JP2004335370A - Cold-cathode tube - Google Patents

Cold-cathode tube Download PDF

Info

Publication number
JP2004335370A
JP2004335370A JP2003131977A JP2003131977A JP2004335370A JP 2004335370 A JP2004335370 A JP 2004335370A JP 2003131977 A JP2003131977 A JP 2003131977A JP 2003131977 A JP2003131977 A JP 2003131977A JP 2004335370 A JP2004335370 A JP 2004335370A
Authority
JP
Japan
Prior art keywords
wire
tube
cathode tube
sealing
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003131977A
Other languages
Japanese (ja)
Inventor
Atsushi Haniyu
篤史 羽生
Takeshi Ito
剛 伊都
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2003131977A priority Critical patent/JP2004335370A/en
Priority to TW93101812A priority patent/TWI259494B/en
Priority to CNB2004100046285A priority patent/CN100424812C/en
Publication of JP2004335370A publication Critical patent/JP2004335370A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cold-cathode tube to materialize a longer life. <P>SOLUTION: A sealed wire material 3 connected to an inner lead 4 and an electrode part 5 while airtightly penetrating inside and outside through the tube end part 1a of a glass tube 1 is formed into two layers. Heat of the electrode part 5 is made to efficiently conduct to an outer lead 6 and a wire 8 in the outside of the tube, by forming the outer layer 31 by a kovar, and by forming the inner layer 32 by a heat conducting wire of copper, beryllium, or aluminum having higher thermal conductivity than the outer layer 31. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、液晶表示装置等のバックライトとして使用される冷陰極管に関する。
【0002】
【従来の技術】
液晶表示装置のバックライトとして一般に使用されている冷陰極管は、その電極近傍において、ガラス管の管端部を気密に内外貫通する封止線材と、その管内側端部に設けられたインナーリード及び電極部と、管外側端部に設けられたアウターリードとを備えている(例えば、特許文献1参照。)。このような冷陰極管は、既に、30,000〜50,000時間の長寿命を達成している(例えば、非特許文献1参照。)。
【0003】
【特許文献1】
特開平8−241693号公報(第4〜5頁、図2)
【非特許文献1】
藤岡誠一郎、「長寿命高効率冷陰極蛍光ランプ」、月刊ディスプレイ、1999年8月号、第82〜84頁
【0004】
【発明が解決しようとする課題】
上記のような冷陰極管に、さらなる長寿命化を実現するには、例えば、蛍光体の保護膜の追加、電極形状の変更、水銀量の管理、ガラス組成の変更等が考えられる。しかし、これらはいずれも相当な設備投資や開発投資を必要とするため、現実的に有効な方策とは言えない。
【0005】
上記のような従来の問題点に鑑み、本発明は、簡易にさらなる長寿命化を実現する冷陰極管を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の冷陰極管は、内面に発光層を有するガラス管と、前記ガラス管の管端部を気密に内外貫通して設けられ、複層構造からなり、その内層に外層より熱伝導率の高い熱伝導線を含む封止線材と、前記ガラス管の内部にあって前記封止線材の一端部に連設されたインナーリード及び電極部と、前記ガラス管の外部にあって前記封止線材の他端部に連設され、外部の電線と接続されるアウターリードとを備えたものである。
上記のように構成された冷陰極管は、封止線材を複層化して熱伝導線を設けるだけの簡易な構造により、電極部に発生する熱がインナーリードから封止線材の熱伝導線を伝って効率よくアウターリードに伝導し、アウターリードから、これに接続される電線に伝導する。従って、電極部に対する吸熱量及び放熱量を十分に確保することができ、電極部の過熱を防止することができる。これにより、冷陰極管のさらなる長寿命化を実現することができる。
【0007】
また、上記冷陰極管において、封止線材の外層は、ガラス管の封着部と同等な熱膨張率を有する金属材料からなることが好ましい。
この場合、熱膨張や収縮が生じても封着部との間に隙間ができない。従って、封止能力が損なわれて点灯不能となる事態を防止することができる。
【0008】
また、上記冷陰極管において、封止線材は直径0.8mm以上であることが好ましい。
この場合、熱伝導線の直径を相応に確保することができる。また、封止線材全体としても、より熱伝導率の向上に寄与する。従って、より確実に電極部の過熱を防止することができる。
【0009】
【発明の実施の形態】
図1は、本発明の一実施形態による冷陰極管の断面図である。この冷陰極管は、液晶表示装置の直下型バックライト又はサイドライト型バックライト、X線写真を見るためのシャウカステン、看板の背光装置、写真のネガを見るためのライティングボックス等の各種装置に使用される。
図1において、当該冷陰極管は、内面に発光層2を有するガラス管1と、ガラス管1の管端部1aを内外貫通する封止線材3と、ガラス管1の内部にあって封止線材3の一端部に連設されたインナーリード4及び電極部5と、ガラス管1の外部にあって封止線材3の他端部に連設されたアウターリード6とを備えている。上記封止線材3は、外側がガラスビード7に覆われており、これによって、ガラス管1に対して気密に封着されている。
【0010】
上記アウターリード6、封止線材3、及び、インナーリード4はいずれも円柱状であり、それぞれの外径は例えば、0.35mm、0.8mm、1.0mmである。また、インナーリード4及びアウターリード6はニッケル線からなり、封止線材3の左右の端部にバット溶接(端面溶接)されている。電極部5はニッケルスリーブであり、インナーリード4に外挿され、溶着されている。
【0011】
図2は、図1の冷陰極管の左端側を拡大し、封止線材3を断面で示すとともに、アウターリード6を外部の電線8と接続した状態を示す図である。なお、電線8は、途中で省略しているが、アウターリード6に比べて十分に長い。
図において、上記封止線材3は二層構造となっており、円筒状の外層31は、ガラスビード7と熱膨張率が同等なコバール(ニッケル、コバルト及び鉄の合金)からなる。このような外層31の存在により、熱膨張や収縮が生じてもガラスビード7との間に隙間ができない。従って、封止能力が損なわれて点灯不能となる事態を防止することができる。一方、円柱状の内層32は、銅、ベリリウム、アルミニウム等の、外層31より熱伝導率の高い金属材料からなり、「熱伝導線」としての役割を有する。
【0012】
電線8の心線8aとアウターリード6とは、半田付けではなく、銅、ベリリウム、アルミニウム等の熱伝導率の高い単一金属又は合金をかしめてなる端子9により、互いに接続される。これにより、端子9による接続部において、半田付けよりも高い熱伝導率を確保することができる。また、当該接続部は、高温になったとき半田付けの場合よりも高い引っ張り強度を有する。従って、高温になっている接続部に何らかの原因で引っ張り力が作用したとしても、接続不良の発生を防止することができる。
【0013】
