JP2004333165A - Ultrasonic measuring apparatus using optical fiber - Google Patents
Ultrasonic measuring apparatus using optical fiber Download PDFInfo
- Publication number
- JP2004333165A JP2004333165A JP2003125542A JP2003125542A JP2004333165A JP 2004333165 A JP2004333165 A JP 2004333165A JP 2003125542 A JP2003125542 A JP 2003125542A JP 2003125542 A JP2003125542 A JP 2003125542A JP 2004333165 A JP2004333165 A JP 2004333165A
- Authority
- JP
- Japan
- Prior art keywords
- optical fiber
- doppler shift
- ultrasonic
- frequency
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Instruments For Measurement Of Length By Optical Means (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、ドプラ偏移効果を利用して各種超音波を測るための装置に関するもので、より詳しくは効率が高く、かつ小型で、外からの振動にも影響されず、特別な光学素子の調整作業が不要で、振動のある厳しい環境でも適用できる光ファイバーを利用した超音波測定装置に関するものである。
【0002】
【従来の技術】
一般に、超音波を測るには、図1に示したようなドプラ偏移測定干渉計(Fabry−Perot interferometer)(100)を利用している。前記ドプラ偏移測定干渉計(Fabry−Perot interferometer)(100)においては、一方からレーザビームを測定対象(101)の表面に照射すると、測定対象(101)から生ずる超音波により測定対象の表面が振動するが、この測定対象の表面振動により、レーザ散乱光の周波数が、いわゆるドプラ偏移という作用により周波数偏移が生じ、このレーザ光の周波数偏移量を測定することにより、測定対象の超音波を測るものである。
【0003】
このようなドプラ偏移の測定に使われるドプラ偏移干渉計(100)は、測定対象に対してレーザビームを照射した後、それから生ずる超音波(103)により、周波数偏移されたレーザ散乱光を集光するための集光レンズ(104)と、一定の反射率を有する2個の球面のミラー(105)、(106)とからなる。
【0004】
前記集光レンズ(104)を通した光の強さは、2個の球面のミラー(105)、(106)の間の距離(L)と、球面ミラー(105)、(106)反射率及び、光の周波数によって決められる。また、集光レンズ(104)に入射する散乱光は、超音波によりその周波数が変わり、それに応じて光の強さが変わるので、前記ドプラ偏移干渉計 (100)は、この散乱光の強さを光検出器(107)で測ることにより超音波の測定が可能である。
【0005】
しかしながら、安定的な超音波の測定のためには、干渉計(100)の内部で光が同一の経路で球面ミラー(105)、(106)間で絶え間なく多重反射し続けなければならないので、前記球面ミラー(105)、(106)の平行性は、精密に調整されていなければならず、また、球面ミラー(105)、(106)の間の距離も常に一定に保たなければならない問題点がある。
【0006】
しかし、このようなドプラ偏移干渉計 (100)は、要求されるその構成部品の調整の精密さから、外からの振動に敏感すぎて厳しい環境の産業現場では適用が困難という問題点がある。
【0007】
さらに従来の干渉計(100)は、2個の球面ミラー(105)、(106)の間の距離(L)が長いほど測定効率が上がるため、高精度な計測を要する現場では、干渉計(100)の大きさを大型化しなければならない欠点がある。
【0008】
【発明が解決しようとする課題】
本発明は、前述したような従来の問題点を解決するため、小型で、外からの振動に敏感に反応せず、維持及び補修がきわめて容易でかつ効率の高い光ファイバーを利用した超音波測定装置を提供することにある。
【0009】
本発明の他の目的は、産業現場での適用性に優れ、様々な振動が多発する厳しい環境でも、より容易に光ファイバーを利用した超音波測定装置を提供することにある。
【0010】
【課題を解決するための手段】
前記のような目的を達成するため、本発明は、ドプラ偏移効果を利用して超音波を測るための装置において、測定対象に照射されるレーザビームにより、生ずる散乱光を集光するための集光レンズ、その集光レンズから散乱光が受けられる部分反射ミラーを、その先端に取り付け、後ろに部分反射ミラーを取り付けた光ファイバーを設け、前記光ファイバーを通した干渉光を検出する高周波光検出器を設けたドプラ偏移センサおよび、前記ドプラ偏移センサの高周波光検出器が最適の状態で干渉光を感知できるように、前記光ファイバーが外側に取り巻かれた圧電素子を形状変更させる制御回路を設けたコントローラからなることを特徴とする光ファイバーを利用した超音波測定装置である。
なお、高周波光検出器とは、超音波信号の検出のために、1MHz程度以上の帯域において感度を有する光検出器である。
【0011】
【発明の実施の形態】
以下に、図面を参照しつつ本発明の実施例を詳しく説明する。本発明による光ファイバーを利用した超音波測定装置(1)は、図2に示したように測定対象(101)に照射されるレーザビームにより生ずる散乱光を集光するための集光レンズを具備する。前記集光レンズは凸レンズとするのがより望ましい。
