JP2004334039A - Electromagnetic driving device and light quantity adjusting device using the same - Google Patents

Electromagnetic driving device and light quantity adjusting device using the same Download PDF

Info

Publication number
JP2004334039A
JP2004334039A JP2003132022A JP2003132022A JP2004334039A JP 2004334039 A JP2004334039 A JP 2004334039A JP 2003132022 A JP2003132022 A JP 2003132022A JP 2003132022 A JP2003132022 A JP 2003132022A JP 2004334039 A JP2004334039 A JP 2004334039A
Authority
JP
Japan
Prior art keywords
coil frame
coil
magnet rotor
frame
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003132022A
Other languages
Japanese (ja)
Inventor
Hiroaki Naganuma
宏明 長沼
Tetsuyuki Toyama
鉄之 遠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Finetech Nisca Inc
Original Assignee
Nisca Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisca Corp filed Critical Nisca Corp
Priority to JP2003132022A priority Critical patent/JP2004334039A/en
Priority to US10/800,640 priority patent/US6960848B2/en
Publication of JP2004334039A publication Critical patent/JP2004334039A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Diaphragms For Cameras (AREA)
  • Shutters For Cameras (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electromagnetic driving device where a coil frame incorporating a magnet rotor is easily worked, and mechanical loss such as friction is hardly caused in the bearing part of the rotary shaft of the rotor and which obtains smooth motion. <P>SOLUTION: The coil frame 1 inside which the magnet rotor 3 is incorporated and whose outer periphery a coil 4 is wound round is constituted of half-cut coil frames 1a and 1b divided right and left through the rotary shaft 7 of the rotor 3, and a bearing recessed part 10 supporting one end of the rotary shaft 7 of the rotor 3 is provided on either coil frame 1b, and a bearing recessed part 11 supporting the other end of the rotary shaft is provided on the other half-cut coil frame 1a. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は外周にコイルを巻回したコイル枠に内部に永久磁石から成るマグネットロータを回転自在に収容し、コイルに直流電流を通電することによって上記マグネットロータを回転させる電磁駆動装置及びこのマグネットロータに生起した回転力で光学撮像機器の光量を調整する光量調整装置に関する。
【0002】
【従来の技術】
【特許文献1】実用新案登録第2606159号公報
一般にビデオカメラ、スチールカメラなどの光学撮像機器は撮像レンズを組込んだ鏡筒内に光を遮閉するシャッター羽根或いは、撮映光量を調整する絞り羽根を配置して光量を制御している。これらの羽根部材は鏡筒内の撮像光軸に回動自在若しくはスライド自在に組み込まれ電磁駆動装置によって駆動制御されている。
【0003】
この電磁駆動装置としては外周に導電コイルを巻回したコイル枠の内部にマグネットロータを回動自在に収納し、このマグネットロータの回転を羽根部材に伝え撮映光軸を開閉或いは開口径を大小調整するようになっている。つまりマグネットロータはN−S2極に着磁されその周囲に巻回されたコイルに直流電流を通電することによってコイルに生起された磁界でロータを回転させる構造が広く採用されている。
【0004】
そこでこの電磁駆動装置は樹脂などで中空筒状のコイル枠を作製し、このコイル枠内部に回転軸を一体に備えたマグネットロータを回動自在に軸承して収納し、この回転軸から羽根部材に伝動アームで回転力を伝達するように構成されている。
従ってコイル枠は内部にマグネットロータを内蔵する為に2分割され、ロータを内部に収納した後に両者を合体し外周にコイルを巻回する構造になっている。
このコイル枠の分割はマグネットロータの回転軸を介して左右縦割りに2分割する場合と、回転軸と直交する方向を堺に上下横割りに2分割する場合が考えられ、そのいずれも知られている。
【0005】
前者の左右縦割りの構造にあっては装置の小型化でコイル枠径を小さくしても2つの半裁状コイル枠は通常長手方向となる縦方向で合体(結合)する為、相互の位置ズレの恐れが少なく、また内部へのマグネットロータの組込みも容易となる。
ところがこのようなマグネットロータの回転軸を堺に左右に縦割りした場合には軸受部の成形に問題が生ずる。
従来は前掲特許資料1に提案されているように半裁状のコイル枠それぞれに軸受凹部を形成し両者を合体して回転軸を軸受け支持するようにしている。
【0006】
【発明が解決しようとする課題】
上述のように半裁状のコイル枠それぞれに軸受け用の凹部を形成し、この2つのコイル枠を合体してマグネットロータの回転軸を支持すると、両者の凹部の加工精度と合体する際に位置ズレが生ずるとマグネットロータの円滑な運動が得られない。
特に最近の装置の小型化に伴ってロータの回転軸は1mm直径程度で軸受部には微細な加工が必要となり、また消費電力の関係から回転軸の軸受部は摩擦力などの機械的ロスが少ない構造が要求される。
【0007】
そこで本発明はマグネットロータを内蔵するコイル枠を加工が容易でしかも回転軸の軸受け部に機械的ロスを生ずることが少なく円滑な運動が得られる電磁駆動装置の提供をその主な課題としている。
【0008】
【課題を解決するための手段】
本発明は上記課題を解決するために、コイル枠を2つの半裁状コイル枠を合体して構成する際に、磁石ロータの回転軸の一端を支持する軸受凹部を半裁状のコイル枠の一方に設け、この回転軸の他端を支持する軸受凹部を半裁状のコイル枠の他方に設けるとの知見に基づいてなされたものである。
【0009】
請求項1の発明は、中空筒状のコイル枠と、このコイル枠に回動自在に内蔵され中心に回転軸を有する円筒形状の磁石ロータと、上記回転軸に取付けられ上記磁石ロータの回転をコイル枠の外部に出力する伝動部材と、上記コイル枠の外周に巻回されたコイルとを備え、上記筒状のコイル枠を上記磁石ロータの回転軸を介して縦方向左右に分割した2つの半裁状コイル枠を結合して構成し、この半裁状コイル枠の一方に上記回転軸の一端を支持する軸受凹部を、上記半裁状コイル枠の他方に上記回転軸の他端を支持する軸受凹部をそれぞれ形成した電磁駆動装置の構成であって、
これにより2つの半裁状コイル枠を結合する際は筒形状の軸方向の結合面で位置ずれなく合体でき、磁石ロータの回転軸は各半裁状コイル枠に個別に製作されることとなり従来の2つの軸受け凹部を結合することによる食い付き現象がなくなる。以て小型な装置の製作が容易である。
【0010】
請求項2の発明は、前記請求項1の構成において半裁状コイル枠の軸受凹部は結合する他の半裁状コイル枠側に膨出して形成されていることを特徴とするものであり、2つのコイル枠の中心部に軸受け凹部を位置させることが容易となる。特にコイル枠を同一径の筒状に製作する場合外形寸法を基準にその中心に軸受け凹部の位置を割り出すことができ製作が容易である。
【0011】
請求項3の発明は、前記請求項1の構成において、回転軸の両端部は先鋭形状に形成され前記軸受凹部はピボット軸受で構成されたものであるから、磁石ロータはピボット状に支持され円滑な運動が可能であり、同時にこのピボット状軸受凹部は2つの半裁状コイル枠に個別に形成されるためその加工が容易である。
【0012】
請求項4の発明は、前記請求項1乃至3の構成において、コイルを前記2つのコイル枠の上下端面における結合面に対し交差する方向に巻回した構成である。これにより2つの半裁状コイル枠を結合して構成したコイル枠は結合面によって溝が形成されるのに対しこの結合面(溝)に交叉する方向にコイルを卷回することによってコイル線の断線を防止することが出来る。
【0013】
請求項5の発明は、略中空円筒状のコイル枠と、中心に回転軸を有する円筒形状の磁石ロータと、上記コイル枠内に対向して設けられ上記回転軸を回転自在に支持する一対の軸受凹陥溝と、上記回転軸に取付けられ上記磁石ロータの回転をコイル枠の外部に伝達する伝動部材と、
上記コイル枠の外周に巻回されたコイルとを備えた電磁駆動装置において、
上記円筒状のコイル枠を上記磁石ロータの回転軸を介して縦方向左右に分割した2つの半裁状コイル枠を結合して構成し、この2つの半裁状コイル枠の結合面に上記伝動部材をコイル枠外部に突出させる開口を形成すると共に該半裁状コイル枠の一方に上記回転軸の一端を軸承するピボット軸受部を、上記半裁状コイル枠の他方に上記回転軸の他端を軸承するピボット軸受部をそれぞれ形成した電磁駆動装置の構成であって、前記請求項1の発明と同様の結果を得ることが可能となる。
【0014】
請求項6の発明は、光軸開口を有する基板と、この基板に取付けられ上記光軸開口の光量を調整する羽根部材と、上記基板に取付けられた中空筒状のコイル枠と、このコイル枠に回動自在に内蔵され中心に回転軸を有する円筒形状の磁石ロータと、上記回転軸に取付けられ上記磁石ロータの回転を上記羽根部材に伝達する伝動部材と、
上記コイル枠の外周に巻回されたコイルとを備えた光量調整装置において、
上記筒状のコイル枠を上記磁石ロータの回転軸を介して縦方向左右に分割した2つの半裁状コイル枠を結合して構成し、この半裁状コイル枠の一方に上記回転軸の一端を支持する軸受凹部を、上記半裁状コイル枠の他方に上記回転軸の他端を支持する軸受凹部をそれぞれ形成した光量調整装置の構成であって、
これにより磁石ロータを内蔵し外周にコイルを巻回したコイル枠はその製作が容易でより小型に構成することが出来、以ってこれを用いた光量調整装置も小型かつ安価に製作することが可能となる。
【0015】
【発明の実施の形態】
以下、図示の実施の形態に基づいて本発明を詳述する。
図1は本発明に係わる電磁駆動装置の斜視図であり、図2はその組立分解図、図3はコイル枠の上下端面図、図4は図1の中央縦断断面図である。
【0016】
本発明の電磁駆動装置は中空状に形成されたコイル枠1と、このコイル枠1の内部空洞部2に回動自在に軸承された磁石ロータ3と、コイル枠1の外周に巻回されたコイル4と、上記磁石ロータ3に取付けられこの磁石ロータ3の回転を外部に伝達する伝動部材6と、上記コイル枠1の外周を覆うヨーク5とから構成される。
上記コイル枠1は合成樹脂のモールド成形で後述の磁石ロータ3を内蔵する空洞部2と外周にコイルを巻回するコイルの巻代が形成される。
【0017】
図示のコイル枠1は中空円柱形状で軸線(X−X)方向左右に分割した2つの半裁状コイル枠1a,1bを合体することによって構成してある。
このようにコイル枠を分割した2つの半裁状コイル枠1a,1bで構成したのは内部に空洞部2を形成する加工を容易にする為と、磁石ロータ3をこの空洞部2に組込む製作を容易にする為である。
また円柱軸線方向で左右に分割したのは装置の小型化でコイル枠1の径方向を小さくする関係で軸線長手方向で半裁状コイル枠1a,1bを結合して位置ずれを少なくする為である。
【0018】
つまりカメラ装置などのレンズ鏡筒部を小さい径にする為には撮影光軸に位置するシャッター羽根、絞り羽根などの光量調整装置を小径に小型化する必要があり、これらの光量調整装置の駆動装置も撮影光軸から外径方向に極力突出しないように小型化する必要がある。
図示のコイル枠1は外形を4mm直径、軸方向長さを8mmに小型化してあり、コイル枠1を半裁軸方向に分割することによって半裁状コイル枠1a,1bを大きい接合面で合体でき両者の位置ズレを小さくすることが可能である。
【0019】
図示8aは半裁状コイル枠1aの周側壁端縁から成る接合面であり、8bは上下端面の縁部に設けられた接合面であり、同様に他方の半裁状コイル枠1bに形成された接合面と図示8aと9a,8bと9bが互いに接合するように構成されている。
尚図示13は接合面8aに設けた位置決めボス(突起)であり他方の接合面9aにはこれに適合する穴が設けてあり図示14は接合面8aに設けた位置決め穴であり、他方の接合面9aにはこれに適合する突起が設けてある。
【0020】
磁石ロータ3は永久磁石3aとこの永久磁石3aの中心に設けられた回転軸7から構成される。
永久磁石3aは磁性材料を焼結加工で円柱状に成形し、N−S2極に着磁したものを用いている。
この永久磁石3aの着磁方向は図2に示すように円柱状の周側面にN極とS極が180度隔てて対向するように磁化してあり、中央には貫通孔が穿設してあり、この貫通孔に回転軸7が圧入され接着剤で固定してある。
【0021】
この回転軸7は合成樹脂製の棒状部材で形成され両側先端部7a,7bがコイル枠1の空洞部2に形成した軸受凹部(後述)に支持されるようになっている。
そしてこの回転軸7には軸方向と直交する方向に伝動部材6が一体に形成され、この伝動部材6で磁石ロータ3の回転を外部に伝達するよう構成されている。
尚この伝動部材6は回転軸7と樹脂のモールド成形などで一体に形成しても、それぞれ別個に形成した後接着剤、或いは圧入などの方法で一体にしても良い。
【0022】
伝動部材6にはピン6aが植設してあり、このピン6aを後述の光量調整羽根(シャッター羽根、絞り羽根)に係合する。
そこで前記半裁状コイル枠1a,1bには磁石ロータ3を収容する空洞部2と同時にこの磁石ロータ3の回転軸7を軸承する軸受凹部10,11が設けられる。
従来筒状に構成したコイル枠を中心軸線を介して左右縦割りに分割した場合には左右のコイル枠の端面にそれぞれU字状の切欠溝を設け両者を合体して回転軸7を両側から挟むように支持する構造が採られている。しかし最近のコイル枠径を5mm直径以下にした装置にあっては回転軸径が1mm前後となる。この回転軸7を円滑に回転するように左右のU溝を合体して支持することは半裁状コイル枠1a,1bの製作特に各部の寸法制度が加工を困難にしている。
【0023】
このような問題と相俟って軸受部の機械的ロスを少なくする為ピボット軸受構造を採用した場合には従来の構造では製作が不可能になる。
つまり回転軸の先端を先鋭状、例えば60度に鋭らせた場合軸受凹部はこの回転軸に適合する三角錐形状にしなければならずそれぞれ個別に加工した2つの凹溝を合体してこの三角錐形状を加工することは不可能とされている。
【0024】
そこで図示のものは回転軸7の一端7aを軸承する軸受凹部10を第1の半裁状コイル枠1a側に形成し、回転軸7の他端7bを軸承する軸受凹部11を第2の半裁状コイル枠1b側に形成してある。
第2の半裁状コイル枠1bの上端面には膨出部10aが形成してあり、この膨出部10aに貫通孔から成る軸受凹部10が形成してある。他方の第1の半裁状コイル枠1aの上端面には上記膨出部10aに適合する凹陥部11が形成してある。
そして上記第2の半裁コイル枠1bの軸受凹部10に磁石ロータ3の回転軸7の一端7aが支持される。
同様に第1の半裁状コイル枠1aの下端面に膨出部11aと、軸受凹部11が形成してあり、他方の第2の半裁状コイル枠1bの下端面には上記膨出部11aに適合する凹陥部(図示せず)が形成してある。
【0025】
このように回転軸7の一端7aを支持する軸受凹部10を第2の半裁状コイル枠1bに、回転軸7の他端7bを支持する軸受凹部11を他方の第1の半裁状コイル枠1aに形成したのは2つの半裁状コイル枠1a,1bの合体と同時に磁石ロータ3の組込みを容易にする為である。
上記コイル枠1には磁石ロータ3の永久磁石3aの着磁方向(周方向)と直交(必ずしも直交ではなく交差する方向であっても良い)する方向にコイル4が巻回される。
コイル枠1の外周にはコイルの巻回代を形成する凹溝12が設けてある。
【0026】
またコイル枠1の周側面には伝動部材6を外部に突出させる開口15が設けてあり、この開口15は第1の半裁状コイル枠1aの接合面8aを切欠いたスリット状開口15aと第2の半裁状コイル枠1bの接合面9aを切欠いたスリット状開口15bとで形成してある。
【0027】
そこで本発明はコイル枠1の外周にコイル4を巻回する際2つの半裁状コイル枠1a,1bを接合した面に図3に示す溝17が形成され、この溝17はコイル枠1の外周全域に形成される。従来はこの接合によって生じた溝を避けてコイルを巻回しコイル線が溝で断線しないようにしている。
【0028】
従って従来は半裁状コイル枠1a,1bのそれぞれに個別にコイルを巻回し2つのコイルの線端を結線して1つのコイルを形成している為コイル枠1の中央に帯状のコイルを巻回できない接合部が形成される。この接合部によって所定の出力を得る為にはコイル枠径を大きく構成してコイルの巻代を確保しなければならず装置が大型化する原因となっていた。
図示のものは上記接合によって生ずる線状の溝に対し交叉した方向にコイルを巻回することによって断線の恐れなくコイル枠の全域に巻けるようにしてある。
これにより同一径のコイル枠の構成では高出力が得られ同一の出力の装置構成ではコイル枠をより小径にすることができ小型化を達成することが可能である。
【0029】
このように前記凹溝12は半裁状コイル枠1a,1bの接合面と交差(図示のものは直交)する方向でコイル枠1の外周に設けられコイル4が巻回される。
図示5はヨークで軟磁性材のリングに形成されコイル枠1の外周を覆うようにコイル枠1に嵌合され、磁石ロータ3の漏洩磁束をシールドする。
【0030】
次に前述の駆動装置Mを用いた光量調整装置について説明する。
図6はカメラ用絞り装置を示し、図7はカメラ用シャッター装置を示す。
ビデオカメラ、スチールカメラ、デジタルカメラなどの撮影装置にあっては被写体からの光を開放および遮閉して露光時間を制御するシャッター装置或いは被写体からの光量を大小規制して露光量を制御する絞り装置が必要とされている。
【0031】
図6の絞り装置はレンズ鏡筒の撮影光軸Y−Y中に配置され一対の基板20,21間に絞り羽根22,23が組込まれ、この羽根22,23を電磁駆動装置Mで制御するようになっている。
基板20は樹脂のモールド成形で形成され中央に光軸開口24が設けてある。絞り羽根22,23は合成樹脂のフィルム部材で形成され光軸開口24に臨む先端部は図示のような狭窄形状になっていて基板20に形成したガイドリブに沿って図6左右方向に摺動するよう支持されている。図示25は羽根23に設けた長孔で基板20に植設されたピン(図示せず)に嵌合してある。図示26は羽根24に設けた長孔であり基板20のピンに嵌合支持されている。
【0032】
従って羽根23及び羽根24は基板20と基板21の間に図示しないガイドリブと長孔25,26に嵌合したピンとで摺動自在に支持されている。
そして光軸開口24に臨む羽根22の先端22aと羽根23の先端23aとが撮影光量を調整することとなる。
上記羽根22,23を駆動装置Mは前述の磁石ロータ3の伝動部材6は回転軸7に取り付けられアーム部6bが左右両側に突出するように構成されそれぞれに伝動ピン6aが設けてある。従って回動軸7に伝動部材6はT字状に取り付けられ電動部材6のアーム部6bはコイル枠1の周側面から180度隔てた両側に突出し、その先端に係合ピン6aが設けられている。
【0033】
そこで羽根22の基端部には長孔27が、羽根23の基端部には長孔28がそれぞれ設けられ、この長孔27,28に上記伝動部材6の伝動ピン6aが係合するようになっている。
前記電磁駆動装置Mにはコイル枠1と一体にリブ19が該コイル枠1の外周適宜個所に設けてあり、このリブ19を嵌合する取付溝29が基板20に設けてある。従って駆動装置Mは基板20の取付溝29にリブ19を嵌合することによって基板20に取り付けられ、伝動部材6の伝動ピン6aは基板20に形成したスリット30を介して羽根23の長孔27と羽根22の長孔28に嵌合することとなる。
【0034】
上述のように構成された絞り装置は最少絞り位置若しくは最大絞り位置の初期位置(ホームポジション)に磁石ロータ3が位置するように設定され、同時に磁石ロータ3の回転位置を検出するポジションセンサーが設けられている。
初期位置への設定はクローズバネなどのスプリング或いは磁気的吸引手段で常に閉じ方向若しくは開き方向に付勢する方法が採られる。
スプリングによる場合は基板20と伝動部材6との間に巻きバネを設ければ良く、磁気的吸引手段による場合は磁石ロータ3の回動域近傍に軟磁性部材(例えば鉄製ピン)を設けて常に磁石ロータ3を一方向に回転付勢すれば良い。
また磁石ロータ3のポジションセンサーはコイル枠1の空洞部2にホール素子を内蔵し永久磁石3aの磁束を検出するように構成すれば良い。
【0035】
そこでカメラ制御部から所定露光量の設定信号を受けてコイル4に電流を供給する。するとコイル4に生起した磁界で磁石ロータは回転し、回転軸7に取付けた伝動部材6も回転する。この伝動部材6の回転で羽根22と羽根23は反対方向にスライド移動し羽根の先端部22aと23aとが逆方向に移動して光軸Y−Yの通過光量を大小調整することとなる。
磁石ロータ3の回転はホール素子などのポジションセンサーで検知され設定位置に回転するとその位置に保持されるようにコイル4への供給電流が調整される。
【0036】
次に図7に示すシャッター装置について説明する。
前述の絞り装置と同様に撮影光軸Y−Yに一対の基板31,32が配置され、この基板31,32にシャッター羽根34,35と電磁駆動装置M2が組込まれている。
基板31,32は少許の間隙を有する板状部材で形成され、光軸Y−Yを中心に光軸開口33が設けてある。基板31は合成樹脂のモールド成形で製作され、基板32は金属薄板で基板31に押え板として取付けてある。
【0037】
基板31にはプラスチックフィルムで形成した羽根34と35が基端部を基板31に植設したピン36によって支持してある。
そして羽根34,35の先端部は光軸開口33を開閉するようにピン36を中心に互いに反対方向に回転するようになっている。
羽根34,35の基端部には長孔状のスリット37,38が設けられ、このスリット37,38は互いに交差するように傾斜して重なる位置に配置されている。
一方駆動装置M2のコイル枠1にはリブ19がコイル枠外周の適宜個所に設けてあり、このリブ19を嵌合して固定する取付溝40が基板31に設けてある。
【0038】
基板31の取付溝40に取付けられた駆動装置M2は前述の磁石ロータ3の伝動部材6の伝動ピン6aが基板31の長孔39を介して羽根34,35のスリット37,38に係合するようになっている。
尚図示しないが伝動部材6と基板31との間にはコイルスプリングが架け渡してあり、常時羽根34と35を閉じる方向に付勢してある。
そこでカメラ制御部からのタイミング信号を受けてコイル4に直流電流を通電すると、このコイル4に生起された磁界によって磁石ロータ3は所定方向に回転し、伝動部材6も同方向に回転する。
この伝動部材6の回転は伝動ピン6aを介してシャッター羽根34,35に伝えられ、羽根34,35はピン36を中心に反対方向に旋廻し光軸開口33が開放される。
次いでカメラ制御部からの信号を受けてコイル4への通電を断つと羽根34,35はコイルスプリングの付勢力で閉じることとなる。
【0039】
【発明の効果】
本発明は上述の構成から成り、内部に磁石ロータを内蔵し外周にコイルを捲廻するコイル枠を磁石ロータの回転軸を介して左右に分割した2つの半裁状コイル枠で構成し、この左右のコイル枠の一方に磁石ロータの回転軸の一端を支持する軸受凹部を設け、この回転軸の他端を支持する軸受凹部を半裁状のコイル枠の他方に設けることによって、従来の左右コイル枠のそれぞれに形成した切り欠きで軸受する場合に比べ軸受け部に微細な加工を必要とせず、コイル枠の成形が容易である。
これと同時に従来2つのコイル枠の位置ずれによって軸受部で磁石ロータの回転軸に不要な摩擦負荷を及ぼすことがない。
【図面の簡単な説明】
【図1】本発明に係わる電磁駆動装置の実施の一形態を示す斜視図である。
【図2】図1の電磁駆動装置の組み立て分解斜視図である。
【図3】図1の電磁駆動装置のコイル枠の端面図である。
【図4】本発明に係わる電磁駆動装置の縦断断面図である。
【図5】本発明に係わる光量調整装置(絞り装置)を示す一部を分解した斜視図である。
【図6】本発明に係わる光量調整装置(シャツター装置)を示す一部を分解した斜視図である。
【符号の説明】
M,M2 電磁駆動装置
1 コイル枠
1a,1b 半裁状コイル枠
3 磁石口一タ
4 コイル
5 ヨーク
6 伝動アーム
7 回転軸
8a,9a 結合面
10,11 軸受け凹部
15 開口
31,32 シャッ夕装置の基板
20,21 絞り装置の基板
34,35シャッ夕羽根(羽根部材)
22,23 絞り羽根(羽根部材)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electromagnetic drive device that rotatably accommodates a magnet rotor made of a permanent magnet in a coil frame having a coil wound around its outer periphery, and rotates the magnet rotor by applying a DC current to the coil, and this magnet rotor. The present invention relates to a light amount adjusting device that adjusts the light amount of an optical imaging device with a rotational force generated in the optical device.
[0002]
[Prior art]
[Patent Document 1] Japanese Utility Model Registration No. 2606159 Generally, an optical imaging device such as a video camera or a still camera has a shutter blade that blocks light in a lens barrel in which an imaging lens is incorporated, or a diaphragm that adjusts the amount of imaged light. The amount of light is controlled by arranging the blades. These blade members are rotatably or slidably incorporated in the imaging optical axis in the lens barrel, and are driven and controlled by an electromagnetic driving device.
[0003]
In this electromagnetic drive device, a magnet rotor is rotatably housed in a coil frame around which a conductive coil is wound on the outer periphery, and the rotation of the magnet rotor is transmitted to a blade member to open / close the imaging optical axis or to increase or decrease the opening diameter. Adjustments are made. In other words, a structure is widely adopted in which a magnet rotor is magnetized with N-S2 poles and a rotor is rotated by a magnetic field generated in the coil by passing a DC current through a coil wound therearound.
[0004]
Therefore, this electromagnetic drive device manufactures a hollow cylindrical coil frame from resin or the like, and rotatably supports and houses a magnet rotor integrally provided with a rotating shaft inside the coil frame, and a blade member from the rotating shaft. The transmission arm is configured to transmit the torque.