上記のように構成された冷陰極管では、電極部5で発生した熱が、インナーリード4から封止線材3の内層32に伝導する。ここで、熱伝導率の高い内層32により、熱は迅速に左端まで達し、効率よくアウターリード6に伝導する。また、内層32より熱伝導率は低いが、外層31も熱伝導によりインナーリード4からアウターリード6への熱の搬出に寄与する。アウターリード6に伝導した熱は、さらに、心線(銅線)8aに伝導する。このとき、熱伝導率の高い端子9により、アウターリード6から心線8aへの熱伝導性が確保される。こうして、電極部5の熱はガラス管1の外に効率よく搬出され、アウターリード6、端子9、及び、心線8aに吸収される。心線8aに吸収された熱は、被覆を介して電線8全体から放熱される。電線8は、銅線である心線8aの熱伝導率が良く、また、アウターリード6に比べて十分に長いため、その体積及び表面積も相応に大きい。従って十分な吸熱量及び放熱量を確保することができる。なお、アウターリード6、端子9、露出した心線8aの表面からも、周囲の空気に放熱される。
【0014】
上記のように、封止線材3を複層化して熱伝導線を設けるだけの簡易な構造により、管外への熱搬出を促進し、電線による吸熱及び放熱を活用することができ、その結果、電極部5の過熱を防止することができる。従って、過熱により管端黒化が促進されることを抑制できる。これにより、冷陰極管の寿命を従来品よりさらに延ばすことができる。
【0015】
また、上記の封止線材3は直径を0.8mm(従来は0.6mm)としたが、これにより、熱伝導線としての内層32の直径を相応に確保することができる。また、封止線材3全体としても、より熱伝導率の向上に寄与する。従って、熱伝導線としての内層32の存在と相まって、電極部5の温度低下に寄与する。
【0016】
図3は、直径0.6mmのコバールからなる封止線材を用いた従来の冷陰極管と、本実施形態の冷陰極管とを、直下型バックライトの筐体に12灯設置した状態での温度比較のグラフである。温度の測定位置は、高圧電極近傍、低圧電極近傍、ランプ中央、筐体内雰囲気の4箇所である。棒グラフの左側が従来の冷陰極管、右側が本実施形態の冷陰極管である。グラフより明らかなように、本実施形態の冷陰極管は、従来の冷陰極管と比べて、高圧側電極近傍及び低圧側電極近傍において、温度が低下している。
【0017】
図4は、単管(1灯)で、従来の冷陰極管と、本実施形態の冷陰極管とについて、温度、単管中央輝度、消費電力あたりの輝度を比較したグラフである。棒グラフの左側は高圧側電極近傍、中央は低圧側電極近傍、右側はランプ中央を示す。グラフより明らかなように、従来の冷陰極管に比べて本実施形態の冷陰極管は、高圧側電極近傍及び低圧側電極近傍の温度が低下し、また、単管中央輝度が上昇している。一方、消費電力当たりの輝度はほとんど変わらない。
以上の2つのグラフから、従来の冷陰極管に比べて本実施形態の冷陰極管は、電極部の温度を下げることができ、しかも、明るいランプとなることがわかる。
【0018】
なお、上記実施形態において封止線材3の直径は、大きいほど熱伝導性を確保しやすいので、0.8mm以上が好ましい。但し、0.8mm未満(例えば0.6mm)であっても、熱伝導線としての内層32の存在により、電極部5の過熱を防止する一定の効果は得られる。
また、上記実施形態では封止線材3を2層構造としたが、3層以上の多層構造としてもよい。この場合、外層(最外層)はコバール、内層の少なくとも1層は熱伝導線とする。
また、外層31の材料として上記実施形態ではコバールを採用したが、これに限らず、ガラス管1の封着部であるガラスビード7と同等の熱膨張率を有する金属材料であればよく、例えばタングステンガラス(BFW)の場合、タングステン(W)が好ましい。
【0019】
【発明の効果】
以上のように構成された本発明の冷陰極管によれば、封止線材を複層化して熱伝導線を設けるだけの簡易な構造により、電極部に発生する熱がインナーリードから封止線材の熱伝導線を伝って効率よくアウターリードに伝導し、アウターリードから、これに接続される電線に伝導する。従って、電極部に対する吸熱量及び放熱量を十分に確保することができ、電極部の過熱を防止することができる。これにより、冷陰極管のさらなる長寿命化を実現することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態による冷陰極管の断面図である。
【図2】図1の冷陰極管の左端側を拡大し、封止線材を断面で示すとともに、アウターリードを外部の電線と接続した状態を示す図である。
【図3】直径0.6mmのコバールからなる封止線材を用いた従来の冷陰極管と、本実施形態の冷陰極管とを、直下型バックライトの筐体に12灯設置した状態での温度比較のグラフである。
【図4】単管(1灯)で、従来の冷陰極管と、本実施形態の冷陰極管とについて、温度、単管中央輝度、消費電力あたりの輝度を比較したグラフである。
【符号の説明】
1 ガラス管
1a 管端部
2 発光層
3 封止線材
4 インナーリード
5 電極部
6 アウターリード
7 ガラスビード(封着部)
8 電線
31 外層
32 内層(熱伝導線)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cold cathode tube used as a backlight of a liquid crystal display device or the like.
[0002]
[Prior art]
A cold-cathode tube generally used as a backlight of a liquid crystal display device has a sealing wire rod which penetrates the tube end of the glass tube in a gas-tight manner in the vicinity of the electrode, and an inner lead provided at the inner end of the tube. And an electrode part, and an outer lead provided at an outer end of the tube (for example, see Patent Document 1). Such a cold cathode tube has already achieved a long life of 30,000 to 50,000 hours (for example, see Non-Patent Document 1).
[0003]
[Patent Document 1]
JP-A-8-241693 (pages 4 to 5, FIG. 2)
[Non-patent document 1]
Seiichiro Fujioka, "Long Life High Efficiency Cold Cathode Fluorescent Lamp", Monthly Display, August 1999, pp. 82-84.
[Problems to be solved by the invention]
In order to further extend the life of the cold cathode tube as described above, for example, it is conceivable to add a protective film of a phosphor, change an electrode shape, control the amount of mercury, change a glass composition, and the like. However, all of these require considerable capital investment and development investment, and are not practically effective measures.
[0005]
In view of the above conventional problems, an object of the present invention is to provide a cold-cathode tube that can easily achieve a longer life.
[0006]
[Means for Solving the Problems]
The cold-cathode tube of the present invention is provided with a glass tube having a light-emitting layer on the inner surface, and a tube end portion of the glass tube penetrating the inside and outside of the glass tube in an airtight manner. A sealing wire including a high heat conduction wire, an inner lead and an electrode portion provided inside the glass tube and connected to one end of the sealing wire, and the sealing wire outside the glass tube. And an outer lead connected to an external electric wire.