【0012】
そして、前記集光レンズ(10)の後ろには、その集光レンズから散乱光のドプラ偏移を感知するためのセンサ(20)が設けられる。そのドプラ偏移センサ(20)には、光ファイバーが設けられ、前記光ファイバー(30)は、集光レンズ(10)からの散乱光を受ける部分反射ミラー(21)をその先端に設けている。前記部分反射ミラー(21)と、光ファイバー(30)の一端は、平行に密着された後、エポクシボンド等の接着剤によりその密着状態が保たれる。
【0013】
前記部分反射ミラー(21)は、反射率が高いほどドプラ偏移センサ(20)の効率は上がるが、その反面、反射率を上げると、光ファイバー(30)内部に入射可能な散乱光の量が減るため、この部分反射ミラー(21)の反射率は、99%以下である。
【0014】
前記光ファイバー(30)は、後ろの別の部分反射ミラー(22)と一体となっていて、前記光ファイバー(30)の先後端に設けられた部分反射ミラー(21)、(22)の間で散乱光の多重反射が行われる。
【0015】
前記後端の部分反射ミラー(22)の後ろには半波長板(51)と、偏光ビームスプリッタ(52)及び高周波光検出器(53)が順に配置され、これがドプラ偏移センサ(20)となる。
【0016】
本発明は、前記ドプラ偏移センサ(20)の高周波光検出器(53)が最適の状態で干渉光を感知できるよう前記光ファイバー(30)の長さを最適に自動調節するコントローラ(60)が取り付けられている。
【0017】
前記コントローラ(60)は、偏光ビームスプリッタ(52)からの光の一部を受ける低周波光検出器(43)を具備し、前記低周波光検出器(43)に電気的に連結されている制御回路(42)を有する。そして、前記の制御回路(42)は、電圧発生器(41)に電気的に連結され、前記電圧発生器(41)は、光ファイバー(30)がその外周面に取り巻かれたシリンダー形圧電素子(40)に供給される電源を制御するように電気的に連結している。
なお、低周波光検出器とは、シリンダー形圧電素子の制御用に使用するために、1KHz〜100KHz程度の帯域において感度を有する光検出器のことである。
【0018】
このような構成からなる本発明による光ファイバーを利用した超音波測定装置(1)の作用効果について詳しく説明する。
【0019】
本発明による光ファイバーを利用した超音波測定装置(1)は、まず、作業者或いは実験者が測定対象(101)にレーザビームを照射すると、その測定対象(101)には散乱光が生じ、生じた散乱光は、集光レンズ(10)により集光されて部分反射ミラー(21)を通じて偏波維持光ファイバー(30)に入射される。
【0020】
前記部分反射ミラー(21)を通過して光ファイバー(30)に入射された散乱光は、他の一端の部分反射ミラー(22)に達する。このように入射された散乱光は、前記部分反射ミラー(22)であらかじめ設定された反射率により一部は部分反射ミラー(22)を反射し、前記光ファイバー先端の部分反射ミラー(21)側に反射され、残りの一部は、これを通過し、その後ろの半波長板(51)と、偏光ビームスプリッタ(52)を通過し光検出器(53)に供給され、その散乱光のドプラ偏移が検出される。
【0021】
一方、前記部分反射ミラー(22)により再び部分反射ミラー(21)の方に反射される散乱光は、前記部分反射ミラー(21)により、また部分反射ミラー(22)側に反射され、前述したような過程が繰り返される。
【0022】
このように前記部分反射ミラー(21)、(22)により反射される散乱光は、光ファイバー(30)の内部を絶え間なく往復運動しつつ同時に、その散乱光の一部は、後方の部分反射ミラー(22)を通過し光検出器(53)にて検出され、正確なドプラ偏移が測れる。
【0023】
ここで、本発明においては、前記のセンサ(20)を形成する光ファイバー(30)は、柔らかく曲げることが可能であり、空間的あるいは、場所に関係なく小型で、その適用性が高くなり、勿論、外部からの振動にも影響されず、ドプラ偏移が正確に測れるものである。
【0024】
前述したように、本発明による光ファイバー(30)を利用した測定装置(1)は、光ファイバー(30)及び、その両端に取付けられた部分反射ミラー(21)、(22)を通してドプラ偏移の測定ができるが、作業者が常に安定的にドプラ偏移を測るためには、光ファイバー(30)の長さを最適の状態に常に保たなければならない。
【0025】
すなわち、光ファイバー(30)が長くなると光検出器(53)の測定効率は、長さに比例してアップするが、光検出器(53)を最大の測定効率に設定するためには、光ファイバー(30)の長さを、細かく調節しなければならない。
【0026】
そこで、本発明の光ファイバー(30)を利用した超音波測定では、光ファイバー(30)の長さを常に最適の状態に保持するコントロラ(60)が働く。前記コントローラ(60)は、光ファイバー(30)の長さを調節するために、光ファイバー(30)がシリンダ形の圧電素子(40)を一定の回数で密着して取り巻いており、前記シリンダ形の圧電素子(40)の内壁と外壁とに電位差を印加することにより、前記シリンダ形の圧電素子(40)の外径は変化し、この圧電素子(40)に密着して取り巻かれた光ファイバー(30)の長さも細かく調整される。
【0027】
なお、シリンダ形の圧電素子(40)に一定の電位差を印加した場合に生ずる光ファイバー(30)の長さの変化は、この圧電素子(40)に取り巻かれた光ファイバー(30)のターン数により変わる。前記のようにシリンダ形の圧電素子(40)を利用して光ファイバー(30)の長さを常に最適の状態で保つ方法を説明すると、次のようである。
【0028】
前記圧電素子(40)に電圧発生器(41)を利用して時間に線形的に比例して増える電圧を印加させると、前記圧電素子(40)に巻かれた光ファイバー(30)の長さも時間に比例して長くなることになる。
