JP2004333034A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2004333034A
JP2004333034A JP2003130488A JP2003130488A JP2004333034A JP 2004333034 A JP2004333034 A JP 2004333034A JP 2003130488 A JP2003130488 A JP 2003130488A JP 2003130488 A JP2003130488 A JP 2003130488A JP 2004333034 A JP2004333034 A JP 2004333034A
Authority
JP
Japan
Prior art keywords
gas
steel ball
heat exchanger
duct
outlet duct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003130488A
Other languages
Japanese (ja)
Inventor
Motoomi Iwatsuki
元臣 岩月
Hiroshi Ishizaka
浩 石坂
Hirobumi Yoshikawa
博文 吉川
Naoki Oda
直己 尾田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2003130488A priority Critical patent/JP2004333034A/en
Publication of JP2004333034A publication Critical patent/JP2004333034A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger comprising a shot cleaning type dust remover capable of preventing the scattering of steel balls by mounting a duct having gas-steel ball separating function in a hopper. <P>SOLUTION: This heat exchanger comprises a gas-steel ball separating part 12 wherein an exhaust gas is introduced from an inlet duct 1, the steel balls 11 are dispersed to a group of heat transfer tubes 6 to remove the soot and dust attached to the heat transfer tubes by the shot cleaning device, a duct-shaped partition connected with the outlet duct 2, is mounted inside of the group of heat transfer tubes 6, and a gas suction port is formed at a lower part with respect to the outlet duct 2 to prevent the scattering of the steel balls 11 to the outside of the device. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えば石炭焚ボイラ排煙処理装置用ガスガスヒータ(GGH)等の熱交換器、特にその伝熱管表面に付着する煤塵を鋼球の散布により除去するショットクリーニング方式除塵装置を備えた熱交換器に関する。
【0002】
【従来の技術】
石炭焚ボイラなどの排ガス浄化用に設置された排煙脱硫装置の前流および後流側には熱交換器が設置されている。この熱交換器は、排煙脱硫装置の前流側の排ガスを熱源とし、後流側の排ガスを加熱することにより、煙突から排出する排ガスの白煙現象を防止することを主な目的としている。
【0003】
このような石炭焚ボイラの排ガスを対象とする熱交換器の熱回収部は、伝熱管群上に灰分が堆積するため、煤塵除去装置が設けられている。このような煤塵除去装置の一つとして、熱交換器上部より鋼球を飛散させ、伝熱管群に衝突させることにより煤塵除去するショットクリーニング方式の装置が実用化されている(例えば特許文献1参照)。
【0004】
従来技術であるショットクリーニング方式除塵装置を備えたガスガスヒータ熱交換器の一例を図7に示す。除塵装置の上部の入口ダクト1より流入した排ガスは、伝熱管群6において熱回収され、除塵装置下部の出口ダクト2から排出される。一方、鋼球供給フィーダ3から供給される鋼球11は、鋼球分配機4と鋼球分散器5を通り、伝熱管群6に落下する。
【0005】
このとき、伝熱管群6に付着した煤塵は鋼球11の衝突により除去される。伝熱管群6を通過した鋼球11と鋼球11に同伴して落下する煤塵は、ホッパ7によりダストセパレータ8に集積されて分離される。ダストセパレータ8によって分離された煤塵は回収される一方で、鋼球11は排出機9によって輸送機10に送られ、再び供給フィーダ3に戻される。
【0006】
【特許文献1】
特開平10−197197号公報(請求項6、第1図)
【0007】
【発明が解決しようとする課題】
上記従来技術では、伝熱管群6を通過した鋼球11が、排ガスと共に出口ダクト2から系外に排出される問題があった。すなわち、伝熱管群6への衝突や鋼球同士の衝突などにより、鋼球11が鉛直下方に落下せずに斜め方向に落下するため、鋼球11が出口ダクト2内へと飛散する。出口ダクト2に飛散した鋼球11はホッパ7に戻ることができず、鋼球11の循環量が低下し、煤塵の除去率が低くなるという問題点があった。
【0008】
