成された記録媒体を加熱して転写インクを乾燥又は定着させるヒートローラに関するものである。
【0002】
【従来の技術】
図5は従来のヒートローラの構成を示す断面図で、1は例えば、抵抗温度係数が250PPM/℃の抵抗線材2を巻回してなる抵抗素子、4は抵抗線材2の端子にそれぞれ電流溶接等によって接続した耐熱性のリード線、5は、例えば温度限界が350℃のシリコンラバー6を外周面に設けた金属製の有底円筒状のケース、7は抵抗素子1を内部に挿入してリード線4を開口部5aから引き出したケース5に充填する粉末状の充填材、8はリード線4を引き出したケース5の開口部5aに充填して開口部5aを封止する封止材である。
【0003】
このように構成された従来のヒートローラにおいて、250Wの電力を抵抗素子1に供給すると、シリコンラバー6の表面温度、即ちローラ表面温度が転写インクを乾燥又は記録媒体に定着できる温度、例えば210℃に139秒で到達する。
【0004】
そこで、ローラ表面温度が210℃に到達したのを温度センサー等で検出した後は、ローラ表面温度がほぼ210℃に保持されるように、抵抗線材2に供給する電力を温度調節装置によって制御する。
【0005】
【発明が解決しようとする課題】
ところで、温度調節装置や温度センサー等が故障すると、250Wの電力が抵抗線材2に供給され続けて、ローラ表面温度は210℃を超える(図6参照)が、抵抗温度係数が250PPM/℃の抵抗線材2の抵抗変化率は2%で、抵抗線材2の抵抗値はほとんど変化しないので、250Wの電力が抵抗線材2に引き続き供給されて、ローラ表面温度も上昇し続ける。
【0006】
このため、ローラ表面最大温度は350℃のシリコンラバー6の温度限界を超えて、800℃まで上昇する、所謂ヒートローラの熱暴走状態になり(図2のグラフに一点鎖線で図示)、抵抗素子1やシリコンラバー6の焼損事故や火事等の発生や、ヒートローラ周辺の装置或いは機器の破壊等の二次災害の発生の原因となっていた。
【0007】
本発明は、このような課題に鑑みてなされたもので、ローラ表面温度をシリコンラバーの温度限界以下に抑制できるヒートローラを提供することを目的とするものである。
【0008】
【課題を解決するための手段】
抵抗線材に耐熱性のリード線を接続した抵抗素子と、円筒状のケースと、前記抵抗素子を内部に挿入して前記リード線を開口部から引き出した前記ケースに充填する充填材とからなるヒートローラにおいて、抵抗素子は、抵抗温度係数が100〜500PPM/℃の抵抗線材の合成抵抗値又は抵抗値を抵抗素子の合成抵抗値の10〜40%とした第1の抵抗素子と、抵抗温度係数が3000〜10000PPM/℃の抵抗線材の合成抵抗値又は抵抗値を抵抗素子の合成抵抗値の90〜60%とした第2の抵抗素子とを直列に接続してなるものである。
【0009】
このヒートローラに電力を供給すると、ヒートローラの立上げを急速に行うと共に、ローラ表面温度が上昇するに連れて抵抗値を上昇させて、抵抗素子に流れる電力を次第に低下させることにより、ローラ表面温度をシリコンラバーの温度限界以下に自己抑制することができるので、抵抗素子やシリコンラバーの焼損事故や火事等の発生や、ヒートローラ周辺の装置或いは機器の破壊等の二次災害の発生を防止できる上、消費電力を低減できる。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、全図において同一符号は同一部分を示す。
【0011】
図1は本発明の一実施の形態によるヒートローラの構成を示す断面図で、11は、抵抗線材12を芯3に巻回した第1の抵抗素子13と、抵抗線材14を芯3に巻回した第2の抵抗素子15とを直列に接続してなる抵抗素子、4は第1の抵抗素子13の抵抗線材12の端子と第2の抵抗素子15の抵抗線材14の端子とにそれぞれ電流溶接等によって接続した耐熱性のリード線、5は、例えば温度限界が350℃のシリコンラバー6を外周面に設けた金属製の有底円筒状のケース、7は抵抗素子11を内部に挿入してリード線4を開口部5aから引き出したケース5に充填する粉末状の充填材、8はリード線4を引き出したケース5の開口部5aに充填して開口部5aを封止する封止材である。
【0012】
(実施例1)
本発明の実施例1の抵抗素子11は、抵抗変化率が136%となるように、抵抗温度係数が250PPM/℃の抵抗線材12を芯3に巻回した2本の抵抗素子からなる第1の抵抗素子13と、抵抗温度係数が4500PPM/℃の抵抗線材14を芯3に巻回した2本の抵抗素子からなる第2の抵抗素子15とを直列に接続したものである。
【0013】
実施例1のヒートローラにおいて、抵抗素子11に255Wの電力を供給すると、シリコンラバー6の表面温度、即ちローラ表面温度が上昇するに連れて、抵抗素子11の抵抗値も上昇するので、抵抗素子11に流れる電力は次第に低下して、ローラ表面温度の上昇も次第に緩やかになる。
【0014】
そして、ローラ表面温度が410℃になったところで、抵抗素子11の抵抗値もほぼ一定となって、抵抗素子11には111Wの電力しか流れなくなるので、温度調節装置や温度センサー等が故障したか、否かに係らず、ローラ表面最大温度は410℃に保持される。