【0029】
図3は、時間的に増加する電圧と干渉光の強さを示したものである。図3の(A)は、時間的に増加する電圧であり、波形(B)は、干渉光の強さである。前記光検出器(53)がドプラ偏移の測定のとき、一番効率的な条件は、ドプラ偏移のない時、干渉光の強さが、図3において最大干渉光の強さの1/2にあたる条件である。そこで、コントローラ(60)は、前記部分反射ミラー(22)を通過した干渉光の一部を偏光ビームスプリッタ(52)で反射させて低周波光検出器(43)で測る。そして前記光検出器(43)に電気的に連結された制御回路(42)には、常に最大干渉光の強さの半分に当たる値を電気的な信号で出力させるようあらかじめ設定してあるので、この制御回路(42)は、入力された最大干渉光の強さの半分に当たる出力値で電圧発生器(41)を制御して前記圧電素子(40)に供給される電圧を制御する。
【0030】
もし、偏光ビームスプリッタ(52)から反射され低周波光検出器(43)に入力される干渉光が、従来の値より大きい、新たな最大値として入力されると、前記制御回路(42)は、この新しい最大干渉光の強さの半分に当たる出力値で電圧発生器(41)を制御して圧電素子(40)に供給される電圧を新しく制御する。
【0031】
従って、このようにすれば作業者が実験を行なう際に光ファイバー(30)の長さは、圧電素子(40)の変形により最大干渉光の強さの半分にあたる長さに調節され、光検出器(53)は最適の検出条件を保つことになる。
【0032】
【発明の効果】
前述したように、本発明による光ファイバーを利用した超音波測定装置(1)によると、光検出器(53)により測定対象の超音波を測りつつ同時に小型で、かつ外部からの振動に影響されず、特別な光学素子などの調整作業が不要な光ファイバー(30)を利用することによって、厳しい環境の作業現場に容易に適用される効果がある。さらに全体の大きさを従来よりも小型にでき、同時に光ファイバー(30)の長さを長くできるので、測定効率並びにその感度を著しく高くでき、ドプラ偏移の測定の精密さを格段に改善できる長所がある。
【0033】
以上のように本発明による望ましい実施例について述べたが、本技術分野の当業者なら、前記特許請求の範囲の技術思想に反することなく多様の変形例を実施可能であるが、これら全ては、本発明に含められるのは、明らかである。
【図面の簡単な説明】
【図1】従来のドプラ偏移測定干渉計を示した概略図である。
【図2】本発明による光ファイバーを利用した超音波測定装置の構成図である。
【図3】本発明による光ファイバーを利用した超音波測定装置において、電圧時間変化量と干渉光信号の相関関係を示した図である。
【符号の説明】
1…超音波測定装置
10…集光レンズ
20…センサ
21、22…部分反射ミラー
23…エポクシボンドなどの接着剤
30…光ファイバー
40…圧電素子
41…電圧発生器
42…制御回路
43…低周波光検出器
51…半波長板
52…偏光ビームスプリッタ
53…高周波光検出器
60…コントローラ
100…ドプラ偏移測定干渉計
101…測定対象
102…レーザビーム
103…超音波
104…集光レンズ
105、106…球面ミラー
107…光検出器[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an apparatus for measuring various ultrasonic waves using the Doppler shift effect, and more particularly, to a high efficiency, small size, unaffected by external vibration, and a special optical element. The present invention relates to an ultrasonic measurement device using an optical fiber that does not require an adjustment operation and can be applied even in a severe environment with vibration.
[0002]
[Prior art]
Generally, to measure an ultrasonic wave, a Doppler shift measurement interferometer (Fabry-Perot interferometer) (100) as shown in FIG. 1 is used. In the Doppler shift measurement interferometer (Fabry-Perot interferometer) (100), when a laser beam is irradiated on the surface of the measurement target (101) from one side, the surface of the measurement target is irradiated by ultrasonic waves generated from the measurement target (101). However, due to the surface vibration of the object to be measured, the frequency of the laser scattered light causes a frequency shift due to the so-called Doppler shift. By measuring the amount of frequency shift of the laser light, the frequency of the It measures sound waves.
