JP2004335325A - Far-infrared radiator - Google Patents

Far-infrared radiator Download PDF

Info

Publication number
JP2004335325A
JP2004335325A JP2003131177A JP2003131177A JP2004335325A JP 2004335325 A JP2004335325 A JP 2004335325A JP 2003131177 A JP2003131177 A JP 2003131177A JP 2003131177 A JP2003131177 A JP 2003131177A JP 2004335325 A JP2004335325 A JP 2004335325A
Authority
JP
Japan
Prior art keywords
far
heating
infrared radiator
glass
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003131177A
Other languages
Japanese (ja)
Inventor
Kengo Yamazaki
憲五 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP2003131177A priority Critical patent/JP2004335325A/en
Publication of JP2004335325A publication Critical patent/JP2004335325A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Resistance Heating (AREA)
  • Physical Vapour Deposition (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a far-infrared radiator efficiently and rapidly heating a glass, especially heating a glass with a large area like a glass for a liquid crystal base plate. <P>SOLUTION: The far-infrared radiator is composed of a reflecting mirror with a cross section of hemi-elliptic or parabolic shape, a heat radiation body made of carbon arranged at a focus of the reflecting mirror, a window member covering the opening of the reflecting mirror. The window member is covered by a multi-layered film and mainly reflects the light having a wave length of not longer than 2.8 μm and mainly transmits the light having a wave length of not shorter than 2.8 μm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はガラスを加熱する遠赤外線放射体に関し、特には液晶用ガラス基板のような大面積のガラスを加熱するに適する遠赤外線放射体に関する。
【0002】
【従来の技術】
ディスプレー用部材として液晶が広く使われている。液晶は2枚のガラス基板に液晶材料はさんだ構造になっており、そのガラス基板には液晶を駆動する為に真空蒸着やスパッタ蒸着によって回路が形成されている。真空蒸着やスパッタ蒸着では、蒸着される側の基板の温度を200〜300℃程度に高めておかないと被覆膜の緻密性や密着性が悪くなると言われている。
【0003】
従来、蒸着前の真空中における基板の加熱には抵抗発熱ヒータやハロゲンランプヒータが使われていた。真空中では対流による熱伝達がないため、これらの抵抗発熱ヒータやハロゲンランプヒータによる加熱では、主として熱輻射と熱伝導による加熱を主として利用するものであり非常にエネルギー効率が悪かった。しかし、液晶用ガラス基板は大面積のガラスであり、真空中で急速に250℃程度の温度まで加熱するのは非常に難しく、従来は光で加熱する方法を取らざるを得なかった。
【0004】
現状行われている液晶用ガラス基板の加熱方法の模式図を図1に示す。
では、ハロゲンランプヒータ1と被加熱物である液晶用ガラス基板2との間にカーボン板3をはさみ、まずハロゲンランプヒータ1でカーボン板3を550℃程度に加熱し、そのカーボン板3からの2次放射により液晶基板用ガラス2を加熱する方法をとっている。例えば特開平6−260422号公報に例示される。この方法ではハロゲンランプヒータ1への投入電力に対してそのうちの高々1〜2%のエネルギーしか液晶用ガラス基板2の加熱に寄与しておらず、極めて効率の悪いものであった。
【0005】
何故このような非効率的な加熱方法を取らざるを得ないかであるが、まず液晶用ガラス基板の分光透過率スペクトルを図2に示す。この液晶用ガラス基板は主に硬質ガラスからなり、光に対して約0.3μmからの長波長側は略透明であり、約2.8μmから5μmの間では約50%ほどの透過率であり、約5μm以上の長波長側の光が完全に吸収される。
【0006】
光で加熱する場合、ガラスが光を吸収しないとガラスが加熱されない。例えば、ヒータ用ハロゲンランプの発熱体であるタングステンフィラメントのランプ点灯時の温度は約2100〜2300Kである。タングステンの5μm付近の放射率が0.1〜0.2であることを考慮すると、この約2100〜2300Kの温度では例えば5μm以上の放射量は全波長域の放射量の1〜2%程度しかないであろう。
【0007】
しかもハロゲンランプヒータは石英ガラスバルブでタングステンフィラメントを覆っている構造からなっている。この石英ガラスバルブも5μm以上の光は吸収してしまいタングステンフィラメントからの光は放出されない。したがって、液晶用ガラス基板をハロゲンランプヒータで直接加熱する場合、ランプ点灯で加熱された石英ガラスバルブからの2次放射で放射される赤外線でわずかに加熱されるにすぎない。
【0008】
ハロゲンランプヒータによる直接加熱は勿論であるが、前述のように現行のハロゲンランプヒータにより加熱したカーボン板による2次放射加熱も極めて非効率的で投入エネルギーのほとんどを無駄にしているのが現状である。液晶用ガラス基板に限らず一般のガラス類を効率よく加熱する遠赤外線放射体が望まれている。
【0009】
【特許文献1】
特開平6−260422号公報
【0010】
【発明が解決しようとする課題】
そこで、本発明は真空中でガラスを効率よく急速に加熱する遠赤外線放射体を提供すること、特には液晶用ガラス基板のような大面積のガラスを加熱する遠赤外線放射体を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記課題を解決するために、本発明は、断面が半楕円または放物線である樋状反射鏡と、該樋状反射鏡の焦点に配したカーボン製発熱体と、該樋状反射鏡の開口部を覆う窓部材とからなり、該窓部材は、多層膜で被覆され、略2.8μmより短い波長の光を主に反射し、略2.8μmより長い波長の光を主に透過することを特徴とする遠赤外線放射体とするものである。
【0012】
また、請求項2に記載の発明は、前記窓部材が珪素(Si)板であり、前記多層膜が珪素(Si)と酸化珪素(SiO)の交互膜であることを特徴とする請求項1に記載の遠赤外線放射体とするものである。
【0013】
【発明の実施の形態】
図3、図4、図5に本発明の実施例としての遠赤外線放射体の構成を示す。図3が遠赤外線放射体の斜視図、図4が遠赤外線放射体の樋状反射鏡4の長手方向に垂直な断面図である。図5はカーボン製発熱体6の長手方向端部の拡大図である。
【0014】
図4のように断面形状が放物線あるいは半楕円となる樋状反射鏡4の焦点にカーボン製発熱体6を設けられる。樋状反射鏡4は例えばステンレス等の金属またはガラス製であり、内面41に金(Au)の被覆がされている。カーボン製発熱体は脆いので図5に示すように、カーボン製発熱体6の端部は弾力性の有る、例えばカーボン繊維70、71でカーボン製発熱体の上下をはさみ、さらに、その外側をモリブデン(Mo)管80、81ではさみ、カーボン製発熱体6を固定する。カーボン発熱体6への給電は、モリブデン管81に溶接した給電棒90から行う。