【0015】
この間、ローラ表面温度が転写インクを乾燥又は記録媒体に定着できる温度、例えば210℃に到達するには、192秒の時間を要する。
【0016】
(実施例2)
本発明の実施例2の抵抗素子11は、抵抗変化率が194%となるように、抵抗温度係数が250PPM/℃の抵抗線材12を芯3に巻回した1本の抵抗素子からなる第1の抵抗素子13と、抵抗温度係数が4500PPM/℃の抵抗線材14を芯3に巻回した3本の抵抗素子からなる第2の抵抗素子15とを直列に接続したものである。
【0017】
実施例2のヒートローラにおいて、抵抗素子11に290Wの電力を供給すると、図2に示すように、210℃のローラ表面温度に150秒で到達するが、抵抗素子11の抵抗値はローラ表面温度が上昇するに連れて上昇するため、抵抗素子11に流れる電力が次第に低下して、ローラ表面温度の上昇も次第に緩やかになる。
【0018】
そして、ローラ表面温度が320℃になったところで、抵抗素子11の抵抗値もほぼ一定となって、抵抗素子11には103Wの電力しか流れなくなるので、温度調節装置や温度センサー等が故障したか、否かに係らず、ローラ表面最大温度は320℃に保持される。
【0019】
(実施例3)
本発明の実施例3の抵抗素子11は、抵抗変化率が266%となるように、抵抗温度係数が4500PPM/℃の抵抗線材12を芯3に巻回した4本の抵抗素子を直列に接続したものである。
【0020】
実施例3のヒートローラにおいて、抵抗素子11に340Wの電力を供給すると、210℃のローラ表面温度に192秒で到達するが、抵抗素子11の抵抗値はローラ表面温度が上昇するに連れて上昇するため、抵抗素子11に流れる電力が次第に低下して、ローラ表面温度の上昇も次第に緩やかになる。
【0021】
そして、ローラ表面温度が308℃になったところで、抵抗素子11の抵抗値もほぼ一定となって、抵抗素子11には108Wの電力しか流れなくなるので、温度調節装置や温度センサー等が故障したか、否かに係らず、ローラ表面最大温度は308℃に保持される。
【0022】
(実施例4)
本発明の実施例4の抵抗素子11は、抵抗変化率が315%となるように、抵抗温度係数が4500PPM/℃の抵抗線材12を芯3に巻回した2本の抵抗素子からなる第1の抵抗素子13と、抵抗温度係数が6700PPM/℃の抵抗線材14を芯3に巻回した2本の抵抗素子からなる第2の抵抗素子15とを直列に接続したものである。
【0023】
実施例4のヒートローラにおいて、抵抗素子11に485Wの電力を供給すると、210℃のローラ表面温度に168秒で到達するが、抵抗素子11の抵抗値はローラ表面温度が上昇するに連れて上昇するため、抵抗素子11に流れる電力が次第に低下して、ローラ表面温度の上昇も次第に緩やかになる。
【0024】
そして、ローラ表面温度が375℃になったところで、抵抗素子11の抵抗値もほぼ一定となり、485Wの電力を抵抗素子11の端子間に供給し続けても、抵抗素子11の抵抗線材12及び抵抗線材14には128Wの電力しか流れなくなるので、温度調節装置や温度センサー等が故障したか、否かに係らず、ローラ表面最大温度は375℃に保持される。
【0025】
(実施例5)
本発明の実施例5の抵抗素子11は、抵抗変化率が651%となるように、抵抗線材12を芯3に巻回した第1の抵抗素子13及び抵抗線材14を芯3に巻回した第2の抵抗素子15の代わりに3個のPCT素子を並列に接続したものである。
【0026】
実施例5のヒートローラにおいて、抵抗素子11に250Wの電力を供給すると、84℃のローラ表面温度に180秒で到達するが、抵抗素子11の抵抗値はローラ表面温度が上昇するに連れて上昇するため、3個のPTC素子に流れる電力は次第に低下して、ローラ表面温度の上昇も次第に緩やかになる。
【0027】
そして、ローラ表面温度が130℃になったところで、抵抗素子11の抵抗値もほぼ一定となり、250Wの電力を抵抗素子11の端子間に供給し続けても、抵抗素子11の抵抗線材12及び抵抗線材14には32Wの電力しか流れなくなるので、温度調節装置や温度センサー等が故障したか、否かに係らず、ローラ表面最大温度は130℃に保持される。
【0028】
実施例1乃至5の結果及び従来例の結果を表にすると、図3のようになる。
【0029】
この結果から明らかなように、立上げ時間が180秒以内という仕様を満足するのは実施例2,4及び5のヒートローラであり、ローラ表面最大温度が転写インクを乾燥又は記録媒体に定着する210℃からシリコンラバー6の温度限界である350℃までという仕様を満足するのは実施例2のヒートローラである。
【0030】
この結果、立上げ時間が180秒以内という仕様とローラ表面最大温度が210〜350℃という仕様とを満足するのは実施例2のヒートローラのみである。
【0031】