[0003]
A Doppler shift interferometer (100) used for measuring such a Doppler shift irradiates a laser beam to an object to be measured, and the laser scattered light frequency-shifted by an ultrasonic wave (103) generated from the laser beam. And a converging lens (104) for condensing light, and two spherical mirrors (105) and (106) having a constant reflectance.
[0004]
The intensity of light passing through the condenser lens (104) is determined by the distance (L) between the two spherical mirrors (105) and (106), the reflectivity of the spherical mirrors (105) and (106), and , Depending on the frequency of the light. Further, the frequency of the scattered light incident on the condenser lens (104) is changed by the ultrasonic wave, and the intensity of the light is changed accordingly. Therefore, the Doppler shift interferometer (100) uses the intensity of the scattered light. The ultrasonic wave can be measured by measuring the height with the photodetector (107).
[0005]
However, for stable ultrasonic measurement, light must be continuously reflected multiple times between the spherical mirrors (105) and (106) along the same path inside the interferometer (100). The parallelism of the spherical mirrors (105) and (106) must be precisely adjusted, and the distance between the spherical mirrors (105) and (106) must always be kept constant. There are points.
[0006]
However, such a Doppler shift interferometer (100) has a problem that it is too sensitive to external vibration and is difficult to be applied in an industrial site in a severe environment because of the required precision of adjustment of its components. .
[0007]
Further, in the conventional interferometer (100), since the measurement efficiency increases as the distance (L) between the two spherical mirrors (105) and (106) increases, the interferometer ( There is a disadvantage that the size of 100) must be increased.
[0008]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION The present invention is directed to an ultrasonic measuring apparatus using an optical fiber, which is small, does not react sensitively to external vibration, is very easy to maintain and repair, and has high efficiency in order to solve the conventional problems as described above. Is to provide.
[0009]
It is another object of the present invention to provide an ultrasonic measuring apparatus which is excellent in applicability in an industrial field and uses an optical fiber more easily even in a severe environment where various vibrations frequently occur.