【0015】
カーボン製発熱体6から放射された光は樋状反射鏡4の開口部に設けられた窓部材5で略2.8μより長い波長の光は透過し、略2.8μmより短い波長の光は反射され再びカーボン製発熱体6に戻り、再度、カーボン製発熱体6を加熱するエネルギーに変換される。
【0016】
窓部材5には多層膜51が被覆され、略2.8μより長い波長の光は透過し、略2.8μmより短い波長の光を反射する。この多層膜51はSi−SiO交互積層膜(図6に窓部材5であるSi基板上に多層膜51の被覆したときの分光特性を示す)が屈折率差が大きく、少ない層数で大きな反射率が得られるという理由で好適に使われる。多層膜51は二帯域合成型であり、それぞれの光学膜厚は、536nmと330nmである。図6から分かるように、Si基板に多層膜51を被覆すると液晶用ガラス基板が略吸収する5μmより長波長の光も透過する。このSi基板に被覆する多層膜はSi−SiO交互積層膜に限られず、通常の耐熱性の高屈折率膜と低屈折率膜との組み合わせでよい。例えば、TiO−SiO,SiC−SiO,Fe−SiOなども考えられる。
【0017】
しかしながら、図6から分かるようにSi基板上にSi−SiO交互積層膜の多層膜を被覆した場合、約2.8nmより長波長側の透過帯域も反射がかなり大きい。透過帯域の反射を下げるため窓部材5であるSi基板の反対側の面、すなわち、樋状反射鏡側の面に広帯域の反射防止膜(例えば膜構成Si−SiOで徐々に屈折率が小さくなるように屈折率を傾斜させた膜)を被覆するとよい。
【0018】
窓部材5して厚さ1mm程度のSi板が好適に使われるが、この他にも遠赤外線を透過する窓部材としてGe,ZnS,ZnSe,MgF,CaFなどがある。発熱体の温度は、本発明においては発熱物質がカーボンであり1000〜1500Kが上限である。
【0019】
<実験例>
ここで、本願発明の遠赤外線放射体を使用した液晶用ガラス基板の加熱実験について説明する。
液晶用ガラス基板の加熱実験は、圧力30Paの真空チャンバーの中で行った。被加熱ワークは縦50mm、横50mm、厚み1.1mmの液晶用ガラス基板である。液晶用ガラス基板の加熱温度を測定する手段としては、液晶用ガラス基板の裏面側に熱電対を貼り付けた。
【0020】
本発明の遠赤外線放射体としては、図3の構成において、珪素(Si)基板片面に、SiとSiOの多層膜をスパッタ蒸着法で被覆した。SiとSiOの多層膜の膜設計は珪素(Si)基板側から、中心波長を550nmとして、3.9(0.5H・L・0.5H)・2.4(0.5H・L・0.5H)・4.8Lである。
【0021】
ここでHは高屈折率物質を意味し、ここではSiのことであり、Lは低屈折率物質を意味し、ここではSiOである。カッコの乗数4は積層の繰り返し数を意味する。0.5Hは所定膜厚の半分の厚みを意味し、カッコの前の係数3.9や2.4、および4.8Lの4.8は光学膜厚が中心波長550nmの1/4、すなわち137.5nmの3.9倍、2.4倍、4.8倍をそれぞれ表している。
【0022】
本発明における遠赤外放射体の発熱体はカーボンリボンをスパイラル状に巻いたカーボン製スパイラルヒータであり、直径13.5mm、長さ300mmの115V、1250Wを2本並べて用いた。
【0023】
本発明との比較のための加熱方法としては、図1に示した構成にて、透明石英ガラスをガラスバルブに使用した100V、700Wのハロゲンランプヒータを4本並べ合計2.8kWとし、被加熱ワークである液晶ガラス基板とハロゲンランプヒータの間を15mm離し、液晶ガラス基板とハロゲンランプヒータの中間に厚さ1mmのカーボン板を挿入し、ハロゲンランプヒータで加熱されたカーボン板からの間接加熱である。
【0024】
また、カーボン板を使用せず直接に100V、700W(合計2.8kW)のハロゲンランプヒータを4本での加熱も行った。
【0025】
図7にハロゲンランプヒータや遠赤外放射体を点灯開始してからの液晶ガラス基板の昇温曲線を示す。本発明の遠赤外線放射体による加熱結果が▲3▼、ハロゲンランプヒータとカーボン板を使用した加熱結果が▲1▼、ハロゲンランプヒータのみによる加熱結果が▲2▼であるが、本発明の遠赤外線放射体による加熱は、ハロゲンランプヒータとカーボン板を使用した加熱、およびハロゲンランプヒータのみによる加熱のいずれと比べても、低い入力にかかわらず大きな昇温となった。
【0026】
【発明の効果】
以上説明したように、本発明によれば真空中でガラスを効率よく急速に加熱する遠赤外線放射体を提供すること、特には液晶用ガラス基板のような大面積のガラスを加熱する遠赤外線放射体を提供することができる。
【図面の簡単な説明】
【図1】従来の液晶用ガラス基板の加熱方法の模式図を示す。
【図2】液晶用ガラス基板の透過率曲線例を示す。
【図3】本発明の実施形態としての遠赤外線放射体の斜視図を示す。
【図4】本発明の実施形態としての遠赤外線放射体の樋状反射鏡長手方向に垂直な断面図を示す。
【図5】カーボン製発熱体の長手方向端部の拡大図を示す。
【図6】Si基板上にSi−SiO交互積層膜の多層膜を被覆した場合の透過率曲線を示す。
【図7】本発明の遠赤外線放射体による加熱法と従来の加熱法の加熱実験の結果を示す。
【符号の説明】
1 ハロゲンランプヒータ
2 液晶用ガラス基板
3 カーボン板
4 樋状反射鏡
41 内面
5 窓部材
51 多層膜
6 カーボン製発熱体
70、71 カーボン繊維
80、81 モリブデン管
90 給電棒
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a far-infrared radiator for heating glass, and more particularly to a far-infrared radiator suitable for heating large-area glass such as a glass substrate for liquid crystal.
[0002]
[Prior art]
Liquid crystals are widely used as display members. The liquid crystal has a structure in which a liquid crystal material is sandwiched between two glass substrates, and a circuit is formed on the glass substrate by vacuum evaporation or sputter evaporation to drive the liquid crystal. It is said that in vacuum vapor deposition or sputter vapor deposition, the denseness and adhesion of the coating film deteriorates unless the temperature of the substrate on which the vapor is deposited is raised to about 200 to 300 ° C.
[0003]
Conventionally, a resistance heating heater or a halogen lamp heater has been used for heating a substrate in a vacuum before vapor deposition. Since there is no heat transfer by convection in a vacuum, heating by these resistance heating heaters or halogen lamp heaters mainly uses heating by heat radiation and heat conduction, and is very poor in energy efficiency. However, the glass substrate for a liquid crystal is a large-area glass, and it is very difficult to rapidly heat it to a temperature of about 250 ° C. in a vacuum, so that a conventional method of heating with light has been inevitable.
[0004]
FIG. 1 shows a schematic view of a currently performed heating method for a glass substrate for liquid crystal.
Then, a carbon plate 3 is sandwiched between a halogen lamp heater 1 and a liquid crystal glass substrate 2 to be heated, and the carbon plate 3 is first heated to about 550 ° C. A method of heating the liquid crystal substrate glass 2 by secondary radiation is employed. For example, this is exemplified in JP-A-6-260422. In this method, at most 1 to 2% of the energy supplied to the halogen lamp heater 1 contributes to the heating of the liquid crystal glass substrate 2, which is extremely inefficient.
[0005]
The reason why such an inefficient heating method must be employed is as follows. First, FIG. 2 shows a spectral transmittance spectrum of a liquid crystal glass substrate. This glass substrate for liquid crystal is mainly made of hard glass, is substantially transparent to light on the long wavelength side from about 0.3 μm, and has a transmittance of about 50% between about 2.8 μm and 5 μm. , The light on the long wavelength side of about 5 μm or more is completely absorbed.
[0006]
When heating with light, the glass is not heated unless the glass absorbs the light. For example, the temperature of a tungsten filament, which is a heating element of a halogen lamp for a heater, when the lamp is turned on is about 2100 to 2300K. Considering that the emissivity of tungsten around 5 μm is 0.1 to 0.2, at this temperature of about 2100 to 2300 K, for example, the radiation amount of 5 μm or more is about 1 to 2% of the radiation amount in the entire wavelength range. Will not be.
[0007]
Moreover, the halogen lamp heater has a structure in which a tungsten filament is covered with a quartz glass bulb. This quartz glass bulb also absorbs light of 5 μm or more and does not emit light from the tungsten filament. Therefore, when the liquid crystal glass substrate is directly heated by the halogen lamp heater, it is only slightly heated by the infrared radiation radiated by the secondary radiation from the quartz glass bulb heated by the lamp operation.
[0008]
The direct heating by the halogen lamp heater is of course, but the secondary radiant heating by the carbon plate heated by the current halogen lamp heater is extremely inefficient and wastes most of the input energy. is there. Far-infrared radiators that efficiently heat not only glass substrates for liquid crystals but also general glasses are desired.
[0009]
[Patent Document 1]
JP-A-6-260422
[Problems to be solved by the invention]
Therefore, the present invention provides a far-infrared radiator that efficiently and rapidly heats glass in a vacuum, and in particular, provides a far-infrared radiator that heats a large-area glass such as a glass substrate for liquid crystal. Aim.
[0011]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a gutter-like reflector having a semi-elliptic or parabolic cross section, a carbon heating element disposed at the focal point of the gutter-like reflector, and an opening of the gutter-like reflector. And a window member which is covered with a multilayer film and mainly reflects light having a wavelength shorter than about 2.8 μm and mainly transmits light having a wavelength longer than about 2.8 μm. The feature is a far-infrared radiator.
[0012]
The invention according to claim 2 is characterized in that the window member is a silicon (Si) plate, and the multilayer film is an alternating film of silicon (Si) and silicon oxide (SiO 2 ). A far-infrared radiator according to item 1.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
3, 4 and 5 show the configuration of a far-infrared radiator as an embodiment of the present invention. FIG. 3 is a perspective view of the far-infrared radiator, and FIG. 4 is a cross-sectional view of the far-infrared radiator perpendicular to the longitudinal direction of the gutter-shaped reflecting mirror 4. FIG. 5 is an enlarged view of a longitudinal end of the carbon heating element 6.
[0014]
As shown in FIG. 4, a carbon heating element 6 is provided at the focal point of the trough-shaped reflecting mirror 4 having a parabolic or semi-elliptical cross section. The gutter-shaped reflecting mirror 4 is made of, for example, metal such as stainless steel or glass, and has an inner surface 41 coated with gold (Au). Since the carbon heating element is brittle, as shown in FIG. 5, the end of the carbon heating element 6 has elasticity. (Mo) The heating elements 6 made of carbon are fixed between the tubes 80 and 81. Power is supplied to the carbon heating element 6 from a power supply rod 90 welded to the molybdenum tube 81.
[0015]
The light radiated from the carbon heating element 6 is transmitted through a window member 5 provided at the opening of the gutter-shaped reflecting mirror 4 so that light having a wavelength longer than approximately 2.8 μm is transmitted, and light having a wavelength shorter than approximately 2.8 μm is transmitted therethrough. The light is reflected back to the carbon heating element 6 again, and is converted into energy for heating the carbon heating element 6 again.
[0016]
The window member 5 is covered with a multilayer film 51, and transmits light having a wavelength longer than approximately 2.8 μm and reflects light having a wavelength shorter than approximately 2.8 μm. This multilayer film 51 has a large difference in refractive index and a large number of small layers of Si—SiO 2 alternately laminated films (FIG. 6 shows spectral characteristics when the multilayer film 51 is coated on the Si substrate as the window member 5). It is preferably used because a reflectance can be obtained. The multilayer film 51 is of a two-band composite type, and has an optical thickness of 536 nm and 330 nm, respectively. As can be seen from FIG. 6, when the multilayer film 51 is coated on the Si substrate, light having a wavelength longer than 5 μm, which is substantially absorbed by the liquid crystal glass substrate, is also transmitted. The multilayer film coated on the Si substrate is not limited to the Si—SiO 2 alternately laminated film, but may be a combination of a normal heat-resistant high-refractive-index film and a low-refractive-index film. For example, TiO 2 —SiO 2 , SiC—SiO 2 , Fe 2 O 3 —SiO 2 and the like are also conceivable.
[0017]
However, as can be seen from FIG. 6, when the Si substrate is covered with the multilayer film of the Si—SiO 2 alternately laminated films, the reflection in the transmission band on the wavelength side longer than about 2.8 nm is considerably large. Opposite side of the Si substrate is a window member 5 to reduce the reflection of the transmission band, i.e., broadband antireflection coating on the surface of the trough-shaped reflector side (e.g. refractive index gradually in the film structure Si-SiO 2 is small (A film whose refractive index is inclined so as to be as small as possible).
[0018]
As the window member 5, a Si plate having a thickness of about 1 mm is preferably used, but other window members that transmit far infrared rays include Ge, ZnS, ZnSe, MgF 2 , and CaF 2 . In the present invention, the temperature of the heating element is 1000 to 1500 K as the heating substance is carbon.
[0019]
<Example of experiment>
Here, an experiment of heating a glass substrate for liquid crystal using the far-infrared radiator of the present invention will be described.
The heating experiment on the glass substrate for liquid crystal was performed in a vacuum chamber with a pressure of 30 Pa. The work to be heated is a glass substrate for liquid crystal having a length of 50 mm, a width of 50 mm, and a thickness of 1.1 mm. As a means for measuring the heating temperature of the liquid crystal glass substrate, a thermocouple was attached to the back surface side of the liquid crystal glass substrate.
[0020]
As the far-infrared radiator of the present invention, in the configuration of FIG. 3, one surface of a silicon (Si) substrate was coated with a multilayer film of Si and SiO 2 by a sputter deposition method. Film design of Si and SiO 2 multilayer film of silicon (Si) substrate, the center wavelength as 550nm, 3.9 (0.5H · L · 0.5H) 4 · 2.4 (0.5H · L · 0.5H) is a 4 · 4.8L.
[0021]
Here, H means a high-refractive-index substance, here, Si, and L means a low-refractive-index substance, here, SiO 2 . A parenthesis multiplier of 4 means the number of repetitions of lamination. 0.5H means half the thickness of the predetermined film thickness, and the coefficients 3.9 and 2.4 before the parentheses and 4.8L of 4.8L indicate that the optical film thickness is 1/4 of the center wavelength of 550 nm, that is, 3.9 times, 2.4 times, and 4.8 times of 137.5 nm are shown, respectively.
[0022]
The heating element of the far-infrared radiator in the present invention is a carbon spiral heater in which a carbon ribbon is spirally wound.
[0023]
As a heating method for comparison with the present invention, in the configuration shown in FIG. 1, four 100 V, 700 W halogen lamp heaters each using a transparent quartz glass for a glass bulb are arranged at a total of 2.8 kW to be heated. The liquid crystal glass substrate, which is a work, is separated from the halogen lamp heater by 15 mm, a 1 mm thick carbon plate is inserted between the liquid crystal glass substrate and the halogen lamp heater, and indirect heating is performed from the carbon plate heated by the halogen lamp heater. is there.
[0024]
Further, heating was performed directly using four halogen lamp heaters of 100 V and 700 W (total 2.8 kW) without using a carbon plate.
[0025]
FIG. 7 shows a temperature rise curve of the liquid crystal glass substrate after the halogen lamp heater or the far-infrared radiator is turned on. The heating result using the far-infrared radiator of the present invention is (3), the heating result using the halogen lamp heater and the carbon plate is (1), and the heating result using only the halogen lamp heater is (2). The heating by the infrared radiator resulted in a large temperature rise irrespective of the low input, compared to the heating using the halogen lamp heater and the carbon plate and the heating using only the halogen lamp heater.
[0026]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a far-infrared radiator that efficiently and rapidly heats glass in a vacuum, and in particular, far-infrared radiation that heats a large-area glass such as a glass substrate for liquid crystal. Body can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic view of a conventional method for heating a glass substrate for liquid crystal.
FIG. 2 shows an example of a transmittance curve of a liquid crystal glass substrate.
FIG. 3 shows a perspective view of a far-infrared radiator as an embodiment of the present invention.
FIG. 4 is a cross-sectional view of a far-infrared radiator according to an embodiment of the present invention, which is perpendicular to the longitudinal direction of the gutter-shaped reflector.
FIG. 5 is an enlarged view of a longitudinal end of a carbon heating element.
FIG. 6 shows a transmittance curve when a Si substrate is coated with a multilayer film of Si—SiO 2 alternately laminated films.
FIG. 7 shows the results of heating experiments using the far-infrared radiator of the present invention and a conventional heating method.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 halogen lamp heater 2 liquid crystal glass substrate 3 carbon plate 4 gutter-like reflecting mirror 41 inner surface 5 window member 51 multilayer film 6 carbon heating elements 70 and 71 carbon fibers 80 and 81 molybdenum tube 90 power supply rod

Claims (2)

断面が半楕円または放物線である樋状反射鏡と、該樋状反射鏡の焦点に配したカーボン製発熱体と、該樋状反射鏡の開口部を覆う窓部材とからなり、該窓部材は、多層膜で被覆され、略2.8μmより短い波長の光を主に反射し、略2.8μmより長い波長の光を主に透過することを特徴とする遠赤外線放射体。A gutter-like reflector having a semi-elliptical or parabolic cross section, a carbon heating element disposed at the focal point of the gutter-like reflector, and a window member covering an opening of the gutter-like reflector, the window member comprising: A far-infrared radiator, which is covered with a multilayer film and mainly reflects light having a wavelength shorter than about 2.8 μm and mainly transmits light having a wavelength longer than about 2.8 μm. 前記窓部材が珪素(Si)板であり、前記多層膜が珪素(Si)と酸化珪素(SiO)の交互膜であることを特徴とする請求項1に記載の遠赤外線放射体。It said window member is a silicon (Si) plate, far-infrared radiator according to claim 1, wherein the multilayer film is an alternating layer of silicon (Si) and silicon oxide (SiO 2).
JP2003131177A 2003-05-09 2003-05-09 Far-infrared radiator Pending JP2004335325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003131177A JP2004335325A (en) 2003-05-09 2003-05-09 Far-infrared radiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003131177A JP2004335325A (en) 2003-05-09 2003-05-09 Far-infrared radiator

Publications (1)

Publication Number Publication Date
JP2004335325A true JP2004335325A (en) 2004-11-25

Family

ID=33506427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003131177A Pending JP2004335325A (en) 2003-05-09 2003-05-09 Far-infrared radiator

Country Status (1)

Country Link
JP (1) JP2004335325A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100442944C (en) * 2006-02-15 2008-12-10 杭州五源科技实业有限公司 High energy full-wave band infrared radiation heater
JP2011144422A (en) * 2010-01-14 2011-07-28 Showa Denko Kk Sputtering apparatus, and method for manufacturing semi-conductor light emitting element
JP5025038B1 (en) * 2012-02-16 2012-09-12 株式会社シンクロン Translucent hard thin film

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100442944C (en) * 2006-02-15 2008-12-10 杭州五源科技实业有限公司 High energy full-wave band infrared radiation heater
JP2011144422A (en) * 2010-01-14 2011-07-28 Showa Denko Kk Sputtering apparatus, and method for manufacturing semi-conductor light emitting element
US8882971B2 (en) 2010-01-14 2014-11-11 Toyoda Gosei Co., Ltd. Sputtering apparatus and manufacturing method of semiconductor light-emitting element
JP5025038B1 (en) * 2012-02-16 2012-09-12 株式会社シンクロン Translucent hard thin film
WO2013121552A1 (en) * 2012-02-16 2013-08-22 株式会社シンクロン Light-transmitting rigid thin film
CN103370437A (en) * 2012-02-16 2013-10-23 新柯隆株式会社 Light-transmitting rigid thin film
CN103370437B (en) * 2012-02-16 2015-07-15 新柯隆株式会社 Light-transmitting rigid thin film
US9422620B2 (en) 2012-02-16 2016-08-23 Shincron Co., Ltd. Translucent hard thin film

Similar Documents

Publication Publication Date Title
US7082260B2 (en) Apparatus and method for bending and/or tempering glass
JP4904287B2 (en) Thermally stable multilayer mirror for EUV spectral range
US4663557A (en) Optical coatings for high temperature applications
JPS5865403A (en) Optical coating suitable for high temperature application
US8436519B2 (en) Incandescent lamp incorporating infrared-reflective coating system, and lighting fixture incorporating such a lamp
JP2002279809A (en) Cover parts for light source
JP2004335325A (en) Far-infrared radiator
JP2006228971A (en) Heating unit
US20040211927A1 (en) Infrared radiator and irradiation apparatus
US11710628B2 (en) Infrared light radiation device
JP2005050604A (en) Far-infrared-ray radiant body
US20110262116A1 (en) Infrared filter of a light source for heating an object
JP7523234B2 (en) Thermal radiation light source
JP2004311213A (en) Far-infrared radiator
JP7523232B2 (en) Thermal radiation light source
JP5421665B2 (en) Solar heat converter
US10008379B1 (en) Infrared recycling incandescent light bulb
Rancourt et al. High temperature lamp coatings
TW200945407A (en) Lamp with thermal improvement
JP2714397B2 (en) Non-heat reflecting mirror
JPH0518870Y2 (en)
JP2020063891A (en) Selective sunlight absorption body
JP2015222309A (en) Heat-fixing device
JP3932364B2 (en) Heat radiation source
JP3054663B2 (en) Multilayer reflector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080318