即ち、実施例2のヒートローラによれば、抵抗温度係数が250PPM/℃の抵抗線材12からなる第1の抵抗素子13は、立上げ域(図6参照)においてヒートローラを急速に加熱して、ローラ表面温度を180秒以内に210℃まで立ち上げ、又、抵抗温度係数が4500PPM/℃の抵抗線材14からなる第2の抵抗素子15は、ローラ表面温度の上昇に伴う第2の抵抗素子15の抵抗値の増加により抵抗素子11の抵抗値を増加させて、抵抗素子11に流れる電力を低減させ、ローラ表面温度を210〜350℃の範囲に保持する。
【0032】
なお、立上げ時間が180秒以内という仕様とローラ表面最大温度が210〜350℃という仕様とを満足するのは、実験の結果、実施例2のヒートローラに限定されるものではなく、抵抗温度係数が100〜500PPM/℃の抵抗線材の合成抵抗値又は抵抗値を抵抗素子11の合成抵抗値の10〜40%とした第1の抵抗素子13と、抵抗温度係数が3000〜10000PPM/℃の抵抗線材の合成抵抗値又は抵抗値を抵抗素子11の合成抵抗値の90〜60%とした第2の抵抗素子15とを直列に接続してなる抵抗素子11からなるヒートローラであればよい。
【0033】
図4は本発明の他の実施の形態によるヒートローラの構成を示す断面図で、16は、抵抗温度係数が250PPM/℃の抵抗線材12を芯3に巻回した巻回した1本の抵抗素子からなる第1の抵抗素子13とPTC素子17とを直列に接続してなる抵抗素子、4は第1の抵抗素子13の抵抗線材12の端子とPTC素子17の端子とにそれぞれ電流溶接等によって接続した耐熱性のリード線、5は、例えば温度限界が350℃のシリコンラバー6を外周面に設けた金属製の有底円筒状のケース、7は抵抗素子11を内部に挿入してリード線4を開口部5aから引き出したケース5に充填する粉末状の充填材、8はリード線4を引き出したケース5の開口部5aに充填して開口部5aを封止する封止材である。
【0034】
本実施の形態におけるヒートローラは、前述の実施の形態の実施例2におけるヒートローラの抵抗温度係数が4500PPM/℃の抵抗線材14を芯3に巻回した3本の抵抗素子からなる第2の抵抗素子15の代わりに、PTC素子17を用いたもので、第2の抵抗素子15の特性と同一又は類似した特性のPTC素子17を用いることにより、実施例2におけるヒートローラと同様に機能させることができる。
【0035】
【発明の効果】
以上説明したように、本発明によれば、ヒートローラの立上げを急速に行うと共に、ローラ表面温度が上昇するに連れて抵抗値を上昇させて、抵抗素子に流れる電力を次第に低下させることにより、ローラ表面温度をシリコンラバーの温度限界以下に自己抑制することができるので、抵抗素子やシリコンラバーの焼損事故や火事等の発生や、ヒートローラ周辺の装置或いは機器の破壊等の二次災害の発生を防止できるという効果と、消費電力を低減できるという効果とを奏するものである。
【図面の簡単な説明】
【図1】本発明の一実施の形態によるヒートローラの構成を示す断面図
【図2】本発明の一実施の形態による実施例2のヒートローラと従来のヒートローラとの時間−温度/抵抗値/電力特性を示すグラフ
【図3】本発明の一実施の形態によるヒートローラと従来のヒートローラとの比較表
【図4】本発明の他の実施の形態によるヒートローラの構成を示す断面図
【図5】従来のヒートローラの構成を示す断面図
【図6】ヒートローラの加熱特性図
【符号の説明】
3 芯
4 リード線
5 ケース
6 シリコンラバー
7 充填材
8 封止材
11,16 抵抗素子
12,14 抵抗線材
13 第1の抵抗素子
15 第2の抵抗素子
17 PCT素子
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat roller for drying or fixing transfer ink by heating a recording medium on which an image is formed in a full-color card printer or the like.
[0002]
[Prior art]
FIG. 5 is a cross-sectional view showing the configuration of a conventional heat roller. Reference numeral 1 denotes a resistance element formed by winding a resistance wire 2 having a temperature coefficient of resistance of 250 PPM / ° C., and 4 denotes current welding to the terminals of the resistance wire 2, respectively. A heat-resistant lead wire 5 is connected to a metal case 5 having, for example, a metal bottomed cylindrical shape provided with a silicon rubber 6 having a temperature limit of 350 ° C. on its outer peripheral surface, and a lead 7 having the resistance element 1 inserted therein. A powdery filler for filling the case 5 with the wire 4 drawn out from the opening 5a, and a sealing material 8 for filling the opening 5a of the case 5 with the lead wire 4 drawn out and sealing the opening 5a. .