[0010]
[Means for Solving the Problems]
In order to achieve the object as described above, the present invention provides an apparatus for measuring ultrasonic waves using the Doppler shift effect, for condensing scattered light generated by a laser beam applied to an object to be measured. A high-frequency photodetector for attaching a condensing lens, a partial reflection mirror capable of receiving scattered light from the condensing lens to an end thereof, an optical fiber having a partial reflection mirror attached behind, and detecting interference light passing through the optical fiber A Doppler shift sensor provided with a control circuit for changing the shape of a piezoelectric element in which the optical fiber is surrounded so that the high-frequency photodetector of the Doppler shift sensor can detect interference light in an optimal state. An ultrasonic measurement apparatus using an optical fiber, comprising: a controller.
Note that the high-frequency photodetector is a photodetector having sensitivity in a band of about 1 MHz or more for detecting an ultrasonic signal.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. An ultrasonic measuring apparatus (1) using an optical fiber according to the present invention includes a condenser lens for condensing scattered light generated by a laser beam applied to a measurement target (101) as shown in FIG. . More preferably, the condenser lens is a convex lens.
[0012]
Further, a sensor (20) for detecting Doppler shift of scattered light from the condenser lens is provided behind the condenser lens (10). The Doppler shift sensor (20) is provided with an optical fiber, and the optical fiber (30) is provided with a partial reflection mirror (21) at its tip which receives scattered light from the condenser lens (10). After the partial reflection mirror (21) and one end of the optical fiber (30) are adhered in parallel, the adhered state is maintained by an adhesive such as epoxy bond.
[0013]
In the partial reflection mirror (21), the efficiency of the Doppler shift sensor (20) increases as the reflectance increases, but when the reflectance increases, the amount of scattered light that can enter the optical fiber (30) increases. Therefore, the reflectance of the partial reflection mirror (21) is 99% or less.
[0014]
The optical fiber (30) is integrated with another partial reflection mirror (22) at the rear, and scatters between the partial reflection mirrors (21) and (22) provided at the front and rear ends of the optical fiber (30). Multiple reflection of light is performed.
[0015]
A half-wave plate (51), a polarizing beam splitter (52), and a high-frequency photodetector (53) are sequentially arranged behind the rear end partial reflection mirror (22). Become.
[0016]
According to the present invention, a controller (60) for automatically adjusting the length of the optical fiber (30) optimally so that the high-frequency light detector (53) of the Doppler shift sensor (20) can detect interference light in an optimal state. Installed.
[0017]
The controller (60) includes a low frequency light detector (43) for receiving a part of the light from the polarizing beam splitter (52), and is electrically connected to the low frequency light detector (43). A control circuit (42); The control circuit (42) is electrically connected to a voltage generator (41), and the voltage generator (41) includes a cylindrical piezoelectric element (30) having an optical fiber (30) surrounding its outer peripheral surface. 40) are electrically connected so as to control the power supplied thereto.
Note that the low-frequency photodetector is a photodetector having sensitivity in a band of about 1 KHz to 100 KHz to be used for controlling a cylindrical piezoelectric element.
[0018]
The operation and effect of the ultrasonic measuring device (1) using the optical fiber according to the present invention having such a configuration will be described in detail.
[0019]
In the ultrasonic measuring apparatus (1) using an optical fiber according to the present invention, first, when a worker or an experimenter irradiates a laser beam to a measurement target (101), scattered light is generated in the measurement target (101) and the scattered light is generated. The scattered light is condensed by the condenser lens (10) and is incident on the polarization maintaining optical fiber (30) through the partial reflection mirror (21).
[0020]
The scattered light that has passed through the partial reflection mirror (21) and entered the optical fiber (30) reaches the partial reflection mirror (22) at the other end. The scattered light thus incident is partially reflected by the partial reflection mirror (22) according to a reflectance set in advance by the partial reflection mirror (22), and is reflected toward the partial reflection mirror (21) at the tip of the optical fiber. A part of the reflected light passes through this, passes through it, passes through a half-wave plate (51) and a polarizing beam splitter (52), and is supplied to a photodetector (53). A shift is detected.
[0021]
On the other hand, the scattered light reflected again by the partial reflection mirror (22) toward the partial reflection mirror (21) is reflected by the partial reflection mirror (21) and again toward the partial reflection mirror (22), as described above. Such a process is repeated.
[0022]
The scattered light reflected by the partial reflection mirrors (21) and (22) thus continuously reciprocates inside the optical fiber (30), and at the same time, a part of the scattered light is transferred to the rear partial reflection mirror. After passing through (22), it is detected by the photodetector (53), and an accurate Doppler shift can be measured.