そこで、本発明の課題は、ホッパ内にガス鋼球分離機能を持つダクトを設置することにより、鋼球飛散防止を可能とするショットクリーニング方式除塵装置を備えた熱交換器を提供することである。
【0009】
【課題を解決するための手段】
請求項1記載の発明は、ボイラなどの燃焼装置から排出される排ガスを入口ダクトから導入し、出口ダクトから排出する流路を有し、該流路内に熱交換部を備え、該熱交換部の伝熱管などに鋼球を散布して該伝熱管に付着した煤塵を除去するショットクリーニング装置を備えた熱交換器において、前記熱交換部の内部に出口ダクトに接続したダクト状の仕切を設けたガス鋼球分離部を設け、該ガス鋼球分離部のガス吸込み口を該出口ダクトよりも下方に配置した熱交換器である。
【0010】
請求項2記載の発明は、ガス鋼球分離部に続く出口ダクトを鉛直上方又は略鉛直上方に向かう鉛直ダクト部分と該鉛直ダクト部分に続く水平ダクト部分で構成した請求項1記載の熱交換器である。
【0011】
請求項3記載の発明は、ガス鋼球分離部のガス吸込み口を鉛直下方又は略鉛直下方に向けた請求項1又は2記載の熱交換器である。
【0012】
請求項4記載の発明は、ガス鋼球分離部のガス吸込み口を鉛直下方又は略鉛直下方に向け、さらに該吸込み口に続けて鉛直ダクト部を備えた出口ダクトへの接続部を設けた請求項1ないし3のいずれかに記載の熱交換器である。
【0013】
請求項5記載の発明は、ガス鋼球分離部と該ガス鋼球分離部に接続した出口ダクトを2系統以上設けた請求項1ないし4のいずれかに記載の熱交換器である。
【0014】
請求項6記載の発明は、出口ダクトにはガス整流板を設けた請求項1ないし5のいずれかに記載の熱交換器である。
【0015】
【作用】
上記従来技術において、出口ダクト2内への鋼球11の飛散を防止するためには、出口ダクト2を覆う邪魔板を設置することが考えられるが、圧力損失増大の問題があり得策ではない。また、邪魔板設置によりガス偏流が生じ、後流側の装置性能に影響を及ぼす場合がある。すなわち、ショットクリーニング装置を備えた熱交換器の出口ダクト2には、鋼球11の飛散防止とガス流れの整流効果の両方が要求される。
【0016】
請求項1記載の発明は、熱交換部の内部に出口ダクトに接続したダクト状の仕切を設けてガス分離部とし、この分離部において鋼球が装置系外に飛散することを防止できる。
【0017】
請求項2記載の発明によれば、請求項1記載の作用に加えて、ガス鋼球分離部に続く出口ダクトを鉛直上方又は略鉛直上方に向かう鉛直ダクト部分と該鉛直ダクト部分に続く水平ダクト部分で構成したので、より確実に鋼球が出口ダクトにまで分散しないようにすることができる。
【0018】
請求項3記載の発明は、請求項1又は2に記載の発明の作用に加えて、ガス鋼球分離部のガス吸込み口を鉛直下方又は略鉛直下方に向けたので、ガス鋼球分離部に向けてホッパ内から鉛直上方又は略鉛直上方に飛散する鋼球のみがガス鋼球分離部に侵入し、ガス鋼球分離部内の鋼球量が減少することにより、ガスと鋼球の分離がより確実なものとなる。
【0019】
請求項4記載の発明は、請求項1ないし3のいずれかに記載の発明の作用に加えて、ガス鋼球分離部のガス吸込み口を鉛直下方又は略鉛直下方に向け、さらに該吸込み口に続けて鉛直ダクト部を備えた出口ダクトへの接続部を設けたので、前記吸込み口に入った鋼球のなかでも、さらに鉛直上方又は略鉛直上方に飛散する鋼球はほとんどなくなるので、ガスと鋼球の分離がより確実なものとなる。
【0020】
請求項5記載の発明は、請求項1ないし4のいずれかに記載の発明の作用に加えて、ガス鋼球分離部と該ガス鋼球分離部に接続した出口ダクトを2系統以上設けたので、1系統のみではホッパ底部を拡張するのみでは十分な分離部断面積が得られない場合に、目標とする分離部の断面積を得ることが可能となる。
【0021】
請求項6記載の発明は、請求項1ないし5のいずれかに記載の発明の作用に加えて、出口ダクトのガス整流板がガスの整流作用がある。
【0022】
【発明の実施の形態】
本発明の実施の形態について図面と共に説明する。
図1には本実施例のショットクリーニング方式除塵装置の熱交換器を示す。図1に示すショットクリーニング方式除塵装置は、図7に示す従来の装置と同様に、上部の入口ダクト1より流入した排ガスは、伝熱管群6において熱回収され、下部の出口ダクト2から排出される。また、鋼球供給フィーダ3から供給される鋼球11は、鋼球分配機4と鋼球分散器5を通り伝熱管群6上に落下する過程で、伝熱管群6に衝突して、伝熱管に付着した煤塵を除去する。伝熱管群6を通過した鋼球11と鋼球11に同伴して落下する煤塵がホッパ7によりダストセパレータ8に集積されて分離され、ダストセパレータ8によって分離された煤塵は回収される一方で、鋼球は排出機9によって輸送機10に送られ、再び供給フィーダ3に戻される。
【0023】
上記構成で、鋼球11が伝熱管群6に付着した灰を除去しながらホッパ7に落下するとき、本実施例おいては、図1に示すように、ホッパ7の一部をダクト状に仕切り、出口ダクト2と接続したガス鋼球分離部12を設けている。該分離部12は出口ダクト2を覆っているため、伝熱管群6から落下する鋼球11が直接に出口ダクト2内に飛散することを防止している。鋼球11はホッパ7の底部まで落下した後、大部分がダストセパレータ8に送られるが、その一部は鋼球11同士の衝突やホッパ7の底部での跳ね返りなどにより出口ダクト2を延長したガス鋼球分離部12内に飛散する。ただし、分離部12が出口ダクト2に向かって上方に向いた流路を持つため、飛散した鋼球11は、一旦、分離部12内を上昇するものの出口ダクト2まで達せず、重力により落下し、ダストセパレータ8に送られる。
【0024】
一方、伝熱管群6を通過し、ホッパ7の底部まで流下した排ガスは鋼球11と共に分離部12を通過した後、出口ダクト2から排出される。鋼球11とガスの比重差は大きく、分離部12を上昇するガス流れに鋼球11が同伴して出口ダクト2から飛散することはない。このように、分離部12においてガスと鋼球11は分離され、排ガスのみ系外へと排出される。
【0025】