[0003]
In the conventional heat roller configured as described above, when a power of 250 W is supplied to the resistance element 1, the surface temperature of the silicon rubber 6, that is, the roller surface temperature becomes a temperature at which the transfer ink can be dried or fixed on a recording medium, for example, 210 ° C. In 139 seconds.
[0004]
Then, after detecting that the roller surface temperature has reached 210 ° C. by a temperature sensor or the like, the power supplied to the resistance wire 2 is controlled by the temperature controller so that the roller surface temperature is maintained at approximately 210 ° C. .
[0005]
[Problems to be solved by the invention]
By the way, if the temperature control device or the temperature sensor fails, 250 W of power is continuously supplied to the resistance wire 2 and the roller surface temperature exceeds 210 ° C. (see FIG. 6), but the resistance temperature coefficient is 250 PPM / ° C. Since the resistance change rate of the wire 2 is 2% and the resistance value of the resistance wire 2 hardly changes, 250 W of power is continuously supplied to the resistance wire 2 and the roller surface temperature also continues to rise.
[0006]
Therefore, the roller surface maximum temperature exceeds the temperature limit of the silicon rubber 6 of 350 ° C. and rises to 800 ° C., which is a so-called thermal runaway state of the heat roller (shown by a dashed line in the graph of FIG. 2), and the resistance element 1 and the silicone rubber 6, causing fires, etc., and secondary disasters such as destruction of devices or equipment around the heat roller.
[0007]
The present invention has been made in view of such a problem, and an object of the present invention is to provide a heat roller capable of suppressing a roller surface temperature to be equal to or lower than a temperature limit of silicon rubber.