Therefore, the coil frame is divided into two parts so as to incorporate the magnet rotor therein. After the rotor is housed inside, the two are united and the coil is wound around the outer periphery.
The coil frame may be divided into two parts vertically divided into left and right via the rotation axis of the magnet rotor, and two parts divided vertically and horizontally into the direction perpendicular to the rotation axis to Sakai. ing.
[0005]
In the former vertically split structure, even if the diameter of the coil frame is reduced due to the miniaturization of the device, the two half-cut coil frames are combined (coupled) in the vertical direction, which is usually the longitudinal direction. And the magnet rotor can be easily incorporated into the interior.
However, when the rotating shaft of such a magnet rotor is vertically divided into left and right sides in Sakai, there is a problem in molding the bearing portion.
Conventionally, as proposed in the above-mentioned Patent Document 1, a bearing recess is formed in each of the half-cut coil frames, and the two are united to support the rotary shaft as a bearing.
[0006]
[Problems to be solved by the invention]
As described above, the recesses for bearings are formed in each of the half-cut coil frames, and when the two coil frames are combined to support the rotating shaft of the magnet rotor, a positional deviation occurs when the two recesses are combined with the processing accuracy of the two recesses. Occurs, smooth movement of the magnet rotor cannot be obtained.
In particular, with the recent miniaturization of the equipment, the rotating shaft of the rotor has a diameter of about 1 mm, and the bearing needs to be finely machined. Also, due to power consumption, the bearing of the rotating shaft suffers from mechanical loss such as frictional force. Less structure is required.
[0007]
SUMMARY OF THE INVENTION Accordingly, it is a main object of the present invention to provide an electromagnetic drive device that can easily process a coil frame having a built-in magnet rotor and that can produce smooth motion with little mechanical loss in a bearing portion of a rotating shaft.
[0008]
[Means for Solving the Problems]
SUMMARY OF THE INVENTION In order to solve the above-described problems, the present invention is configured such that when forming a coil frame by combining two half-cut coil frames, a bearing recess supporting one end of a rotating shaft of a magnet rotor is provided on one of the half-cut coil frames. This is based on the knowledge that a bearing recess for supporting the other end of the rotating shaft is provided in the other half of the coil frame.
[0009]
The invention according to claim 1 is a hollow cylindrical coil frame, a cylindrical magnet rotor rotatably built in the coil frame and having a rotation axis at the center, and a rotation of the magnet rotor attached to the rotation axis. A transmission member for outputting to the outside of the coil frame, and a coil wound around the outer periphery of the coil frame, wherein the cylindrical coil frame is divided into left and right parts in the vertical direction via the rotation shaft of the magnet rotor. A bearing recess for supporting one end of the rotary shaft on one side of the half-shaped coil frame, and a bearing recess for supporting the other end of the rotary shaft on the other side of the half-shaped coil frame. The configuration of the electromagnetic drive device formed respectively,
As a result, when the two half-cut coil frames are connected, they can be combined without displacement at the cylindrical connecting surface in the axial direction, and the rotating shaft of the magnet rotor is manufactured separately for each half-cut coil frame. The biting phenomenon caused by joining the two bearing recesses is eliminated. Thus, it is easy to manufacture a small device.
[0010]
According to a second aspect of the present invention, in the configuration of the first aspect, the bearing concave portion of the half-cut coil frame is formed so as to bulge toward the other half-cut coil frame to be joined. It is easy to locate the bearing recess at the center of the coil frame. In particular, when the coil frame is manufactured in a cylindrical shape having the same diameter, the position of the bearing recess can be determined at the center thereof based on the outer dimensions, which facilitates manufacture.
[0011]
According to a third aspect of the present invention, in the configuration of the first aspect, both ends of the rotating shaft are formed in a sharpened shape, and the bearing concave portion is constituted by a pivot bearing, so that the magnet rotor is supported in a pivotal shape and smoothly. Movement is possible, and at the same time, the pivot-shaped bearing recess is formed separately in the two half-cut coil frames, so that the machining is easy.
[0012]
According to a fourth aspect of the present invention, in the configuration of the first to third aspects, the coil is wound in a direction intersecting a coupling surface between upper and lower end surfaces of the two coil frames. Thus, the coil frame formed by joining the two half-cut coil frames has a groove formed by the coupling surface, whereas the coil is wound in a direction crossing the coupling surface (groove) to break the coil wire. Can be prevented.
[0013]
According to a fifth aspect of the present invention, there is provided a substantially hollow cylindrical coil frame, a cylindrical magnet rotor having a rotation axis at the center, and a pair of opposed magnets provided in the coil frame to rotatably support the rotation axis. A bearing recess groove, a transmission member attached to the rotation shaft and transmitting the rotation of the magnet rotor to the outside of the coil frame;
An electromagnetic drive device comprising: a coil wound around the outer periphery of the coil frame;
The cylindrical coil frame is formed by joining two half-cut coil frames divided into left and right in the vertical direction via the rotation shaft of the magnet rotor, and the transmission member is provided on a joint surface of the two half-cut coil frames. A pivot bearing for forming an opening projecting out of the coil frame and for supporting one end of the rotary shaft on one of the half-shaped coil frames and a pivot bearing for the other end of the rotary shaft on the other of the half-shaped coil frames; With the configuration of the electromagnetic drive device in which the bearings are formed, it is possible to obtain the same result as the first aspect of the present invention.
[0014]