The cold cathode tube configured as described above has a simple structure in which the sealing wire is multi-layered and a heat conducting wire is provided, so that the heat generated in the electrode portion transfers the heat conducting wire of the sealing wire from the inner lead. This leads to efficient conduction to the outer leads, and from the outer leads to the electric wires connected to the outer leads. Therefore, it is possible to sufficiently secure the amount of heat absorption and the amount of heat radiation to the electrode portion, and it is possible to prevent the electrode portion from overheating. As a result, the life of the cold cathode tube can be further extended.
[0007]
In the cold cathode tube, the outer layer of the sealing wire is preferably made of a metal material having a coefficient of thermal expansion equivalent to that of the sealing portion of the glass tube.
In this case, even if thermal expansion or contraction occurs, a gap cannot be formed between the sealing portion and the sealing portion. Therefore, it is possible to prevent a situation in which the sealing ability is impaired and the lighting cannot be performed.
[0008]
Further, in the cold cathode tube, the sealing wire preferably has a diameter of 0.8 mm or more.
In this case, the diameter of the heat conducting wire can be ensured accordingly. In addition, the overall sealing wire contributes to further improvement in thermal conductivity. Therefore, overheating of the electrode portion can be prevented more reliably.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a sectional view of a cold cathode tube according to an embodiment of the present invention. This cold-cathode tube is used for various devices such as a direct-type backlight or a sidelight-type backlight of a liquid crystal display device, a shokasten for viewing an X-ray photograph, a backlighting device for a signboard, and a lighting box for viewing a negative of a photograph. Is done.
In FIG. 1, the cold-cathode tube includes a glass tube 1 having a light-emitting layer 2 on an inner surface, a sealing wire 3 penetrating inside and outside a tube end 1a of the glass tube 1, and a sealing member inside the glass tube 1. An inner lead 4 and an electrode portion 5 are provided at one end of the wire 3, and an outer lead 6 is provided outside the glass tube 1 and is provided at the other end of the sealing wire 3. The outside of the sealing wire 3 is covered with a glass bead 7, whereby the sealing wire 3 is hermetically sealed to the glass tube 1.
[0010]
The outer lead 6, the sealing wire 3, and the inner lead 4 are all cylindrical, and have respective outer diameters of, for example, 0.35 mm, 0.8 mm, and 1.0 mm. The inner lead 4 and the outer lead 6 are made of nickel wire, and are butt-welded (end-face welding) to the left and right ends of the sealing wire 3. The electrode portion 5 is a nickel sleeve, which is externally inserted into the inner lead 4 and welded.
[0011]
FIG. 2 is an enlarged view of the left end side of the cold cathode tube of FIG. 1, showing a state in which the sealing wire 3 is shown in cross section and the outer lead 6 is connected to an external electric wire 8. In addition, although the electric wire 8 is omitted in the middle, it is sufficiently longer than the outer lead 6.
In the figure, the sealing wire 3 has a two-layer structure, and the cylindrical outer layer 31 is made of Kovar (an alloy of nickel, cobalt, and iron) having the same thermal expansion coefficient as that of the glass bead 7. Due to the presence of such an outer layer 31, even if thermal expansion or contraction occurs, there is no gap between the outer layer 31 and the glass bead 7. Therefore, it is possible to prevent a situation in which the sealing ability is impaired and the lighting cannot be performed. On the other hand, the cylindrical inner layer 32 is made of a metal material, such as copper, beryllium, or aluminum, having a higher thermal conductivity than the outer layer 31 and has a role as a “heat conducting wire”.
[0012]
The core wire 8a of the electric wire 8 and the outer lead 6 are connected to each other by a terminal 9 formed by caulking a single metal or alloy having a high thermal conductivity such as copper, beryllium, or aluminum instead of soldering. Thereby, a higher thermal conductivity than soldering can be ensured at the connection portion by the terminal 9. In addition, the connection portion has a higher tensile strength at a high temperature than in the case of soldering. Therefore, even if a tensile force acts on the connection portion that has become hot for some reason, it is possible to prevent the occurrence of connection failure.
[0013]
In the cold-cathode tube configured as described above, heat generated in the electrode portion 5 is conducted from the inner lead 4 to the inner layer 32 of the sealing wire 3. Here, the heat quickly reaches the left end by the inner layer 32 having a high thermal conductivity, and is efficiently conducted to the outer lead 6. Although the thermal conductivity is lower than that of the inner layer 32, the outer layer 31 also contributes to heat transfer from the inner lead 4 to the outer lead 6 by heat conduction. The heat conducted to the outer leads 6 is further conducted to the core wire (copper wire) 8a. At this time, the thermal conductivity from the outer lead 6 to the core wire 8a is ensured by the terminal 9 having a high thermal conductivity. Thus, the heat of the electrode portion 5 is efficiently carried out of the glass tube 1 and is absorbed by the outer lead 6, the terminal 9, and the core wire 8a. The heat absorbed by the core wire 8a is radiated from the entire electric wire 8 via the coating. The electric wire 8 has a good thermal conductivity of the copper core wire 8a, and is sufficiently longer than the outer lead 6, so that its volume and surface area are correspondingly large. Therefore, sufficient heat absorption and heat dissipation can be ensured. The outer leads 6, the terminals 9, and the exposed surfaces of the core wires 8a also radiate heat to the surrounding air.
[0014]
As described above, with a simple structure in which the sealing wire 3 is multi-layered and a heat conduction wire is simply provided, heat transfer to the outside of the tube can be promoted, and heat absorption and heat dissipation by the electric wire can be utilized. In addition, overheating of the electrode unit 5 can be prevented. Therefore, promotion of blackening of the tube end due to overheating can be suppressed. Thereby, the life of the cold cathode fluorescent lamp can be further extended as compared with the conventional product.
[0015]
Further, the diameter of the above-mentioned sealing wire 3 is 0.8 mm (conventionally 0.6 mm), but by this, the diameter of the inner layer 32 as a heat conducting wire can be appropriately secured. Further, the entire sealing wire 3 also contributes to the improvement of the thermal conductivity. Therefore, in combination with the existence of the inner layer 32 as a heat conducting wire, it contributes to the temperature reduction of the electrode portion 5.
[0016]
FIG. 3 shows a conventional cold-cathode tube using a sealing wire made of Kovar having a diameter of 0.6 mm and the cold-cathode tube of the present embodiment in a state in which 12 lamps are installed in a housing of a direct-type backlight. It is a graph of a temperature comparison. The temperature was measured at four positions: near the high-voltage electrode, near the low-voltage electrode, at the center of the lamp, and in the atmosphere in the housing. The left side of the bar graph is the conventional cold cathode tube, and the right side is the cold cathode tube of the present embodiment. As is clear from the graph, the temperature of the cold cathode tube of the present embodiment is lower in the vicinity of the high-voltage side electrode and in the vicinity of the low-voltage side electrode than in the conventional cold cathode tube.
[0017]
FIG. 4 is a graph comparing the temperature, the central luminance of the single tube, and the luminance per power consumption of the conventional cold cathode tube and the cold cathode tube of the present embodiment in a single tube (one lamp). The left side of the bar graph shows the vicinity of the high voltage side electrode, the center shows the vicinity of the low voltage side electrode, and the right side shows the center of the lamp. As is clear from the graph, the cold-cathode tube according to the present embodiment has a lower temperature near the high-voltage side electrode and near the low-voltage side electrode than the conventional cold-cathode tube, and has a higher single-tube central luminance. . On the other hand, the luminance per power consumption hardly changes.
From the above two graphs, it can be seen that the cold cathode tube of the present embodiment can lower the temperature of the electrode portion and is a bright lamp as compared with the conventional cold cathode tube.
[0018]
In the above embodiment, the diameter of the sealing wire 3 is preferably 0.8 mm or more because the larger the diameter, the easier it is to secure the thermal conductivity. However, even if it is less than 0.8 mm (for example, 0.6 mm), a certain effect of preventing overheating of the electrode portion 5 can be obtained due to the presence of the inner layer 32 as a heat conducting wire.
In the above embodiment, the sealing wire 3 has a two-layer structure, but may have a multilayer structure of three or more layers. In this case, the outer layer (outermost layer) is Kovar, and at least one of the inner layers is a heat conducting wire.
In the above embodiment, Kovar is used as the material of the outer layer 31. However, the material is not limited to this, and any metal material having a coefficient of thermal expansion equivalent to that of the glass bead 7, which is the sealing portion of the glass tube 1, may be used. In the case of tungsten glass (BFW), tungsten (W) is preferred.
[0019]
【The invention's effect】
According to the cold cathode tube of the present invention configured as described above, the heat generated in the electrode portion is transferred from the inner lead to the sealing wire by a simple structure in which the sealing wire is provided in multiple layers and the heat conduction wire is provided. The heat is efficiently transmitted to the outer lead through the heat conduction wire, and from the outer lead to the electric wire connected to the outer lead. Therefore, it is possible to sufficiently secure the amount of heat absorption and the amount of heat radiation to the electrode portion, and it is possible to prevent the electrode portion from overheating. As a result, the life of the cold cathode tube can be further extended.
[Brief description of the drawings]
FIG. 1 is a sectional view of a cold cathode tube according to an embodiment of the present invention.
2 is an enlarged view of a left end side of the cold cathode tube of FIG. 1, showing a sealing wire in a cross section, and showing a state where an outer lead is connected to an external electric wire.
FIG. 3 shows a conventional cold-cathode tube using a sealing wire made of Kovar having a diameter of 0.6 mm and the cold-cathode tube of the present embodiment in a state in which 12 lamps are installed in a housing of a direct-type backlight. It is a graph of a temperature comparison.
FIG. 4 is a graph comparing the temperature, the central luminance of a single tube, and the luminance per power consumption of a single tube (one lamp) with a conventional cold cathode tube and the cold cathode tube of the present embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Glass tube 1a Tube end part 2 Light emitting layer 3 Sealing wire 4 Inner lead 5 Electrode part 6 Outer lead 7 Glass bead (sealing part)
8 Electric wire 31 Outer layer 32 Inner layer (heat conduction wire)

Claims (3)

内面に発光層を有するガラス管と、
前記ガラス管の管端部を気密に内外貫通して設けられ、複層構造からなり、その内層に外層より熱伝導率の高い熱伝導線を含む封止線材と、
前記ガラス管の内部にあって前記封止線材の一端部に連設されたインナーリード及び電極部と、
前記ガラス管の外部にあって前記封止線材の他端部に連設され、外部の電線と接続されるアウターリードと
を備えたことを特徴とする冷陰極管。
A glass tube having a light-emitting layer on the inner surface,
A sealing wire including a heat conducting wire having a higher thermal conductivity than the outer layer in the inner layer, which is provided in a manner that the tube end of the glass tube penetrates the inside and outside of the tube in an airtight manner,
An inner lead and an electrode portion which are provided inside the glass tube and are connected to one end of the sealing wire,
An outer lead, which is provided outside the glass tube and is connected to the other end of the sealing wire and connected to an external electric wire, is provided.
前記封止線材の外層は、前記ガラス管の封着部と同等な熱膨張率を有する金属材料からなる請求項1記載の冷陰極管。The cold cathode tube according to claim 1, wherein the outer layer of the sealing wire is made of a metal material having a coefficient of thermal expansion equivalent to that of the sealing portion of the glass tube. 前記封止線材は直径0.8mm以上である請求項1記載の冷陰極管。The cold cathode tube according to claim 1, wherein the sealing wire has a diameter of 0.8 mm or more.
JP2003131977A 2003-05-09 2003-05-09 Cold-cathode tube Pending JP2004335370A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003131977A JP2004335370A (en) 2003-05-09 2003-05-09 Cold-cathode tube
TW93101812A TWI259494B (en) 2003-05-09 2004-01-28 Cold cathode tube
CNB2004100046285A CN100424812C (en) 2003-05-09 2004-02-20 Cold cathode tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003131977A JP2004335370A (en) 2003-05-09 2003-05-09 Cold-cathode tube

Publications (1)

Publication Number Publication Date
JP2004335370A true JP2004335370A (en) 2004-11-25

Family

ID=33507019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003131977A Pending JP2004335370A (en) 2003-05-09 2003-05-09 Cold-cathode tube

Country Status (3)

Country Link
JP (1) JP2004335370A (en)
CN (1) CN100424812C (en)
TW (1) TWI259494B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351460A (en) * 2005-06-20 2006-12-28 Matsushita Electric Ind Co Ltd Cold cathode fluorescent lamp and backlight unit
WO2009054582A1 (en) * 2007-10-23 2009-04-30 Kumho Electric Inc. Electrode assembly for a cold cathode fluorescent lamp

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106090650A (en) * 2016-07-29 2016-11-09 广州依恩施节能科技有限公司 A kind of LED fluorescent lamp and manufacture method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05290810A (en) * 1992-04-08 1993-11-05 Toto Ltd Light emitting tube for high luminance electric discharge lamp and manufacture of the same
JPH08241693A (en) * 1995-03-07 1996-09-17 Nec Home Electron Ltd Cold cathode fluorescent lamp and its manufacture
JPH0935689A (en) * 1995-07-24 1997-02-07 Nec Home Electron Ltd Cold cathode fluorescent lamp and manufacture thereof
CN2291724Y (en) * 1997-02-19 1998-09-16 黄亮福 Multi-wire riveted terminal
US6863586B2 (en) * 2001-10-17 2005-03-08 Matsushita Electric Industrial Co., Ltd. Manufacturing method for a sealing plug used in sealing an arc tube, sealing plug, and discharge lamp

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351460A (en) * 2005-06-20 2006-12-28 Matsushita Electric Ind Co Ltd Cold cathode fluorescent lamp and backlight unit
WO2009054582A1 (en) * 2007-10-23 2009-04-30 Kumho Electric Inc. Electrode assembly for a cold cathode fluorescent lamp
KR100911665B1 (en) * 2007-10-23 2009-08-10 금호전기주식회사 Electrode assembly for a cold cathode fluorescent lamp

Also Published As

Publication number Publication date
CN100424812C (en) 2008-10-08
CN1551287A (en) 2004-12-01
TW200425211A (en) 2004-11-16
TWI259494B (en) 2006-08-01

Similar Documents

Publication Publication Date Title
US20090237597A1 (en) Cold-cathode fluorescent lamp, backlight unit, and liquid crystal display
JP2004335370A (en) Cold-cathode tube
JP5217021B2 (en) Metal halide lamp
JP3494090B2 (en) Light source device
JP2009140703A (en) High-pressure discharge lamp and lighting fixture
JP2009206070A (en) Cold-cathode fluorescent lamp
JP2008262818A (en) Backlight comprising hot cathode fluorescent lamp
US7170229B2 (en) Short arc type super high pressure discharge lamp
JP4456997B2 (en) Cold cathode tube equipment
JP2004127538A (en) Cold cathode fluorescent lamp
JP4830459B2 (en) Cold cathode fluorescent discharge tube
JPH10112287A (en) Thin tube fluorescent lamp
JP3622713B2 (en) Short arc type ultra high pressure discharge lamp
JP2002190279A (en) Fluorescent lamp
JP3874517B2 (en) Double tube fluorescent lamp
TW200418080A (en) Cold cathode fluorescent lamp and its manufacturing method
JP2004335416A (en) Cold cathode discharge lamp
JP5188703B2 (en) Field emission lamp
JP2003115280A (en) Cold cathode lamp
JP2011100682A (en) Light source device
JP2000215849A (en) Cold cathode fluorescent lamp
JP2005025976A (en) Sealing lead wire and cold cathode fluorescent lamp
JPH04282529A (en) Fluorescent lamp
JPH0765786A (en) Low pressure discharge lamp with cold cathode
JP2003178719A (en) Fluorescent lamp

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051018

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051117

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060222