また、出口ダクト2においては、ガス整流板13を設置することが望ましい。出口ダクト2の後流側に配置される電気集塵機等の装置は、装置入口において均一なガス流れが要求される。ガス整流板13の設置によりガスが整流され、後流側の装置への影響が少なくなる。
【0026】
図2に示す他の実施例は、図1に示した実施例のガス鋼球分離部12の長さを1.5倍としている点が異なる。ホッパ7の底部からガス鋼球分離部12に飛散する鋼球11は、ガス鋼球分離部12において一旦上昇するものの、重力により落下する。鋼球11が上昇する距離は、ホッパ7の底部の構造、鋼球循環量などにより異なる。ガス鋼球分離部12の長さを拡大することにより、さらに確実に出口ダクト2への鋼球分散を防止することが可能である。
【0027】
図3に示す第三の実施例は、図1に示した実施例に比較して出口ダクト2を鉛直上方に向けた構成を備えていることが相違する。ガス鋼球分離部12に接する出口ダクト2を鉛直上方又は略鉛直上方に向かう鉛直ダクト部分と該鉛直ダクト部分に続く水平ダクト部分を設け、より確実に鋼球11が出口ダクト2にまで分散しないようにすることができる。
【0028】
図4に示す第四の実施例は、図1に示した実施例に比較してガス鋼球分離部12の入口をホッパ7の内部空間に浮かせて鉛直下方又は略鉛直下方に向けている構成が相違している。図1に示した実施例では、ガス鋼球分離部12の入口は斜め方向であるのに対して図4に示す実施例ではガス鋼球分離部12の入口を鉛直下方又は略鉛直下方に向けることにより、ガス鋼球分離部12に向けてホッパ7内から鉛直上方又は略鉛直上方に飛散する鋼球11のみが該分離部12に侵入する。このため、ガス鋼球分離部12内の鋼球量が減少することにより、ガスと鋼球11の分離がより確実なものとなる。
【0029】
図5に示す実施例は、図1に示した実施例に比較してホッパ7を下方に拡張することにより、ガス鋼球分離部12の断面積を増大させた構成が相違している。
入口ダクト1および出口ダクト2の断面積は、伝熱管群6で処理する排ガス量によって決定される。これに従い、本発明の各実施例のガス鋼球分離部12の断面積も決定される。ガス鋼球分離部12の断面積が大のとき、ホッパ7の内部に占める分離部12の領域も大となり、分離部12の上部に位置する伝熱管群6のガス流れが偏流し、熱回収率が低下する場合が考えられる。
【0030】
これを防止するために図5に示す実施例では、分離部12側のホッパ7の底部を拡張することにより、所定の分離部12の断面積が得られ、かつホッパ7の内部に占める分離部12の領域の割合も低くなり、伝熱管群6のガス偏流防止も可能となる。
【0031】
図6に示す実施例は、図1に示した実施例に比較してホッパ7に接続するガス鋼球分離部12及び出口ダクト2を2系統備えた構成が相違する。図1に示した実施例において、ホッパ底部を拡張するのみでは十分な分離部断面積が得られない場合、出口ダクトおよびガス鋼球分離部を2系統にすることにより、目標とする分離部12の断面積を得ることが可能となる。
【0032】
【発明の効果】
請求項1〜4記載の発明は、熱交換部の内部に出口ダクトに接続したダクト状の仕切を設けてガス分離部とし、この分離部において鋼球が装置系外に飛散することを確実に防止できる。こうして熱交換器に供給する鋼球量を一定量に保つことが可能となり、伝熱管に付着した煤塵の除去が確実に行われる。これにより、熱交換器の性能が維持でき、安定な運転を得ることが可能となる。
【0033】
請求項5記載の発明は、請求項1ないし4のいずれかに記載の発明の効果に加えて、ガス鋼球分離部と該ガス鋼球分離部に接続した出口ダクトを2系統以上設けたので、1系統のみではホッパ底部を拡張するのみでは十分な分離部断面積が得られない場合でもガス鋼球分離機能が達成でき、熱交換器の性能の維持と安定運転性がより高まる。
【0034】
請求項6記載の発明は、請求項1ないし5のいずれかに記載の発明の効果に加えて、出口ダクトでガスが整流され、電気集塵機等の装置の性能を発揮し易い均一なガス流れが得られる。
【図面の簡単な説明】
【図1】本発明の一実施例のショットクリーニング方式除塵装置の熱交換器の概略構成図である。
【図2】本発明の一実施例のショットクリーニング方式除塵装置の熱交換器の概略構成図である。
【図3】本発明の一実施例のショットクリーニング方式除塵装置の熱交換器の概略構成図である。
【図4】本発明の一実施例のショットクリーニング方式除塵装置の熱交換器の概略構成図である。
【図5】本発明の一実施例のショットクリーニング方式除塵装置の熱交換器の概略構成図である。
【図6】本発明の一実施例のショットクリーニング方式除塵装置の熱交換器の概略構成図である。
【図7】従来技術によるショットクリーニング方式除塵装置の熱交換器の概略構成図である。
【符号の説明】
1 入口ダクト 2 出口ダクト
3 供給フィーダ 4 鋼球分配機
5 鋼球分散器 6 伝熱管群
7 ホッパ 8 ダストセパレータ
9 鋼球排出機 10 鋼球輸送機
11 鋼球 12 ガス鋼球分離部
13 ガス整流板
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat exchanger such as a gas gas heater (GGH) for a coal-fired boiler flue gas treatment system, and more particularly to a heat exchanger provided with a shot cleaning type dust remover for removing dust adhering to the surface of the heat transfer tube by spraying steel balls. About the exchanger.
[0002]
[Prior art]