According to a sixth aspect of the present invention, there is provided a substrate having an optical axis opening, a blade member attached to the substrate for adjusting the light amount of the optical axis opening, a hollow cylindrical coil frame attached to the substrate, and the coil frame. A cylindrical magnet rotor rotatably built in and having a rotation axis at the center, a transmission member attached to the rotation shaft and transmitting the rotation of the magnet rotor to the blade member,
In a light quantity adjusting device including a coil wound around the outer periphery of the coil frame,
One end of the rotating shaft is supported on one of the half-cut coil frames by combining the two half-cut coil frames obtained by dividing the cylindrical coil frame into left and right parts in the vertical direction via the rotation shaft of the magnet rotor. Bearing recess to be formed, the configuration of the light amount adjusting device in which the bearing recess for supporting the other end of the rotary shaft is formed in the other half of the half-shaped coil frame,
As a result, a coil frame having a built-in magnet rotor and a coil wound around the outer periphery is easy to manufacture and can be made more compact, so that a light amount adjusting device using this can be made smaller and less expensive. It becomes possible.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail based on the illustrated embodiments.
FIG. 1 is a perspective view of an electromagnetic drive device according to the present invention, FIG. 2 is an exploded view thereof, FIG. 3 is a top and bottom view of a coil frame, and FIG.
[0016]
The electromagnetic drive device of the present invention is wound around a coil frame 1 formed in a hollow shape, a magnet rotor 3 rotatably supported in an internal cavity 2 of the coil frame 1, and an outer periphery of the coil frame 1. It comprises a coil 4, a transmission member 6 attached to the magnet rotor 3 for transmitting the rotation of the magnet rotor 3 to the outside, and a yoke 5 covering the outer periphery of the coil frame 1.
The coil frame 1 is formed by molding a synthetic resin to form a hollow portion 2 in which a magnet rotor 3 described later is built and a winding margin for winding the coil around the outer periphery.
[0017]
The illustrated coil frame 1 is formed by combining two half-cut coil frames 1a and 1b each having a hollow cylindrical shape and divided into left and right directions along an axis (XX).
The two half-cut coil frames 1a and 1b obtained by dividing the coil frame in this manner are intended to facilitate the processing for forming the hollow portion 2 therein and to manufacture the magnet rotor 3 into the hollow portion 2. This is to make it easier.
The reason why the coil frame 1 is divided right and left in the axial direction is to reduce the displacement by connecting the half-cut coil frames 1a and 1b in the longitudinal direction of the axis in order to reduce the radial direction of the coil frame 1 by downsizing the apparatus. .
[0018]
In other words, in order to reduce the lens barrel of a camera device or the like to a small diameter, it is necessary to reduce the size of light quantity adjusting devices such as shutter blades and aperture blades located on the photographing optical axis to a small diameter. The device also needs to be miniaturized so that it does not protrude as much as possible in the radial direction from the photographing optical axis.
The illustrated coil frame 1 is reduced in size to an outer diameter of 4 mm and an axial length of 8 mm. By dividing the coil frame 1 in a half axial direction, the half-cut coil frames 1a and 1b can be combined with a large joining surface. Can be reduced.
[0019]
8a is a joint surface formed by the peripheral edge of the peripheral wall of the half-cut coil frame 1a, and 8b is a joint surface provided on the edge of the upper and lower end surfaces. Similarly, the joint surface formed on the other half-cut coil frame 1b is formed. The surfaces and the illustrations 8a and 9a, 8b and 9b are configured to be joined to each other.
It should be noted that FIG. 13 shows a positioning boss (projection) provided on the joining surface 8a, and a hole adapted to this is provided on the other joining surface 9a, and FIG. 14 shows a positioning hole provided on the joining surface 8a. The surface 9a is provided with a projection adapted to this.
[0020]
The magnet rotor 3 includes a permanent magnet 3a and a rotating shaft 7 provided at the center of the permanent magnet 3a.
The permanent magnet 3a is formed by molding a magnetic material into a cylindrical shape by sintering and magnetizing the NS poles.
As shown in FIG. 2, the magnetizing direction of the permanent magnet 3a is magnetized so that the N-pole and the S-pole oppose each other on the circumferential surface of the column at an interval of 180 degrees, and a through hole is formed in the center. The rotary shaft 7 is press-fitted into this through hole and fixed with an adhesive.
[0021]
The rotating shaft 7 is formed of a synthetic resin rod-shaped member, and both end portions 7a and 7b are supported by bearing recesses (described later) formed in the hollow portion 2 of the coil frame 1.
A transmission member 6 is formed integrally with the rotating shaft 7 in a direction perpendicular to the axial direction, and the transmission member 6 is configured to transmit the rotation of the magnet rotor 3 to the outside.
The transmission member 6 may be formed integrally with the rotating shaft 7 by molding a resin or the like, or may be formed separately and then integrated with an adhesive or a press-fitting method.
[0022]
A pin 6a is implanted in the transmission member 6, and the pin 6a is engaged with a light amount adjusting blade (shutter blade, aperture blade) described later.
The half-cut coil frames 1a and 1b are provided with bearing recesses 10 and 11 for bearing the rotary shaft 7 of the magnet rotor 3 at the same time as the cavity 2 for housing the magnet rotor 3.
In the case where a conventional cylindrical coil frame is divided vertically into left and right via a central axis, U-shaped cutout grooves are respectively provided on the end faces of the left and right coil frames, and both are united to rotate the rotary shaft 7 from both sides. The structure which supports so that it may be pinched is employ | adopted. However, in a recent apparatus in which the diameter of the coil frame is reduced to 5 mm or less, the diameter of the rotating shaft is about 1 mm. Combining and supporting the left and right U-grooves so that the rotary shaft 7 rotates smoothly makes the production of the half-cut coil frames 1a and 1b difficult, especially the dimensional accuracy of each part.
[0023]
In combination with such a problem, if a pivot bearing structure is employed to reduce the mechanical loss of the bearing portion, it becomes impossible to manufacture with a conventional structure.
In other words, when the tip of the rotating shaft is sharpened, for example, at 60 degrees, the bearing recess must be formed in a triangular pyramid shape suitable for this rotating shaft. It is considered impossible to machine the conical shape.
[0024]
Therefore, in the illustrated embodiment, a bearing recess 10 for bearing one end 7a of the rotating shaft 7 is formed on the first half-cut coil frame 1a side, and a bearing recess 11 for bearing the other end 7b of the rotating shaft 7 is formed in a second half-shape. It is formed on the coil frame 1b side.
A swelling portion 10a is formed on the upper end surface of the second half-shaped coil frame 1b, and a bearing recess 10 having a through hole is formed in the swelling portion 10a. On the upper end surface of the other first half-cut coil frame 1a, a concave portion 11 that fits the bulging portion 10a is formed.
One end 7a of the rotating shaft 7 of the magnet rotor 3 is supported by the bearing recess 10 of the second half coil frame 1b.
Similarly, a bulged portion 11a and a bearing recess 11 are formed on the lower end surface of the first half-shaped coil frame 1a, and the bulged portion 11a is formed on the lower end surface of the other second half-shaped coil frame 1b. A matching recess (not shown) has been formed.
[0025]
Thus, the bearing recess 10 supporting one end 7a of the rotating shaft 7 is provided in the second half-cut coil frame 1b, and the bearing recess 11 supporting the other end 7b of the rotating shaft 7 is provided in the other first half-cut coil frame 1a. The reason for this is to facilitate the assembly of the magnet rotor 3 at the same time as the two half-cut coil frames 1a and 1b are combined.
A coil 4 is wound around the coil frame 1 in a direction orthogonal to (not necessarily orthogonal to, but intersecting with) the magnetizing direction (circumferential direction) of the permanent magnet 3a of the magnet rotor 3.
The outer periphery of the coil frame 1 is provided with a concave groove 12 for forming a winding margin of the coil.
[0026]
An opening 15 for projecting the transmission member 6 to the outside is provided on the peripheral side surface of the coil frame 1. The joining surface 9a of the half-cut coil frame 1b is formed by a notched slit-shaped opening 15b.
[0027]
Therefore, according to the present invention, when the coil 4 is wound around the outer periphery of the coil frame 1, a groove 17 shown in FIG. 3 is formed on the surface where the two half-cut coil frames 1 a and 1 b are joined. It is formed in the whole area. Conventionally, the coil is wound so as to avoid the groove generated by this joining so that the coil wire is not broken by the groove.
[0028]
Therefore, conventionally, a coil is individually wound around each of the half-cut coil frames 1a and 1b and one coil is formed by connecting the wire ends of the two coils. Therefore, a band-shaped coil is wound around the center of the coil frame 1. Impossible joints are formed. In order to obtain a predetermined output by this joint portion, the diameter of the coil frame must be configured to be large to secure the winding allowance of the coil, causing an increase in the size of the device.
In the illustrated embodiment, the coil is wound in the direction crossing the linear groove formed by the above-described joining, so that the coil can be wound over the entire area of the coil frame without fear of disconnection.
As a result, a high output can be obtained with the configuration of the coil frame having the same diameter, and the diameter of the coil frame can be made smaller with the device configuration having the same output, thereby achieving downsizing.
[0029]
As described above, the concave groove 12 is provided on the outer periphery of the coil frame 1 in a direction intersecting (in the drawing, perpendicular to) the joining surface of the half-cut coil frames 1a and 1b, and the coil 4 is wound.
In FIG. 5, a yoke is formed in a ring of a soft magnetic material and is fitted to the coil frame 1 so as to cover the outer periphery of the coil frame 1, and shields the magnetic flux leaking from the magnet rotor 3.
[0030]
Next, a light amount adjusting device using the above-described driving device M will be described.
FIG. 6 shows a camera aperture device, and FIG. 7 shows a camera shutter device.
In a photographing device such as a video camera, a still camera, and a digital camera, a shutter device that controls exposure time by opening and closing light from a subject or an aperture that controls exposure amount by regulating the amount of light from the subject. A device is needed.
[0031]
The diaphragm device shown in FIG. 6 is arranged in the photographing optical axis Y-Y of the lens barrel, and diaphragm blades 22 and 23 are incorporated between a pair of substrates 20 and 21, and the blades 22 and 23 are controlled by an electromagnetic driving device M. It has become.
The substrate 20 is formed by resin molding, and has an optical axis opening 24 at the center. The aperture blades 22 and 23 are formed of a synthetic resin film member, and the distal end portion facing the optical axis opening 24 has a constricted shape as shown in the drawing, and slides in the left-right direction in FIG. It is supported as follows. In FIG. 25, a long hole provided in the blade 23 is fitted to a pin (not shown) planted on the substrate 20. Reference numeral 26 denotes an elongated hole provided in the blade 24, which is fitted and supported by a pin of the substrate 20.
[0032]
Therefore, the blades 23 and 24 are slidably supported between the substrate 20 and the substrate 21 by guide ribs (not shown) and pins fitted in the elongated holes 25 and 26.
Then, the leading end 22a of the blade 22 and the leading end 23a of the blade 23 facing the optical axis opening 24 adjust the amount of photographing light.
The driving device M of the blades 22 and 23 is configured such that the transmission member 6 of the magnet rotor 3 is attached to the rotating shaft 7 so that the arm portions 6b protrude to the left and right sides, and each has a transmission pin 6a. Therefore, the transmission member 6 is attached to the rotating shaft 7 in a T-shape, the arm portion 6b of the electric member 6 protrudes from both sides 180 degrees away from the peripheral side surface of the coil frame 1, and an engagement pin 6a is provided at the tip thereof. I have.
[0033]
Therefore, a long hole 27 is provided at the base end of the blade 22, and a long hole 28 is provided at the base end of the blade 23, and the transmission pin 6 a of the transmission member 6 is engaged with the long holes 27 and 28. It has become.
In the electromagnetic driving device M, a rib 19 is provided integrally with the coil frame 1 at an appropriate position on the outer periphery of the coil frame 1, and a mounting groove 29 for fitting the rib 19 is provided in the substrate 20. Accordingly, the driving device M is mounted on the substrate 20 by fitting the rib 19 into the mounting groove 29 of the substrate 20, and the transmission pin 6 a of the transmission member 6 is connected to the elongated hole 27 of the blade 23 through the slit 30 formed in the substrate 20. And the blade 22 is fitted into the long hole 28.
[0034]
The aperture device configured as described above is set so that the magnet rotor 3 is located at the initial position (home position) of the minimum aperture position or the maximum aperture position, and is provided with a position sensor that detects the rotational position of the magnet rotor 3 at the same time. Have been.
For setting to the initial position, a method of always biasing in the closing direction or the opening direction by a spring such as a close spring or a magnetic attraction means is adopted.
In the case of using a spring, a winding spring may be provided between the substrate 20 and the transmission member 6, and in the case of using a magnetic attraction means, a soft magnetic member (for example, an iron pin) is provided near the rotation region of the magnet rotor 3 and always. What is necessary is just to urge the magnet rotor 3 to rotate in one direction.
Further, the position sensor of the magnet rotor 3 may be configured such that a Hall element is incorporated in the cavity 2 of the coil frame 1 so as to detect the magnetic flux of the permanent magnet 3a.
[0035]
Therefore, a current is supplied to the coil 4 upon receiving a setting signal of a predetermined exposure amount from the camera control unit. Then, the magnet rotor rotates by the magnetic field generated in the coil 4, and the transmission member 6 attached to the rotating shaft 7 also rotates. By the rotation of the transmission member 6, the blade 22 and the blade 23 slide in the opposite direction, and the tip portions 22a and 23a of the blade move in the opposite direction to adjust the amount of light passing through the optical axis Y-Y.
The rotation of the magnet rotor 3 is detected by a position sensor such as a Hall element, and the current supplied to the coil 4 is adjusted so that when the magnet rotor 3 rotates to a set position, it is held at that position.
[0036]
Next, the shutter device shown in FIG. 7 will be described.
A pair of substrates 31, 32 are arranged on the photographing optical axis YY similarly to the above-described diaphragm device, and shutter blades 34, 35 and an electromagnetic driving device M2 are incorporated in the substrates 31, 32.
The substrates 31 and 32 are formed of plate members having a small gap, and an optical axis opening 33 is provided around the optical axis Y-Y. The substrate 31 is manufactured by molding a synthetic resin, and the substrate 32 is a thin metal plate attached to the substrate 31 as a holding plate.
[0037]
On the substrate 31, vanes 34 and 35 formed of a plastic film are supported at their base ends by pins 36 implanted in the substrate 31.
The tips of the blades 34 and 35 rotate in opposite directions about the pin 36 so as to open and close the optical axis opening 33.
Elongated slits 37, 38 are provided at the base end portions of the blades 34, 35, and the slits 37, 38 are arranged at inclined and overlapping positions so as to cross each other.
On the other hand, ribs 19 are provided on the coil frame 1 of the driving device M2 at appropriate locations on the outer periphery of the coil frame, and mounting grooves 40 for fitting and fixing the ribs 19 are provided on the substrate 31.
[0038]
In the driving device M2 mounted in the mounting groove 40 of the substrate 31, the transmission pin 6a of the transmission member 6 of the magnet rotor 3 engages with the slits 37, 38 of the blades 34, 35 via the elongated hole 39 of the substrate 31. It has become.
Although not shown, a coil spring is bridged between the transmission member 6 and the substrate 31 and constantly urges the blades 34 and 35 in the closing direction.
Then, when a DC current is applied to the coil 4 in response to a timing signal from the camera control unit, the magnetic field generated in the coil 4 causes the magnet rotor 3 to rotate in a predetermined direction and the transmission member 6 to rotate in the same direction.
The rotation of the transmission member 6 is transmitted to the shutter blades 34 and 35 via the transmission pin 6a, and the blades 34 and 35 rotate around the pin 36 in the opposite direction to open the optical axis opening 33.
Next, when the energization of the coil 4 is cut off in response to a signal from the camera control unit, the blades 34 and 35 are closed by the urging force of the coil spring.
[0039]
【The invention's effect】
The present invention has the above-described configuration, and comprises a coil frame in which a magnet rotor is incorporated and a coil is wound around the outer periphery of the coil frame which is divided into right and left via a rotation shaft of the magnet rotor. By providing a bearing recess for supporting one end of the rotating shaft of the magnet rotor in one of the coil frames, and providing a bearing recess for supporting the other end of the rotating shaft in the other of the half-cut coil frame, the conventional left and right coil frames are provided. As compared with the case where the bearing is formed by the notch formed in each of the above, fine processing is not required for the bearing portion, and the coil frame can be easily formed.
At the same time, no unnecessary frictional load is applied to the rotating shaft of the magnet rotor at the bearing due to the displacement between the two conventional coil frames.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an embodiment of an electromagnetic drive device according to the present invention.
FIG. 2 is an exploded perspective view of the electromagnetic driving device of FIG. 1;
FIG. 3 is an end view of a coil frame of the electromagnetic drive device of FIG. 1;
FIG. 4 is a longitudinal sectional view of the electromagnetic drive device according to the present invention.
FIG. 5 is a partially exploded perspective view showing a light amount adjusting device (aperture device) according to the present invention.
FIG. 6 is a partially exploded perspective view showing a light amount adjusting device (shirt device) according to the present invention.
[Explanation of symbols]
M, M2 Electromagnetic drive device 1 Coil frame 1a, 1b Half-cut coil frame 3 Magnet opening 4 Coil 5 Yoke 6 Transmission arm 7 Rotating shaft 8a, 9a Coupling surface 10, 11 Bearing recess 15 Opening 31, 32 Shut-down device Substrates 20, 21 Substrates 34, 35 of diaphragm device Shuttle blade (blade member)
22, 23 diaphragm blades (blade members)

Claims (6)

中空筒状のコイル枠と、
このコイル枠に回動自在に内蔵され中心に回転軸を有する円筒形状の磁石ロータと、
上記回転軸に取付けられ上記磁石ロータの回転をコイル枠の外部に出力する伝動部材と、
上記コイル枠の外周に巻回されたコイルとを備え、上記筒状のコイル枠を上記磁石ロータの回転軸を介して縦方向左右に分割した2つの半裁状コイル枠を結合して構成し、この半裁状コイル枠の一方に上記回転軸の一端を支持する軸受凹部を、上記半裁状コイル枠の他方に上記回転軸の他端を支持する軸受凹部をそれぞれ形成したことを特徴とする電磁駆動装置。
A hollow cylindrical coil frame,
A cylindrical magnet rotor rotatably incorporated in the coil frame and having a rotation axis at the center,
A transmission member attached to the rotating shaft and outputting the rotation of the magnet rotor to the outside of the coil frame;
A coil wound around the outer periphery of the coil frame, wherein the cylindrical coil frame is formed by combining two half-cut coil frames divided into left and right in the vertical direction via a rotation shaft of the magnet rotor, An electromagnetic drive, wherein a bearing recess for supporting one end of the rotary shaft is formed on one side of the half-cut coil frame, and a bearing recess for supporting the other end of the rotary shaft is formed on the other side of the half-cut coil frame. apparatus.
前記半裁状コイル枠の軸受凹部は結合する他の半裁状コイル枠側に膨出して形成されていることを特徴とする請求項1記載の電磁駆動装置。2. The electromagnetic drive device according to claim 1, wherein the bearing recess of the half-cut coil frame is formed so as to bulge toward the other half-cut coil frame to be joined. 前記回転軸の両端部は先鋭形状に形成され前記軸受凹部はピボット軸受で構成された請求項1記載の電磁駆動装置。2. The electromagnetic drive device according to claim 1, wherein both ends of the rotating shaft are formed in a sharp shape, and the bearing recess is formed of a pivot bearing. 前記コイルを前記2つのコイル枠の上下端面における結合面に対し交差する方向に巻回したことを特徴とする請求項1乃至3記載の電磁駆動装置。The electromagnetic drive device according to claim 1, wherein the coil is wound in a direction intersecting a coupling surface between upper and lower end surfaces of the two coil frames. 略中空円筒状のコイル枠と、
中心に回転軸を有する円筒形状の磁石ロータと、
上記コイル枠内に対向して設けられ上記回転軸を回転自在に支持する一対の軸受凹陥溝と、
上記回転軸に取付けられ上記磁石ロータの回転をコイル枠の外部に伝達する伝動部材と、
上記コイル枠の外周に巻回されたコイルとを備えた電磁駆動装置において、
上記円筒状のコイル枠を上記磁石ロータの回転軸を介して縦方向左右に分割した2つの半裁状コイル枠を結合して構成し、
この2つの半裁状コイル枠の結合面に上記伝動部材をコイル枠外部に突出させる開口を形成すると共に、
該半裁状コイル枠の一方に上記回転軸の一端を軸承するピボット軸受部を、上記半裁状コイル枠の他方に上記回転軸の他端を軸承するピボット軸受部をそれぞれ形成したことを特徴とする電磁駆動装置。
A substantially hollow cylindrical coil frame;
A cylindrical magnet rotor having a rotation axis at the center,
A pair of bearing recessed grooves provided in the coil frame so as to face each other and rotatably supporting the rotating shaft,
A transmission member attached to the rotation shaft and transmitting the rotation of the magnet rotor to the outside of the coil frame;
An electromagnetic drive device comprising: a coil wound around the outer periphery of the coil frame;
The cylindrical coil frame is formed by combining two half-cut coil frames obtained by dividing the cylindrical coil frame into left and right directions in the vertical direction via the rotation shaft of the magnet rotor,
An opening for projecting the transmission member to the outside of the coil frame is formed in a coupling surface of the two half-shaped coil frames,
A pivot bearing portion for bearing one end of the rotary shaft is formed on one of the half-shaped coil frames, and a pivot bearing portion for bearing the other end of the rotary shaft is formed on the other of the half-shaped coil frame. Electromagnetic drive.
光軸開口を有する基板と、
この基板に取付けられ上記光軸開口の光量を調整する羽根部材と、
上記基板に取付けられた中空筒状のコイル枠と、
このコイル枠に回動自在に内蔵され中心に回転軸を有する円筒形状の磁石ロータと、
上記回転軸に取付けられ上記磁石ロータの回転を上記羽根部材に伝達する伝動部材と、
上記コイル枠の外周に巻回されたコイルとを備えた光量調整装置において、
上記筒状のコイル枠を上記磁石ロータの回転軸を介して縦方向左右に分割した2つの半裁状コイル枠を結合して構成し、
この半裁状コイル枠の一方に上記回転軸の一端を支持する軸受凹部を、上記半裁状コイル枠の他方に上記回転軸の他端を支持する軸受凹部をそれぞれ形成したことを特徴とする光量調整装置。
A substrate having an optical axis opening;
A blade member attached to the substrate for adjusting the light amount of the optical axis opening;
A hollow cylindrical coil frame attached to the substrate,
A cylindrical magnet rotor rotatably incorporated in the coil frame and having a rotation axis at the center,
A transmission member attached to the rotation shaft and transmitting the rotation of the magnet rotor to the blade member;
In a light quantity adjusting device including a coil wound around the outer periphery of the coil frame,
The cylindrical coil frame is formed by combining two half-cut coil frames which are divided into left and right in the vertical direction via the rotation shaft of the magnet rotor,
The light amount adjustment is characterized in that a bearing recess for supporting one end of the rotary shaft is formed on one side of the half-shaped coil frame, and a bearing recess for supporting the other end of the rotary shaft is formed on the other side of the half-shaped coil frame. apparatus.
JP2003132022A 2003-05-09 2003-05-09 Electromagnetic driving device and light quantity adjusting device using the same Pending JP2004334039A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003132022A JP2004334039A (en) 2003-05-09 2003-05-09 Electromagnetic driving device and light quantity adjusting device using the same
US10/800,640 US6960848B2 (en) 2003-05-09 2004-03-16 Electromagnetic drive device and light quantity adjustment device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003132022A JP2004334039A (en) 2003-05-09 2003-05-09 Electromagnetic driving device and light quantity adjusting device using the same

Publications (1)

Publication Number Publication Date
JP2004334039A true JP2004334039A (en) 2004-11-25

Family

ID=33507045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003132022A Pending JP2004334039A (en) 2003-05-09 2003-05-09 Electromagnetic driving device and light quantity adjusting device using the same

Country Status (1)

Country Link
JP (1) JP2004334039A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006340445A (en) * 2005-05-31 2006-12-14 Nisca Corp Method of manufacturing magnet rotor and magnet rotor manufactured by this method, and electromagnetic drive unit using this magnet rotor and luminous energy adjuster

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006340445A (en) * 2005-05-31 2006-12-14 Nisca Corp Method of manufacturing magnet rotor and magnet rotor manufactured by this method, and electromagnetic drive unit using this magnet rotor and luminous energy adjuster
JP4588540B2 (en) * 2005-05-31 2010-12-01 ニスカ株式会社 Manufacturing method of magnet rotor, magnet rotor made by this manufacturing method, electromagnetic drive device using this magnet rotor, and light quantity adjusting device

Similar Documents

Publication Publication Date Title
US6960848B2 (en) Electromagnetic drive device and light quantity adjustment device using the same
JP4189412B2 (en) Electromagnetic drive device and light amount adjustment device using the same
KR20180105970A (en) Iris apparatus
JP2006333606A (en) Electromagnetic drive device and light quantity adjusting device therewith
US7960876B2 (en) Magnet rotor, electromagnetic drive device and light quantity adjustment device using the magnet rotor
JP4002735B2 (en) Light quantity control device and electromagnetic drive device
JP3963900B2 (en) Electromagnetic drive device and light amount adjusting device using the same
JP2004334039A (en) Electromagnetic driving device and light quantity adjusting device using the same
JP3975179B2 (en) Electromagnetic drive device and light amount adjustment device using the same
JP4549196B2 (en) Camera blade drive
JP2016061985A (en) Magnetic driving device and imaging apparatus
JP3683325B2 (en) Pulse motor for camera drive
JP5065933B2 (en) Electromagnetic actuator
JP3675557B2 (en) Pulse motor for camera drive
JP3963901B2 (en) Light control device
JP2004151743A (en) Method of manufacturing light quantity adjusting device
JP2004334038A (en) Electromagnetic driving device and light quantity adjusting device using the same
JP2006296142A (en) Electromagnetic drive and quantity-of-light control device having the same
JP2004153966A (en) Actuator
JP3569607B2 (en) Light control device
JP2512802Y2 (en) Motor
JPH02140727A (en) Electromagnetic-driven stop adjusting device
JP2006154211A (en) Electromagnetic driven device and light quantity control device equipped with the same
JP2589078Y2 (en) Driving device for lens shutter for camera
JP2006243138A (en) Vane drive device for camera

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060320

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20080521

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20080603

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081106