[0008]
[Means for Solving the Problems]
Heat consisting of a resistance element in which a heat-resistant lead wire is connected to a resistance wire, a cylindrical case, and a filler for filling the case in which the resistance element is inserted inside and the lead wire is drawn out from an opening. In the roller, the resistance element includes a first resistance element having a resistance temperature coefficient of 100 to 500 PPM / ° C. or a resistance value of 10 to 40% of the resistance value of the resistance wire; Are connected in series with a second resistor element having a combined resistance value of the resistance wire rod of 3000-10000 PPM / ° C. or a resistance value of 90-60% of the combined resistance value of the resistor element.
[0009]
When power is supplied to the heat roller, the heat roller is quickly started up, and as the roller surface temperature rises, the resistance value is increased, and the power flowing through the resistance element is gradually reduced, so that the roller surface is gradually cooled. Since the temperature can be self-controlled to below the temperature limit of silicon rubber, the occurrence of secondary accidents, such as burning of resistor elements and silicon rubber, fires, and destruction of devices or equipment around the heat roller can be prevented. Power consumption can be reduced.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals indicate the same parts.
[0011]
FIG. 1 is a cross-sectional view showing a configuration of a heat roller according to an embodiment of the present invention. Reference numeral 11 denotes a first resistance element 13 in which a resistance wire 12 is wound around a core 3, and a resistance wire 14 is wound around the core 3. A resistance element 4 is formed by connecting the turned second resistance element 15 in series, and currents 4 are supplied to the terminals of the resistance wire 12 of the first resistance element 13 and the terminals of the resistance wire 14 of the second resistance element 15, respectively. A heat-resistant lead wire 5 connected by welding or the like has a bottomed cylindrical case made of metal having, for example, a silicon rubber 6 having a temperature limit of 350 ° C. on its outer peripheral surface, and 7 has a resistance element 11 inserted therein. Is a powdery filler for filling the case 5 with the lead wire 4 drawn out from the opening 5a, and 8 is a sealing material for filling the opening 5a of the case 5 with the lead wire 4 drawn out and sealing the opening 5a. It is.
[0012]
(Example 1)
The resistance element 11 according to the first embodiment of the present invention is composed of two resistance elements each formed by winding a resistance wire 12 having a temperature coefficient of resistance of 250 PPM / ° C. around a core 3 so that the rate of change in resistance becomes 136%. And a second resistance element 15 composed of two resistance elements in which a resistance wire 14 having a temperature coefficient of resistance of 4500 PPM / ° C. is wound around the core 3.
[0013]
In the heat roller of the first embodiment, when the power of 255 W is supplied to the resistance element 11, the resistance value of the resistance element 11 increases as the surface temperature of the silicon rubber 6, that is, the roller surface temperature increases. The power flowing through the roller 11 gradually decreases, and the rise in the roller surface temperature also gradually decreases.
[0014]
Then, when the roller surface temperature reaches 410 ° C., the resistance value of the resistance element 11 also becomes substantially constant, and only 111 W of power flows through the resistance element 11. Regardless of whether or not, the maximum roller surface temperature is maintained at 410 ° C.
[0015]
During this time, it takes 192 seconds for the roller surface temperature to reach a temperature at which the transfer ink can be dried or fixed to the recording medium, for example, 210 ° C.
[0016]
(Example 2)
The resistance element 11 according to the second embodiment of the present invention includes a first resistance element formed by winding a resistance wire 12 having a temperature coefficient of resistance of 250 PPM / ° C. around a core 3 so that a resistance change rate is 194%. And a second resistance element 15 composed of three resistance elements in which a resistance wire 14 having a temperature coefficient of resistance of 4500 PPM / ° C. is wound around the core 3.
[0017]
In the heat roller of Example 2, when 290 W of electric power is supplied to the resistance element 11, the roller surface temperature of 210 ° C. is reached in 150 seconds as shown in FIG. 2, but the resistance value of the resistance element 11 is equal to the roller surface temperature. Rises as the temperature rises, so that the power flowing through the resistance element 11 gradually decreases, and the temperature of the roller surface also gradually increases.