[0023]
Here, in the present invention, the optical fiber (30) forming the above-mentioned sensor (20) can be bent softly, is small regardless of space or location, and has high applicability. The Doppler shift can be accurately measured without being affected by external vibrations.
[0024]
As described above, the measuring apparatus (1) using the optical fiber (30) according to the present invention measures Doppler shift through the optical fiber (30) and the partial reflection mirrors (21) and (22) attached to both ends thereof. However, in order for the operator to always stably measure the Doppler shift, the length of the optical fiber (30) must always be kept in an optimum state.
[0025]
That is, when the length of the optical fiber (30) becomes longer, the measurement efficiency of the photodetector (53) increases in proportion to the length. However, in order to set the photodetector (53) to the maximum measurement efficiency, the optical fiber (53) is required. 30) The length must be finely adjusted.
[0026]
Therefore, in the ultrasonic measurement using the optical fiber (30) of the present invention, the controller (60) that always keeps the length of the optical fiber (30) in an optimum state works. In order to adjust the length of the optical fiber (30), the controller (60) closely surrounds the cylindrical piezoelectric element (40) at a fixed number of times, and By applying a potential difference between the inner wall and the outer wall of the element (40), the outer diameter of the cylindrical piezoelectric element (40) changes, and the optical fiber (30) closely contacting the piezoelectric element (40) and surrounding the same. The length is also finely adjusted.
[0027]
A change in the length of the optical fiber (30) caused when a constant potential difference is applied to the cylindrical piezoelectric element (40) changes depending on the number of turns of the optical fiber (30) surrounded by the piezoelectric element (40). . The method of maintaining the
[0028]
When a voltage that increases linearly with time is applied to the piezoelectric element (40) using a voltage generator (41), the length of the optical fiber (30) wound on the piezoelectric element (40) also increases. Becomes longer in proportion to.
[0029]
FIG. 3 shows the voltage increasing with time and the intensity of the interference light. FIG. 3A shows the voltage increasing with time, and FIG. 3B shows the intensity of the interference light. When the photodetector (53) measures the Doppler shift, the most efficient condition is that when there is no Doppler shift, the intensity of the interference light is 1 / (the intensity of the maximum interference light in FIG. 3). This is a condition corresponding to 2. Therefore, the controller (60) reflects a part of the interference light passing through the partial reflection mirror (22) by the polarization beam splitter (52) and measures it by the low-frequency light detector (43). The control circuit (42) electrically connected to the photodetector (43) is preset so as to always output a value corresponding to half of the maximum interference light intensity as an electric signal. The control circuit (42) controls the voltage supplied to the piezoelectric element (40) by controlling the voltage generator (41) with an output value corresponding to half the intensity of the input maximum interference light.
[0030]
If the interference light reflected from the polarizing beam splitter (52) and input to the low-frequency photodetector (43) is input as a new maximum value larger than the conventional value, the control circuit (42) By controlling the voltage generator (41) with an output value corresponding to half of the intensity of the new maximum interference light, the voltage supplied to the piezoelectric element (40) is newly controlled.
[0031]
Accordingly, when the operator performs an experiment, the length of the optical fiber (30) is adjusted to half the intensity of the maximum interference light by the deformation of the piezoelectric element (40). (53) keeps the optimum detection condition.
[0032]
【The invention's effect】
As described above, according to the ultrasonic measuring apparatus (1) using the optical fiber according to the present invention, the ultrasonic wave to be measured is measured by the photodetector (53) while being small, and is not affected by external vibration. By using an optical fiber (30) that does not require a special optical element or other adjustment work, it is easily applied to a work site in a severe environment. Furthermore, the overall size can be made smaller than before, and at the same time the length of the optical fiber (30) can be increased, so that the measurement efficiency and its sensitivity can be significantly increased, and the precision of the Doppler shift measurement can be greatly improved. There is.
[0033]
Although the preferred embodiments according to the present invention have been described above, those skilled in the art can implement various modifications without departing from the technical spirit of the claims. Obviously, it is included in the present invention.
[Brief description of the drawings]
FIG. 1 is a schematic diagram illustrating a conventional Doppler shift measurement interferometer.
FIG. 2 is a configuration diagram of an ultrasonic measurement device using an optical fiber according to the present invention.