A heat exchanger is installed upstream and downstream of a flue gas desulfurization unit installed for purifying exhaust gas from a coal-fired boiler or the like. The main purpose of this heat exchanger is to prevent the white smoke phenomenon of the exhaust gas discharged from the chimney by using the exhaust gas on the upstream side of the flue gas desulfurization device as a heat source and heating the exhaust gas on the downstream side. .
[0003]
Such a heat recovery unit of a heat exchanger for exhaust gas from a coal-fired boiler is provided with a dust removal device because ash deposits on the heat transfer tube group. As one of such dust removing devices, a shot cleaning type device for removing dust by scattering steel balls from an upper portion of a heat exchanger and colliding with a heat transfer tube group has been put into practical use (for example, see Patent Document 1). ).
[0004]
FIG. 7 shows an example of a gas gas heater heat exchanger provided with a shot cleaning type dust remover according to the prior art. Exhaust gas flowing from the inlet duct 1 at the upper part of the dust remover is recovered in the heat transfer tube group 6 and discharged from the outlet duct 2 at the lower part of the dust remover. On the other hand, the steel balls 11 supplied from the steel ball supply feeder 3 pass through the steel ball distributor 4 and the steel ball disperser 5 and fall into the heat transfer tube group 6.
[0005]
At this time, the dust adhering to the heat transfer tube group 6 is removed by the collision of the steel balls 11. The steel balls 11 that have passed through the heat transfer tube group 6 and the dust falling along with the steel balls 11 are collected and separated on the dust separator 8 by the hopper 7. While the dust separated by the dust separator 8 is collected, the steel balls 11 are sent to the transporter 10 by the discharger 9 and returned to the supply feeder 3 again.
[0006]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 10-197197 (Claim 6, FIG. 1)
[0007]
[Problems to be solved by the invention]
In the above-mentioned prior art, there was a problem that the steel ball 11 that passed through the heat transfer tube group 6 was discharged out of the system from the outlet duct 2 together with the exhaust gas. That is, the steel balls 11 fall obliquely without falling vertically downward due to a collision with the heat transfer tube group 6 or a collision between the steel balls, so that the steel balls 11 scatter into the outlet duct 2. The steel balls 11 scattered in the outlet duct 2 cannot return to the hopper 7, and the amount of circulation of the steel balls 11 is reduced, and the dust removal rate is reduced.
[0008]
Therefore, an object of the present invention is to provide a heat exchanger having a shot cleaning type dust remover capable of preventing steel ball scattering by installing a duct having a gas steel ball separating function in a hopper. .
[0009]
[Means for Solving the Problems]
The invention according to claim 1 has a flow path for introducing exhaust gas discharged from a combustion device such as a boiler from an inlet duct and discharging the exhaust gas from an outlet duct, and includes a heat exchange unit in the flow path. In a heat exchanger provided with a shot cleaning device for removing dust adhering to the heat transfer tube by spraying steel balls on the heat transfer tube or the like, a duct-shaped partition connected to an outlet duct is provided inside the heat exchange unit. This is a heat exchanger in which the provided gas steel ball separating section is provided, and the gas inlet of the gas steel ball separating section is arranged below the outlet duct.
[0010]
According to a second aspect of the present invention, the heat exchanger according to the first aspect, wherein the outlet duct following the gas steel ball separating section is constituted by a vertical duct portion extending vertically upward or substantially vertically upward and a horizontal duct portion following the vertical duct portion. It is.
[0011]
The invention according to claim 3 is the heat exchanger according to claim 1 or 2, wherein the gas suction port of the gas steel ball separating section is directed vertically downward or substantially vertically downward.
[0012]
According to a fourth aspect of the present invention, the gas suction port of the gas steel ball separating section is directed vertically or substantially vertically downward, and further, a connection portion to the outlet duct having a vertical duct section is provided following the suction port. Item 4. The heat exchanger according to any one of Items 1 to 3.
[0013]
The invention according to claim 5 is the heat exchanger according to any one of claims 1 to 4, wherein two or more systems are provided with a gas steel ball separating part and an outlet duct connected to the gas steel ball separating part.
[0014]
The invention according to claim 6 is the heat exchanger according to any one of claims 1 to 5, wherein the outlet duct is provided with a gas flow regulating plate.
[0015]
[Action]
In the above-mentioned conventional technique, in order to prevent the steel balls 11 from scattering into the outlet duct 2, it is conceivable to install a baffle plate covering the outlet duct 2, but this is not possible because there is a problem of an increase in pressure loss. In addition, gas drift may occur due to the installation of the baffle plate, which may affect the performance of the downstream device. That is, the outlet duct 2 of the heat exchanger having the shot cleaning device is required to have both the effect of preventing the steel balls 11 from scattering and the effect of rectifying the gas flow.
[0016]
According to the first aspect of the present invention, a duct-like partition connected to the outlet duct is provided inside the heat exchange section to form a gas separation section, and in this separation section, the steel balls can be prevented from scattering outside the apparatus system.
[0017]
According to the second aspect of the present invention, in addition to the function of the first aspect, the outlet duct following the gas steel ball separating portion extends vertically upward or substantially vertically upward, and the horizontal duct follows the vertical duct portion. Since it is constituted by the parts, it is possible to more reliably prevent the steel balls from being dispersed to the outlet duct.
[0018]
According to the third aspect of the present invention, in addition to the operation of the first or second aspect, the gas inlet of the gas steel ball separating section is directed vertically downward or substantially vertically downward. Only the steel balls scattered vertically upward or almost vertically upward from inside the hopper enter the gas steel ball separation part, and the amount of steel balls in the gas steel ball separation part decreases, so that the gas and steel balls are more separated. It will be sure.
[0019]
According to a fourth aspect of the present invention, in addition to the operation of the first aspect of the present invention, the gas inlet of the gas steel ball separating part is directed vertically downward or substantially vertically downward, and Since the connection part to the outlet duct provided with the vertical duct part was provided continuously, among the steel balls that entered the suction port, there were almost no steel balls scattered vertically or almost vertically upward, so gas and The separation of the steel balls becomes more reliable.
[0020]
According to the fifth aspect of the present invention, in addition to the function of the first aspect of the present invention, two or more gas steel ball separating sections and outlet ducts connected to the gas steel ball separating sections are provided. In the case where a sufficient separation section cross-sectional area cannot be obtained by simply expanding the hopper bottom with only one system, a target separation section cross-sectional area can be obtained.
[0021]
According to a sixth aspect of the present invention, in addition to the function of the first aspect, the gas straightening plate of the outlet duct has a gas straightening action.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a heat exchanger of the shot cleaning type dust removing apparatus of the present embodiment. In the shot cleaning type dust removing apparatus shown in FIG. 1, the exhaust gas flowing from the upper inlet duct 1 is recovered in the heat transfer tube group 6 and discharged from the lower outlet duct 2 similarly to the conventional apparatus shown in FIG. You. Further, the steel balls 11 supplied from the steel ball supply feeder 3 pass through the steel ball distributor 4 and the steel ball disperser 5 and fall on the heat transfer tube group 6, and collide with the heat transfer tube group 6 to be transferred. The dust adhering to the heat tube is removed. The steel balls 11 that have passed through the heat transfer tube group 6 and the dust falling along with the steel balls 11 are collected and separated by the hopper 7 on the dust separator 8, and while the dust separated by the dust separator 8 is collected, The steel balls are sent to the transport machine 10 by the discharger 9 and returned to the supply feeder 3 again.
[0023]
In the above configuration, when the steel ball 11 falls to the hopper 7 while removing the ash attached to the heat transfer tube group 6, in the present embodiment, as shown in FIG. A gas steel ball separating part 12 connected to the partition and the outlet duct 2 is provided. Since the separation portion 12 covers the outlet duct 2, the steel balls 11 falling from the heat transfer tube group 6 are prevented from directly scattering into the outlet duct 2. After the steel balls 11 have fallen to the bottom of the hopper 7, most of them are sent to the dust separator 8, but a part of them extends the outlet duct 2 due to collision between the steel balls 11 or rebound at the bottom of the hopper 7. It scatters in the gas steel ball separation part 12. However, since the separation part 12 has a flow path facing upward toward the outlet duct 2, the scattered steel balls 11 once rise in the separation part 12, but do not reach the outlet duct 2, but fall by gravity. To the dust separator 8.
[0024]
On the other hand, the exhaust gas that has passed through the heat transfer tube group 6 and has flowed down to the bottom of the hopper 7 passes through the separation unit 12 together with the steel balls 11, and is then discharged from the outlet duct 2. The difference in specific gravity between the steel ball 11 and the gas is large, and the steel ball 11 is not scattered from the outlet duct 2 accompanying the gas flow ascending the separation part 12. As described above, the gas and the steel ball 11 are separated in the separation unit 12, and only the exhaust gas is discharged out of the system.
[0025]
In addition, in the outlet duct 2, it is desirable to install a gas flow regulating plate 13. A device such as an electric precipitator disposed downstream of the outlet duct 2 requires a uniform gas flow at the device inlet. The gas is rectified by the installation of the gas rectifying plate 13, and the influence on the downstream device is reduced.
[0026]
The other embodiment shown in FIG. 2 is different from the embodiment shown in FIG. 1 in that the length of the gas steel ball separating portion 12 is 1.5 times. The steel balls 11 scattered from the bottom of the hopper 7 to the gas steel ball separation unit 12 rise once in the gas steel ball separation unit 12, but fall by gravity. The distance by which the steel ball 11 rises depends on the structure of the bottom of the hopper 7, the amount of steel ball circulation, and the like. By expanding the length of the gas steel ball separating section 12, it is possible to more reliably prevent the steel balls from being dispersed to the outlet duct 2.
[0027]
The third embodiment shown in FIG. 3 is different from the embodiment shown in FIG. 1 in that an outlet duct 2 is provided vertically upward. The outlet duct 2 in contact with the gas steel ball separating portion 12 is provided with a vertical duct portion directed vertically upward or substantially vertically upward and a horizontal duct portion following the vertical duct portion, so that the steel balls 11 are not dispersed to the outlet duct 2 more reliably. You can do so.
[0028]
The fourth embodiment shown in FIG. 4 has a configuration in which the inlet of the gas steel ball separating section 12 is floated in the internal space of the hopper 7 and is directed vertically downward or substantially vertically downward as compared with the embodiment shown in FIG. Are different. In the embodiment shown in FIG. 1, the inlet of the gas steel ball separating unit 12 is oblique, whereas in the embodiment shown in FIG. 4, the inlet of the gas steel ball separating unit 12 is directed vertically downward or substantially vertically downward. As a result, only the steel balls 11 scattered vertically upward or substantially vertically upward from inside the hopper 7 toward the gas steel ball separation unit 12 enter the separation unit 12. For this reason, the amount of steel balls in the gas steel ball separation unit 12 is reduced, so that the gas and the steel balls 11 can be more reliably separated.
[0029]
The embodiment shown in FIG. 5 is different from the embodiment shown in FIG. 1 in that the hopper 7 is expanded downward to increase the cross-sectional area of the gas steel ball separating section 12.
The cross-sectional area of the inlet duct 1 and the outlet duct 2 is determined by the amount of exhaust gas to be processed in the heat transfer tube group 6. Accordingly, the cross-sectional area of the gas steel ball separating section 12 of each embodiment of the present invention is also determined. When the cross-sectional area of the gas steel ball separation unit 12 is large, the area of the separation unit 12 occupying the inside of the hopper 7 also becomes large, and the gas flow of the heat transfer tube group 6 located above the separation unit 12 is deflected, and heat recovery is performed. The rate may decrease.
[0030]
In order to prevent this, in the embodiment shown in FIG. 5, by expanding the bottom of the hopper 7 on the separation section 12 side, a predetermined cross-sectional area of the separation section 12 can be obtained, and the separation section occupying the inside of the hopper 7 can be obtained. The ratio of the region 12 is also reduced, and the gas drift of the heat transfer tube group 6 can be prevented.
[0031]
The embodiment shown in FIG. 6 is different from the embodiment shown in FIG. 1 in the configuration including two systems of the gas steel ball separation unit 12 and the outlet duct 2 connected to the hopper 7. In the embodiment shown in FIG. 1, when a sufficient separation section cross-sectional area cannot be obtained only by expanding the bottom of the hopper, the target separation section 12 Can be obtained.
[0032]
【The invention's effect】
The invention according to claims 1 to 4 provides a gas-separating section by providing a duct-shaped partition connected to an outlet duct inside the heat exchanging section, and in this separating section, ensures that steel balls scatter outside the apparatus system. Can be prevented. In this way, the amount of steel balls supplied to the heat exchanger can be kept constant, and dust adhering to the heat transfer tubes can be reliably removed. Thereby, the performance of the heat exchanger can be maintained and a stable operation can be obtained.
[0033]
According to the fifth aspect of the invention, in addition to the effects of the first to fourth aspects, the gas steel ball separating section and two or more outlet ducts connected to the gas steel ball separating section are provided. The gas steel ball separation function can be achieved even when a sufficient separation section cross-sectional area cannot be obtained only by expanding the hopper bottom with only one system, and the performance of the heat exchanger is maintained and the stable operation is further improved.
[0034]
According to the invention of claim 6, in addition to the effect of the invention of any of claims 1 to 5, the gas is rectified in the outlet duct, and a uniform gas flow that easily exerts the performance of an apparatus such as an electric dust collector is provided. can get.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a heat exchanger of a shot cleaning type dust removing apparatus according to an embodiment of the present invention.
FIG. 2 is a schematic configuration diagram of a heat exchanger of the shot cleaning type dust removing apparatus according to one embodiment of the present invention.
FIG. 3 is a schematic configuration diagram of a heat exchanger of the shot cleaning type dust removing apparatus according to one embodiment of the present invention.
FIG. 4 is a schematic configuration diagram of a heat exchanger of the shot cleaning type dust removing apparatus according to one embodiment of the present invention.
FIG. 5 is a schematic configuration diagram of a heat exchanger of the shot cleaning type dust removing apparatus according to one embodiment of the present invention.
FIG. 6 is a schematic configuration diagram of a heat exchanger of the shot cleaning type dust removing apparatus according to one embodiment of the present invention.
FIG. 7 is a schematic configuration diagram of a heat exchanger of a conventional dust cleaning apparatus of a shot cleaning type.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Inlet duct 2 Outlet duct 3 Supply feeder 4 Steel ball distributor 5 Steel ball distributor 6 Heat transfer tube group 7 Hopper 8 Dust separator 9 Steel ball discharger 10 Steel ball transporter 11 Steel ball 12 Gas steel ball separator 13 Gas rectification Board

Claims (6)

ボイラなどの燃焼装置から排出される排ガスを入口ダクトから導入し、出口ダクトから排出する流路を有し、該流路内に熱交換部を備え、該熱交換部の伝熱管などに鋼球を散布して該伝熱管に付着した煤塵を除去するショットクリーニング装置を備えた熱交換器において、
前記熱交換部の内部に出口ダクトに接続したダクト状の仕切を設けたガス鋼球分離部を設け、該ガス鋼球分離部のガス吸込み口を該出口ダクトよりも下方に配置したことを特徴とする熱交換器。
A flow passage for introducing exhaust gas discharged from a combustion device such as a boiler from an inlet duct and discharging the exhaust gas from an outlet duct is provided with a heat exchange unit in the flow passage. In a heat exchanger equipped with a shot cleaning device for spraying and removing dust adhering to the heat transfer tube,
A gas steel ball separating section provided with a duct-shaped partition connected to an outlet duct is provided inside the heat exchange section, and a gas inlet of the gas steel ball separating section is arranged below the outlet duct. And heat exchanger.
ガス鋼球分離部に続く出口ダクトを鉛直上方又は略鉛直上方に向かう鉛直ダクト部分と該鉛直ダクト部分に続く水平ダクト部分で構成したことを特徴とする請求項1記載の熱交換器。2. The heat exchanger according to claim 1, wherein the outlet duct following the gas steel ball separating section is constituted by a vertical duct portion extending vertically upward or substantially vertically upward and a horizontal duct portion following the vertical duct portion. ガス鋼球分離部のガス吸込み口を鉛直下方又は略鉛直下方に向けたことを特徴とする請求項1又は2記載の熱交換器。The heat exchanger according to claim 1, wherein a gas inlet of the gas steel ball separating unit is directed vertically downward or substantially vertically downward. ガス鋼球分離部のガス吸込み口を鉛直下方又は略鉛直下方に向け、さらに該吸込み口に続けて鉛直ダクト部を備えた出口ダクトへの接続部を設けたことを特徴とする請求項1ないし3のいずれかに記載の熱交換器。The gas suction port of the gas steel ball separating section is directed vertically downward or substantially vertically downward, and a connection portion to an outlet duct having a vertical duct section is provided following the suction port. 4. The heat exchanger according to any one of 3. ガス鋼球分離部と該ガス鋼球分離部に接続した出口ダクトを2系統以上設けたことを特徴とする請求項1ないし4のいずれかに記載の熱交換器。The heat exchanger according to any one of claims 1 to 4, wherein two or more systems are provided with a gas steel ball separating part and an outlet duct connected to the gas steel ball separating part. 出口ダクトにはガス整流板を設けたことを特徴とする請求項1ないし5のいずれかに記載の熱交換器。The heat exchanger according to any one of claims 1 to 5, wherein a gas straightening plate is provided in the outlet duct.
JP2003130488A 2003-05-08 2003-05-08 Heat exchanger Pending JP2004333034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003130488A JP2004333034A (en) 2003-05-08 2003-05-08 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003130488A JP2004333034A (en) 2003-05-08 2003-05-08 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2004333034A true JP2004333034A (en) 2004-11-25

Family

ID=33506004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003130488A Pending JP2004333034A (en) 2003-05-08 2003-05-08 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2004333034A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102494345A (en) * 2011-12-26 2012-06-13 无锡东马锅炉有限公司 High-efficiency waste liquid combustion boiler
JP2013221645A (en) * 2012-04-13 2013-10-28 Nippon Steel & Sumikin Engineering Co Ltd Shot ball scattering device and shot ball scattering method for shot cleaning, and boiler
JP6384014B1 (en) * 2018-04-09 2018-09-05 三菱重工環境・化学エンジニアリング株式会社 Boiler water pipe adhering ash removal system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102494345A (en) * 2011-12-26 2012-06-13 无锡东马锅炉有限公司 High-efficiency waste liquid combustion boiler
JP2013221645A (en) * 2012-04-13 2013-10-28 Nippon Steel & Sumikin Engineering Co Ltd Shot ball scattering device and shot ball scattering method for shot cleaning, and boiler
JP6384014B1 (en) * 2018-04-09 2018-09-05 三菱重工環境・化学エンジニアリング株式会社 Boiler water pipe adhering ash removal system

Similar Documents

Publication Publication Date Title
EP0689654B1 (en) Fluidized bed reactor with particle return
US7100521B2 (en) Baffle for increased capture of popcorn ash in economizer hoppers
CA1264606A (en) Fluidized bed combustor having integral solids separator
CN101362037B (en) Pulse blade demister
WO2016163449A1 (en) Exhaust gas treatment device
JP2009074770A (en) Coal fired power generation system and method for enlarging mean particle diameter of fly ash
SE530684C2 (en) Scrubber device for purification of gases
JP2004333034A (en) Heat exchanger
US2677437A (en) Heating system and low draft loss dust collector for use therein
EP2927581B1 (en) Space saving arrangement in a boiler
JPH0538028Y2 (en)
WO2019168059A1 (en) Exhaust gas treatment device
CN208448826U (en) High flow rate deflector type liquid drop separator
RU2640859C2 (en) Device for energy recovery
JP5915351B2 (en) Dust remover
JP6958904B2 (en) Dust collector pretreatment device
JPS593280Y2 (en) Shot cleaning device equipped with a soot conveying pipe
GB2142407A (en) Cleaning heat exchangers
JP2002267394A (en) Air-preheating apparatus
JP7441014B2 (en) pre duster
JP6785046B2 (en) How to remove exhaust ducts, boilers and solid particles
JPS62144725A (en) Dust removing apparatus
JPS6131815Y2 (en)
RU2186610C2 (en) Ash collector
KR20240032508A (en) A Collection Device That Uses The Vortex of The Fluid to Increase The Collection Efficiency