[0018]
Then, when the roller surface temperature reaches 320 ° C., the resistance value of the resistance element 11 becomes substantially constant, and only 103 W of power flows through the resistance element 11. Regardless of whether or not, the maximum roller surface temperature is maintained at 320 ° C.
[0019]
(Example 3)
In the resistance element 11 according to the third embodiment of the present invention, four resistance elements in which a resistance wire 12 having a resistance temperature coefficient of 4500 PPM / ° C. is wound around the core 3 are connected in series so that the resistance change rate is 266%. It was done.
[0020]
In the heat roller of the third embodiment, when 340 W of power is supplied to the resistance element 11, the roller surface temperature of 210 ° C. is reached in 192 seconds, but the resistance value of the resistance element 11 increases as the roller surface temperature increases. As a result, the power flowing through the resistance element 11 gradually decreases, and the rise in the roller surface temperature also gradually decreases.
[0021]
Then, when the roller surface temperature reaches 308 ° C., the resistance value of the resistance element 11 also becomes substantially constant, and only 108 W of power flows through the resistance element 11. Regardless of whether or not, the maximum roller surface temperature is maintained at 308 ° C.
[0022]
(Example 4)
The resistance element 11 according to the fourth embodiment of the present invention includes a first resistance element including two resistance elements wound around a core 3 with a resistance temperature coefficient of 4500 PPM / ° C. so that the rate of change in resistance is 315%. And a second resistance element 15 composed of two resistance elements in which a resistance wire 14 having a temperature coefficient of resistance of 6700 PPM / ° C. is wound around the core 3.
[0023]
In the heat roller of Example 4, when 485 W of electric power is supplied to the resistance element 11, the roller surface temperature of 210 ° C. is reached in 168 seconds, but the resistance value of the resistance element 11 increases as the roller surface temperature increases. As a result, the power flowing through the resistance element 11 gradually decreases, and the rise in the roller surface temperature also gradually decreases.
[0024]
Then, when the roller surface temperature reaches 375 ° C., the resistance value of the resistance element 11 becomes substantially constant, and even if the power of 485 W is continuously supplied between the terminals of the resistance element 11, the resistance wire 12 and the resistance Since only 128 W of power flows through the wire 14, the roller surface maximum temperature is maintained at 375 ° C. regardless of whether or not the temperature controller, the temperature sensor, and the like have failed.
[0025]
(Example 5)
In the resistance element 11 of Example 5 of the present invention, the first resistance element 13 in which the resistance wire 12 is wound around the core 3 and the resistance wire 14 are wound around the core 3 such that the rate of change in resistance is 651%. Instead of the second resistance element 15, three PCT elements are connected in parallel.
[0026]
In the heat roller of Example 5, when 250 W of electric power is supplied to the resistance element 11, the roller surface temperature of 84 ° C. is reached in 180 seconds, but the resistance value of the resistance element 11 increases as the roller surface temperature increases. Therefore, the power flowing through the three PTC elements gradually decreases, and the rise in the roller surface temperature gradually decreases.
[0027]
Then, when the roller surface temperature reaches 130 ° C., the resistance value of the resistance element 11 becomes substantially constant, and even if the power of 250 W is continuously supplied between the terminals of the resistance element 11, the resistance wire 12 and the resistance Since only 32 W of power flows through the wire 14, the maximum roller surface temperature is maintained at 130 ° C. irrespective of whether or not the temperature controller, the temperature sensor, and the like have failed.
[0028]
FIG. 3 is a table showing the results of Examples 1 to 5 and the result of the conventional example.
[0029]
As is apparent from these results, the heat rollers of Examples 2, 4 and 5 satisfy the specification that the start-up time is within 180 seconds, and the maximum surface temperature of the rollers is such that the transfer ink is dried or fixed on the recording medium. The heat roller of the second embodiment satisfies the specification from 210 ° C. to 350 ° C., which is the temperature limit of the silicon rubber 6.
[0030]
As a result, only the heat roller of Example 2 satisfies the specification that the start-up time is within 180 seconds and the specification that the roller surface maximum temperature is 210 to 350 ° C.
[0031]
That is, according to the heat roller of the second embodiment, the first resistance element 13 made of the resistance wire 12 having a temperature coefficient of resistance of 250 PPM / ° C. rapidly heats the heat roller in the startup region (see FIG. 6). The temperature of the roller surface is raised to 210 ° C. within 180 seconds, and the second resistance element 15 made of the resistance wire 14 having a temperature coefficient of resistance of 4500 PPM / ° C. is a second resistance element with the rise of the roller surface temperature. By increasing the resistance value of No. 15, the resistance value of the resistance element 11 is increased, the power flowing through the resistance element 11 is reduced, and the roller surface temperature is maintained in the range of 210 to 350 ° C.
[0032]
It is to be noted that it is not limited to the heat roller of Example 2 that the specification that the start-up time is within 180 seconds and the specification that the roller surface maximum temperature is 210 to 350 ° C. A first resistance element 13 having a coefficient of resistance of 100 to 500 PPM / ° C. or a resistance of 10 to 40% of a resistance of the resistance element 11 and a temperature coefficient of resistance of 3000 to 10000 PPM / ° C. Any heat roller may be used as long as the resistance element 11 is formed by connecting in series a second resistance element 15 in which the combined resistance value of the resistance wire or the resistance value is 90 to 60% of the combined resistance value of the resistance element 11.
[0033]
FIG. 4 is a cross-sectional view showing a configuration of a heat roller according to another embodiment of the present invention. Reference numeral 16 denotes a single wound resistance obtained by winding a resistance wire 12 having a temperature coefficient of resistance of 250 PPM / ° C. around a core 3. A resistance element 4 is formed by connecting a first resistance element 13 and a PTC element 17 in series with each other. Reference numeral 4 denotes current welding to the terminal of the resistance wire 12 of the first resistance element 13 and the terminal of the PTC element 17, respectively. Is a heat-resistant lead wire, 5 is a metal bottomed cylindrical case having a silicon rubber 6 having a temperature limit of 350 ° C. on its outer peripheral surface, and 7 is a lead having the resistance element 11 inserted therein. A powdery filler for filling the case 5 with the wire 4 drawn out from the opening 5a, and a sealing material 8 for filling the opening 5a of the case 5 with the lead wire 4 drawn out and sealing the opening 5a. .
[0034]
The heat roller according to the present embodiment includes a second resistance element formed by winding a resistance wire 14 having a temperature coefficient of resistance of 4500 PPM / ° C. around the core 3 with the resistance temperature coefficient of the heat roller in Example 2 of the above-described embodiment. Instead of the resistance element 15, a PTC element 17 is used, and by using a PTC element 17 having the same or similar characteristics as the characteristics of the second resistance element 15, it functions similarly to the heat roller in the second embodiment. be able to.
[0035]
【The invention's effect】
As described above, according to the present invention, the heat roller is quickly started up, the resistance value is increased as the roller surface temperature increases, and the power flowing through the resistance element is gradually reduced. In addition, since the roller surface temperature can be self-controlled to below the temperature limit of silicon rubber, secondary accidents such as burnout of resistor elements and silicon rubber, fire, etc., and destruction of equipment or equipment around the heat roller, etc. This has the effect of preventing generation and the effect of reducing power consumption.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating a configuration of a heat roller according to an embodiment of the present invention. FIG. 2 is a time-temperature / resistance between a heat roller of Example 2 according to an embodiment of the present invention and a conventional heat roller. FIG. 3 is a graph showing a value / power characteristic. FIG. 3 is a comparison table between a heat roller according to one embodiment of the present invention and a conventional heat roller. FIG. 4 is a cross-sectional view illustrating a configuration of a heat roller according to another embodiment of the present invention. FIG. 5 is a cross-sectional view showing the structure of a conventional heat roller. FIG. 6 is a heating characteristic diagram of the heat roller.
3 core 4 lead wire 5 case 6 silicon rubber 7 filler 8 sealing material 11, 16 resistance element 12, 14 resistance wire 13 first resistance element 15 second resistance element 17 PCT element

Claims (2)

抵抗線材に耐熱性のリード線を接続した抵抗素子と、円筒状のケースと、前記抵抗素子を内部に挿入して前記リード線を開口部から引き出した前記ケースに充填する充填材とからなるヒートローラにおいて、
前記抵抗素子は、抵抗温度係数が100〜500PPM/℃の抵抗線材の合成抵抗値又は抵抗値を前記抵抗素子の合成抵抗値の10〜40%とした第1の抵抗素子と、抵抗温度係数が3000〜10000PPM/℃の抵抗線材の合成抵抗値又は抵抗値を前記抵抗素子の合成抵抗値の90〜60%とした第2の抵抗素子とを直列に接続してなることを特徴とするヒートローラ。
Heat consisting of a resistance element in which a heat-resistant lead wire is connected to a resistance wire, a cylindrical case, and a filler for filling the case in which the resistance element is inserted inside and the lead wire is drawn out from an opening. At the roller
The resistance element has a resistance temperature coefficient of 100 to 500 PPM / ° C., a first resistance element having a combined resistance value or a resistance value of 10 to 40% of the combined resistance value of the resistance element having a resistance temperature coefficient of 100 to 500 PPM / ° C. A heat roller comprising a series connection of a second resistance element having a combined resistance value of a resistance wire of 3000 to 10000 PPM / ° C or a resistance value of 90 to 60% of the combined resistance value of the resistance element. .
前記第2の抵抗素子の代わりにPTC素子を用いたことを特徴とする請求項1記載のヒートローラ。The heat roller according to claim 1, wherein a PTC element is used instead of the second resistance element.
JP2003132961A 2003-05-12 2003-05-12 Heat roller Pending JP2004335397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003132961A JP2004335397A (en) 2003-05-12 2003-05-12 Heat roller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003132961A JP2004335397A (en) 2003-05-12 2003-05-12 Heat roller

Publications (1)

Publication Number Publication Date
JP2004335397A true JP2004335397A (en) 2004-11-25

Family

ID=33507639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003132961A Pending JP2004335397A (en) 2003-05-12 2003-05-12 Heat roller

Country Status (1)

Country Link
JP (1) JP2004335397A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009244595A (en) * 2008-03-31 2009-10-22 Sharp Corp Fixing apparatus and image forming apparatus equipped with the same
CN106292229A (en) * 2015-06-29 2017-01-04 富士施乐株式会社 Heat-generating units, fixation unit and image processing system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009244595A (en) * 2008-03-31 2009-10-22 Sharp Corp Fixing apparatus and image forming apparatus equipped with the same
JP4610629B2 (en) * 2008-03-31 2011-01-12 シャープ株式会社 Fixing device and image forming apparatus having the same
US8126383B2 (en) 2008-03-31 2012-02-28 Sharp Kabushiki Kaisha Fixing apparatus having an enhanced planar heat generating body, and image forming apparatus including the same
CN106292229A (en) * 2015-06-29 2017-01-04 富士施乐株式会社 Heat-generating units, fixation unit and image processing system

Similar Documents

Publication Publication Date Title
JP4196244B2 (en) Heater control device and image forming apparatus
US7224255B2 (en) Overheat protection device for movable body surface, overheat protection apparatus using the same and temperature control device
EP1569325A2 (en) A motor starter device having reduced power consumption
JPH0461578B2 (en)
JP4119159B2 (en) Temperature protection element
AU4029901A (en) Heated roller and heated roller assembly
JP2004335397A (en) Heat roller
JP2007531203A (en) Heating blanket
CN108449814A (en) A kind of heater
JP4396147B2 (en) Power control apparatus and image forming apparatus
JPH09163593A (en) Inrush current suppression circuit
JP3946175B2 (en) Power saving motor start system
JP2004215457A (en) Power supply circuit
JP3283898B2 (en) PTC heating device
JP3543798B2 (en) Switching power supply
JPH10321345A (en) Water tank heat reserving apparatus
TW383517B (en) Electrical apparatus with a variable circuit protection device
JPH04263280A (en) Fixing heater for image forming device
JPH0524524B2 (en)
JP2000030845A (en) Electromagnetic wave suppression type heating wire
WO2013054541A1 (en) Humidity detection device
JP3199177B2 (en) Driving method of overcurrent protection element
US20070183797A1 (en) Apparatus and method for protecting fixing unit from overheating and image forming apparatus using the same
JPS63129378A (en) Heat roll fixing device for electrophotography
JPH05188823A (en) Fixing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080609

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081111