FIG. 3 is a diagram showing a correlation between a voltage time change amount and an interference light signal in an ultrasonic measuring apparatus using an optical fiber according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ...
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003125542A JP3979961B2 (en) | 2003-04-30 | 2003-04-30 | Ultrasonic measuring device using optical fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003125542A JP3979961B2 (en) | 2003-04-30 | 2003-04-30 | Ultrasonic measuring device using optical fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004333165A true JP2004333165A (en) | 2004-11-25 |
JP3979961B2 JP3979961B2 (en) | 2007-09-19 |
Family
ID=33502776
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003125542A Expired - Fee Related JP3979961B2 (en) | 2003-04-30 | 2003-04-30 | Ultrasonic measuring device using optical fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3979961B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2457782A (en) * | 2008-02-29 | 2009-09-02 | Boeing Co | Doppler velocimeter |
JP2011257365A (en) * | 2010-06-11 | 2011-12-22 | Nippon Steel Corp | Ultrasonic measuring device and ultrasonic measuring method |
US8279424B2 (en) | 2008-02-29 | 2012-10-02 | The Boeing Company | System and method for motion based velocity discrimination for doppler velocimeters |
-
2003
- 2003-04-30 JP JP2003125542A patent/JP3979961B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2457782A (en) * | 2008-02-29 | 2009-09-02 | Boeing Co | Doppler velocimeter |
US7667826B2 (en) | 2008-02-29 | 2010-02-23 | The Boeing Company | System and method for motion based velocity discrimination for doppler velocimeters |
GB2457782B (en) * | 2008-02-29 | 2010-07-14 | Boeing Co | System and method for motion based velocity discrimination for doppler velocimeters |
US8279424B2 (en) | 2008-02-29 | 2012-10-02 | The Boeing Company | System and method for motion based velocity discrimination for doppler velocimeters |
JP2011257365A (en) * | 2010-06-11 | 2011-12-22 | Nippon Steel Corp | Ultrasonic measuring device and ultrasonic measuring method |
Also Published As
Publication number | Publication date |
---|---|
JP3979961B2 (en) | 2007-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8976365B2 (en) | Interferometric material sensing apparatus including adjustable coupling and associated methods | |
US8675204B2 (en) | Interferometric material sensing apparatus including adjustable reference arm and associated methods | |
WO2012154381A1 (en) | Interferometric sensing apparatus including adjustable coupling and associated methods | |
JP5580426B2 (en) | Metal structure and material measuring device and measuring method | |
US8675202B2 (en) | Interferometric sensing apparatus including adjustable reference arm and associated methods | |
US8675203B2 (en) | Interferometric biological sensing apparatus including adjustable reference arm and associated methods | |
US8842289B2 (en) | Interferometric biometric sensing apparatus including adjustable coupling and associated methods | |
JP2004333165A (en) | Ultrasonic measuring apparatus using optical fiber | |
JP2008070314A (en) | Gas detection apparatus | |
KR100931224B1 (en) | Ultrasonic Measuring Device Using Optical Fiber | |
JPH10209199A (en) | Vibration amplitude evaluator and wire bonder | |
US10948334B2 (en) | Non-contact displacement sensor | |
KR101008120B1 (en) | Ultrasonic measuring apparatus using resonator length selective optical fiber interferometer | |
EP1166064A1 (en) | Integrated diagnostic system for photoelastic modulator | |
JP4130599B2 (en) | Laser beam irradiation device | |
JPH11223623A (en) | Material property measuring device | |
KR100733539B1 (en) | Apparatus and method of laser-ultrasonic measurement for hot object | |
JP2003121423A (en) | Laser ultrasonic inspection device and laser ultrasonic inspection method | |
JPH06294777A (en) | Measuring method for ultrasonic vibration | |
KR100588532B1 (en) | Apparatus of laser-ultrasonics measurement using reflective photo detector | |
KR20100072675A (en) | Vibration measuring apparatus using laser and reflector | |
JP2003106978A (en) | Optical radiation pressure measuring device | |
JP2003097911A (en) | Displacement measuring device and displacement measuring method using the same | |
JPH1048038A (en) | Laser vibration meter | |
JPH0720094A (en) | Ultrasonic oscillation measuring apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050930 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070109 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070220 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070424 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070529 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070626 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 3979961 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100706 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110706 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110706 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120706 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130706 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130706 Year of fee payment: 6 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130706 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |