JP2004332230A - Method for force-feeding fine grain material - Google Patents

Method for force-feeding fine grain material Download PDF

Info

Publication number
JP2004332230A
JP2004332230A JP2003125387A JP2003125387A JP2004332230A JP 2004332230 A JP2004332230 A JP 2004332230A JP 2003125387 A JP2003125387 A JP 2003125387A JP 2003125387 A JP2003125387 A JP 2003125387A JP 2004332230 A JP2004332230 A JP 2004332230A
Authority
JP
Japan
Prior art keywords
fine
slurry
bubbles
fine bubbles
thickener
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003125387A
Other languages
Japanese (ja)
Other versions
JP4052970B2 (en
Inventor
Makoto Otsuka
誠 大塚
Shuji Isotani
修二 磯谷
Hisashi Fukada
久 深田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudo Tetra Corp
Original Assignee
Fudo Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudo Construction Co Ltd filed Critical Fudo Construction Co Ltd
Priority to JP2003125387A priority Critical patent/JP4052970B2/en
Publication of JP2004332230A publication Critical patent/JP2004332230A/en
Application granted granted Critical
Publication of JP4052970B2 publication Critical patent/JP4052970B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for force-feeding a fine grain material, in which the separation of the fine grain material is prevented while a fluid resistance can be lowered and the mixing ratio of a thickener can be reduced when the inside of a ground is supplied with the fine grain material such as sand, a silt, iron powder, iron oxide or the like together with water. <P>SOLUTION: A slurry containing the fine grain material, the thickener and water is prepared, the fine bubble-filled slurry is obtained by supplying fine bubbles from the bottom section of the slurry in an agitating tank and the fine bubble-filled slurry is force-fed into the ground by a pump. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、セメントを含まない細粒材含有スラリーを、細粒材が均一に分散された状態で地中に圧送する細粒材の圧送方法に関するものである。
【0002】
【従来の技術】
地盤改良工法あるいは汚染地盤浄化工法等においては、地上より種々の改良材や浄化材が地中に均一に供給される。地盤改良工法における圧送材料としては、例えば水とセメントからなるセメントスラリー、あるいは水、セメント及び細骨材からなるモルタル等が挙げられる。この場合、地中にセメントを均一に供給するには、セメントスラリーやモルタルが流動性を有し、且つ材料分離が起こらないことが要求される。
【0003】
一方、地中に透水性を高めた透水層や透水壁を造成する場合、砂やシルトを水と共に地中に供給することがある。また、地中に浄化層や浄化壁を造成する場合、鉄粉や酸化鉄を水と共に供給することがある。いずれの場合もセメントを使用しないため、水に不溶の砂等の細粒材をポンプで圧送することは困難である。このような場合、スラリー中の細粒材の分離を防止するため、増粘材を配合する方法が採られている。増粘材は細粒材の分離を防止する一方、その配合割合が増加すると流動性が低下し、管路抵抗が増大してエネルギー消費が増えるという問題がある。また、増粘材はその配合割合を出来る限り減らすことができれば、コスト削減にもなる。従って、砂やシルト等、鉄粉や酸化鉄等の細粒材を水と共に地中に供給する際、材料分離を防止すると共に流動抵抗を低減でき、更に増粘材の配合割合を減らすことができれば、省エネルギー化及びコスト低減化が図れるため極めて都合がよい。
【0004】
【発明が解決しようとする課題】
従って、本発明の目的は、砂、シルト、鉄粉及び酸化鉄等の細粒材を水と共に地中に供給する際、細粒材の分離を防止すると共に流動抵抗を低減でき、更に増粘材の配合割合を減らすことができる細粒材の圧送方法を提供するものである。
【0005】
【課題を解決するための手段】
かかる実情において、本発明者等は鋭意検討を行った結果、細粒材、増粘材及び水を含有するスラリーの底部から微細気泡を供給して、微細気泡入りスラリーを得、これをポンプにて地中に供給すれば、微細気泡の浮力による細粒材の分離防止効果と微細気泡の摩擦低減効果により、増粘材の配合割合を減らしても、細粒材の分離を防止できると共にスラリーの流動抵抗を低減できることなどを見出し、本発明を完成するに至った。
【0006】
すなわち、本発明(1)は、細粒材、増粘材及び水を含有するスラリーを調製し、攪拌槽内の該スラリーの底部から微細気泡を供給して微細気泡入りスラリーを得、次いで該微細気泡入りスラリーをポンプにて地中に圧送する細粒材の圧送方法を提供するものである。本発明によれば、細粒材を微細気泡入りスラリーとして地中に圧送するため、微細気泡の浮力による細粒材分離防止効果と微細気泡の摩擦低減効果により増粘材の配合割合を減らしても、細粒材の分離を防止できると共にスラリーの流動抵抗を低減できるため、省エネルギー化できると共にコスト低減を図ることができる。
【0007】
また、本発明(2)は、前記ポンプにて地中に圧送する際、ポンプ吸引側から微細気泡を更に供給する細粒材の圧送方法を提供するものである。本発明によれば、微細気泡入りスラリーをポンプで圧送する直前で、更に微細気泡を供給するため、ポンプ吐出側の送液管において、微細気泡の摩擦低減効果をより確実に発揮させることができる。
【0008】
また、本発明(3)は、前記細粒材が、砂、シルト、金属系還元材及び酸化鉄系分解材から選ばれる1種又は2種以上である前記細粒材の圧送方法を提供するものである。本発明によれば、前記発明と同様の効果を奏す他、砂やシルトを用いる地盤改良工法、あるいは金属系還元材や酸化鉄系分解材を用いる汚染地盤浄化工法などにおいて有用である。
【0009】
また、本発明(4)は、前記増粘材が、生分解性ポリマーである前記細粒材の圧送方法を提供するものである。本発明によれば、前記発明と同様の効果を奏す他、公知の増粘材が適用できる。
【0010】
【発明の実施の形態】
本発明の細粒材の圧送方法は、細粒材、増粘材及び水を含有するスラリーを調製し、攪拌槽内の該スラリーの底部から微細気泡を供給して微細気泡入りスラリーを得、次いで該微細気泡入りスラリーをポンプにて地中に圧送する方法である。以下、各工程毎に説明する。
【0011】
(スラリーの調整)
細粒材としては、地盤改良工法や汚染地盤浄化工法等で地中に供給される細粒材であれば、特に制限されず、例えば砂、シルト、金属系還元材及び酸化鉄系分解材が挙げられる。この細粒材はこれらの1種単独又は2種以上を組み合わせて用いることができる。また、細粒材の粒径は、特に制限されないが、通常0.005〜0.3mmである。粒径が0.3mmを超えるものは、増粘材や微細気泡を併用しても、細粒材をスラリー中に均一分散し難くなる点で好ましくない。また、スラリー中には、本発明の作用効果を奏する限り、細粒材以外に、細砂より粒径が大きい中砂や粗砂が含まれていてもよく、シルトより粒径が小さな粘土が含まれていてもよい。
【0012】
金属系還元材としては、例えば鉄又は亜鉛の金属粉体、若しくはそれらの合金又は化合物の粉体等が挙げられ、このうち、鉄粉が安価であり且つ廃棄物として排出されるものも使用できる点で好適である。酸化鉄系分解材としては、例えば酸化チタン製造工程から副生する含鉄硫酸から合成したマグネタイト系酸化チタン副生酸化鉄を活性処理した市販のものが使用できる。また、汚染物質分解材として、特開2002−317202号公報に記載のような金属系還元材と酸化鉄系分解材の複合材料を使用することもできる。
【0013】
増粘材としては、特に制限されないが、例えば生分解性ポリマーが挙げられる。生分解性ポリマーは、細粒材含有スラリーに混合されて地上から地中に供給される際、細粒材を均一に分散する分散剤として作用すると共に、地中に供給された後は、例えば約1週間程度で分解され、地下水と共に流出するため、地中に空隙を生み透水性を与える機能を果たす。生分解性ポリマーとしては、特に制限されず、例えば天然又は合成の水溶性高分子が挙げられ、具体的にはポリ乳酸系;カルボキシメチルセルローズ(CMC)等のセルローズ系高分子;可溶性澱粉及びカルボキシメチルスターチ(CMS)等の澱粉系高分子が例示される。このうち、セルローズ系高分子が、該高分子の増粘作用による細粒材分散機能を発揮すると共に、地中においては比較的短期間で分解される点で好ましい。
【0014】
細粒材の配合量としては、特に制限されないが、水100重量部に対して50〜150重量部程度である。この水の量は地中に圧送される微細気泡入りスラリー状態における量であり、このスラリー調製工程においては、後述する微細気泡を供給する際に混入する水の量を考慮して、少なめの配合となる。50重量部未満であると、圧送量が増加し、コストアップとなる点で好ましくなく、150重量部を超えると、増粘材や微細気泡を併用しても、細粒材をスラリー中に均一分散することが困難となる。また、増粘材の配合量としては、特に制限されないが、スラリー中、0.3〜2.0重量%程度である。増粘材の配合量は、該スラリーに微細気泡が供給されるため、該微細気泡が供給されない場合に比べて約30〜50%使用量を減らすことができる。増粘材の配合量が0.5重量%未満では、例え微細気泡を用いても細粒材の均一な分散は困難となる。一方、1.0重量%を超えると分散効果が飽和するため、それ以上の配合は無駄となる。当該スラリーの物性値としては、例えばフロー値が300〜500mmである。細粒材、増粘材及び水を含有するスラリーを調製する装置としては、公知の攪拌手段を有するミキサー及び気泡供給工程で用いる攪拌槽が挙げられる。
【0015】
(微細気泡入りスラリーの調製)
微細気泡入りスラリーは、前記方法により得られたスラリーに微細気泡を供給して調製される。微細気泡入りスラリーの調製で用いる攪拌槽としては、特に制限されず、例えばタンク内の底部に付設される微細気泡供給手段と、例えば機械式攪拌羽根を有する攪拌手段を備えるものが好ましい。微細気泡供給手段は更に、気泡導入管を介して攪拌槽外に設置された微細気泡発生手段に接続されている。微細気泡供給手段は、微細気泡発生手段で発生した微細気泡を攪拌槽内全体に行き渡らせるものである。微細気泡供給手段としては、特に制限されないが、例えば内部に空洞を有する平板状の箱体であって、箱体の天板には気泡を含む水やスラリー等を排出できる多数の孔部が形成されたものが使用できる。
【0016】
微細気泡発生手段はスラリー中に微細気泡を発生させるものである。微細気泡としては、例えば最頻値における気泡の直径が通常10〜50μm、好ましくは10〜20μmのものであり、最大気泡直径が80μm、好ましくは50μmのものである。微細気泡発生手段としては、特に制限されないが、例えば、公知のマイクロバブル発生装置及び超音波発振装置が挙げられる。マイクロバブル発生装置は、キャビテーションポンプの一次側で気体を吸い込ませ、ポンプ吐出口に取り付けた旋回加速器で安定した混合比率で送り出し配管先端に付けた分散器のせん断力で微細気泡を発生させる装置、あるいは特開2001−58142号公報に記載されたマイクロバブル吐出ノズル等が挙げられる。微細気泡発生手段は、エアーコンプレッサーを必要とするものであってもよいし、不要とするものであってもよい。このうち、エアーコンプレッサーが不要なタイプのものであると装置の運転を低コスト化できるため好ましい。また、微細気泡発生装置は、水中ポンプ型、陸上ポンプ型等のいずれのものであってもよい。なお、微細気泡の直径や分布は、例えばタンクにガラス窓を設け、ここからビデオカメラによる約200倍の接写撮影によって確認することができる。
【0017】
攪拌槽に入れられたスラリーは、この攪拌槽内で調製されたものでもよく、別途のミキサーで調製され、その後この攪拌槽に供給されたものであってもよい。スラリーの底部から供給される微細気泡の供給量としては、特に制限されず、適宜決定されるが、攪拌槽のスラリー上面に微細気泡が表れた時点で微細気泡の供給を停止することが、スラリー全体に微細気泡が供給されたことを確実に確認できる点で好ましい。また、スラリーの底部から供給される微細気泡は、水と共に供給されるため、微細気泡入りスラリー中の水の配合量は、微細気泡が供給される前のスラリー中の水の配合量と、微細気泡に同伴して供給される水との合計量となる。気泡供給工程を終えると、細粒材及び微細気泡がスラリー中、均一に分散された状態となり、細粒材は増粘材の増粘効果と微細気泡の浮力による分散効果により、スラリー中、少なくとも2時間は均一に分散された状態にある。
【0018】
(微細気泡入りスラリーの圧送)
前記微細気泡入りスラリーは、直ちに細粒材の分離を起こさないものの、速やかに地中に圧送されることが好ましい。圧送で用いるポンプとしては、特に制限されないが、通常セメントスラリーの圧送等で用いられるグラウトポンプが適用できる。このグラウトポンプは、ポンプ吸引側に微細気泡を供給するノズルが接続されたポンプが好ましい。このノズルの配設個数は、1個又は複数個であり、通常1〜2個である。ノズルの設置場所は、1個設置の場合、ポンプ吸引管の最下面とし、複数個設置する場合でも、ポンプ吸引管の下方面に設置することが、微細気泡をスラリー全体に供給できる点で好ましい。このノズルから微細気泡入りスラリーに微細気泡を更に供給することにより、微細気泡の摩擦低減効果をより確実に発揮させることができる。微細気泡の摩擦低減効果とは、微細気泡が例えば送液管の管内表面に沿う境界層中に集まり層状に分布するため、水の摩擦がそれだけ遮断され減少する効果を言う。
【0019】
本発明の細粒材の圧送方法は、原位置混合攪拌工法、噴射工法、地中浄化体構築工法などに適用することができる。
【0020】
【実施例】
次に、実施例を挙げて本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。
実施例1
細砂20重量部、増粘材であるCMC0.2重量部及び水16.7重量部をミキサーに供給し、10分間攪拌し、均一スラリーを調製した。次いで、該スラリーを下方に微細気泡供給手段(旋回器型;協和エンジニアリング社製)を有するアジテーターに移送した。微細気泡供給手段を気泡混じり水を11リットル/分の条件で駆動させた。0.3分後、スラリー表面に微細気泡が現れたため、微細気泡供給手段の駆動を停止して微細気泡入りスラリーを得た。ビデオカメラによる約200倍の接写撮影によりスラリー中の微細気泡は、最頻値における気泡の直径が20μmであり、最大気泡直径が50μmであった。得られた微細気泡入りスラリーの一部を1リットルのメスシリンダに移し採り、室温で静置し、細粒材の分離状態を観察したところ、2時間経過後も均一に分散された状態であった。
【0021】
比較例1
スラリーに微細気泡を供給しない以外は、実施例1と同様の方法で行なった。微細気泡を供給しなくても、スラリー調製時の攪拌により巻き込まれた気泡がスラリー中に存在する。ビデオカメラによる約200倍の接写撮影によりスラリー中の気泡は、最頻値における気泡の直径が500μmであり、最大気泡直径が1000μmであった。得られたスラリーの一部を1リットルのメスシリンダーに移し採り、室温で静置し、細粒材の分離状態を観察したところ、30分経過後に細砂の分離が観察された。
【0022】
実施例2及び実施例3
CMC0.2重量部に代えて、CMC0.16重量部(実施例2)及びCMC0.10重量部(実施例3)とした以外は、実施例1と同様の方法で行なった。微細気泡すなわち、実施例2は実施例1のCMC量のCMCの20%減とし、実施例3は実施例1のCMC量の半分として行なったものである。実施例2及び3共に得られた微細気泡入りスラリーの微細気泡の直径は実施例1とほぼ同じであった。また、一部を1リットルのメスシリンダーに移し採り、室温で静置し、細粒材の分離状態を観察したところ、実施例2では2時間経過後も均一に分散された状態であり、実施例3では約2時間経過時点で、細粒材が分離する傾向が観察された。原位置攪拌混合工法などで地上で調製されるスラリーは、通常1時間程度で地中に圧送されるため、2時間での分離は問題とならない。
【0023】
【発明の効果】
本発明によれば、細粒材を微細気泡入りスラリーとして地中に圧送するため、微細気泡の浮力による細粒材分離防止効果と微細気泡の摩擦低減効果により増粘材の配合割合を減らしても、細粒材の分離を防止できると共にスラリーの流動抵抗を低減できるため、省エネルギー化できると共にコスト低減を図ることができる。また、本発明によれば、微細気泡入りスラリーをポンプで圧送する直前で、更に微細気泡を供給するため、ポンプ吐出側の送液管において、微細気泡の摩擦低減効果をより確実に発揮させることができる。本発明によれば、砂やシルトを用いる地盤改良工法、あるいは金属系還元材や酸化鉄系分解材を用いる汚染地盤浄化工法などにおいて有用である。
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a method for pumping fine-grained material, in which a slurry containing fine-grained material containing no cement is pumped into the ground in a state where the fine-grained material is uniformly dispersed.
[0002]
[Prior art]
In the ground improvement method or the contaminated ground purification method, various improvement materials and purification materials are uniformly supplied from the ground to the ground. Examples of the pumping material in the ground improvement method include a cement slurry composed of water and cement, or a mortar composed of water, cement and fine aggregate. In this case, in order to uniformly supply the cement into the ground, it is required that the cement slurry and the mortar have fluidity and no material separation occurs.
[0003]
On the other hand, when creating a permeable layer or a permeable wall with increased water permeability in the ground, sand or silt may be supplied to the ground together with water. When a purification layer or a purification wall is formed underground, iron powder or iron oxide may be supplied together with water. In any case, since cement is not used, it is difficult to pump fine particles such as sand insoluble in water by pumping. In such a case, in order to prevent separation of the fine-grained material in the slurry, a method of blending a thickener has been adopted. While the thickener prevents separation of the fine-grained material, there is a problem in that when the blending ratio increases, the fluidity decreases, the pipe resistance increases, and the energy consumption increases. In addition, if the compounding ratio of the thickener can be reduced as much as possible, the cost can be reduced. Therefore, when fine particles such as iron powder and iron oxide such as sand and silt are supplied into the ground together with water, material separation can be prevented, flow resistance can be reduced, and the mixing ratio of the thickener can be further reduced. If possible, energy saving and cost reduction can be achieved, which is extremely convenient.
[0004]
[Problems to be solved by the invention]
Therefore, an object of the present invention is to prevent the separation of the fine-grained material, reduce the flow resistance, and further increase the viscosity when supplying fine-grained material such as sand, silt, iron powder and iron oxide to the ground together with water. An object of the present invention is to provide a method of pumping fine-grained material capable of reducing the mixing ratio of the material.
[0005]
[Means for Solving the Problems]
Under these circumstances, the present inventors have conducted intensive studies and as a result, supplied fine bubbles from the bottom of the slurry containing the fine-grained material, the thickener and the water to obtain a slurry containing fine bubbles, and then supplied the slurry to the pump. When supplied into the ground, the effect of preventing the separation of fine particles due to the buoyancy of the fine bubbles and the effect of reducing the friction of the fine bubbles can prevent the separation of the fine particles even if the mixing ratio of the thickener is reduced, and the slurry The present inventors have found that the flow resistance can be reduced, and have completed the present invention.
[0006]
That is, in the present invention (1), a slurry containing a fine-grained material, a thickener and water is prepared, and fine bubbles are supplied from the bottom of the slurry in a stirring tank to obtain a slurry containing fine bubbles. An object of the present invention is to provide a method of pumping a fine-grained material in which a slurry containing fine bubbles is pumped underground by a pump. According to the present invention, since the fine-grained material is pumped into the ground as a slurry containing fine bubbles, the compounding ratio of the thickener is reduced by the effect of preventing the fine-grained materials from separating due to the buoyancy of the fine bubbles and the effect of reducing the friction of the fine bubbles. In addition, the separation of the fine particles can be prevented and the flow resistance of the slurry can be reduced, so that energy can be saved and the cost can be reduced.
[0007]
Further, the present invention (2) provides a method of pumping a fine grain material which further supplies fine bubbles from the pump suction side when the pump is pumped into the ground by the pump. According to the present invention, just before the slurry containing fine bubbles is pumped by the pump, the fine bubbles are further supplied. Therefore, in the liquid feed pipe on the pump discharge side, the effect of reducing the friction of the fine bubbles can be more reliably exerted. .
[0008]
Further, the present invention (3) provides a method for pumping the fine-grained material, wherein the fine-grained material is one or more kinds selected from sand, silt, a metal-based reducing material, and an iron oxide-based decomposed material. Things. According to the present invention, in addition to having the same effects as the above invention, the present invention is useful in a soil improvement method using sand or silt, or a contaminated soil purification method using a metal-based reducing material or an iron oxide-based decomposition material.
[0009]
Further, the present invention (4) provides a method for pumping the fine-grained material, wherein the thickener is a biodegradable polymer. According to the present invention, besides having the same effects as the above-mentioned invention, a known thickener can be applied.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
The method for feeding fine-grained material of the present invention is to prepare a slurry containing fine-grained material, thickener and water, and to supply fine bubbles from the bottom of the slurry in a stirring tank to obtain a slurry containing fine bubbles. Then, the slurry containing the fine bubbles is pumped underground by a pump. Hereinafter, each step will be described.
[0011]
(Adjustment of slurry)
The fine-grained material is not particularly limited as long as the fine-grained material is supplied into the ground by a ground improvement method or a contaminated ground purification method, and examples thereof include sand, silt, a metal-based reducing material, and an iron oxide-based decomposing material. No. These fine particles can be used alone or in combination of two or more. The particle size of the fine grain material is not particularly limited, but is usually 0.005 to 0.3 mm. Particles having a particle size of more than 0.3 mm are not preferred because even if a thickener or fine bubbles are used in combination, it becomes difficult to uniformly disperse the fine-grained material in the slurry. In addition, the slurry may contain, in addition to the fine-grained material, medium sand or coarse sand having a larger particle diameter than the fine sand, as long as the effect of the present invention is exerted. May be included.
[0012]
Examples of the metal-based reducing material include metal powders of iron or zinc, or powders of alloys or compounds thereof, and among them, those in which iron powder is inexpensive and discharged as waste can also be used. It is preferable in this respect. As the iron oxide-based decomposition material, for example, a commercially available iron oxide-based by-produced magnetite-based titanium oxide synthesized from iron-containing sulfuric acid produced as a by-product from the titanium oxide production process can be used. In addition, as the pollutant decomposing material, a composite material of a metal-based reducing agent and an iron oxide-based decomposing material as described in JP-A-2002-317202 can be used.
[0013]
The thickener is not particularly limited, but includes, for example, a biodegradable polymer. When the biodegradable polymer is mixed into the fine-grained material-containing slurry and supplied from the ground to the ground, it acts as a dispersant for uniformly dispersing the fine-grained material, and after being supplied to the ground, for example, It is decomposed in about one week and flows out together with the groundwater, thus creating a void in the ground and providing water permeability. The biodegradable polymer is not particularly limited, and includes, for example, a natural or synthetic water-soluble polymer. Specific examples include polylactic acid; cellulose-based polymers such as carboxymethyl cellulose (CMC); Examples include starch-based polymers such as methyl starch (CMS). Among them, a cellulose-based polymer is preferable because it exhibits a function of dispersing fine particles due to the thickening action of the polymer and is decomposed in the ground in a relatively short period of time.
[0014]
The blending amount of the fine grain material is not particularly limited, but is about 50 to 150 parts by weight based on 100 parts by weight of water. This amount of water is the amount in the state of slurry containing microbubbles that are pumped into the ground, and in this slurry preparation process, a small amount of water is mixed in consideration of the amount of water mixed when supplying the microbubbles described later. It becomes. If it is less than 50 parts by weight, the amount of pumping increases and the cost is increased, which is not preferable. If it exceeds 150 parts by weight, even if a thickener and fine bubbles are used together, the fine-grained material is uniformly dispersed in the slurry. It becomes difficult to disperse. The amount of the thickener is not particularly limited, but is about 0.3 to 2.0% by weight in the slurry. Since the fine bubbles are supplied to the slurry, the amount of the thickener can be reduced by about 30 to 50% compared to the case where the fine bubbles are not supplied. If the amount of the thickener is less than 0.5% by weight, it is difficult to uniformly disperse the fine-grained material even if fine bubbles are used. On the other hand, if the content exceeds 1.0% by weight, the dispersing effect is saturated, so that further mixing is useless. The physical property value of the slurry is, for example, a flow value of 300 to 500 mm. Examples of an apparatus for preparing a slurry containing a fine-grained material, a thickener, and water include a mixer having a known stirring means and a stirring tank used in a bubble supply step.
[0015]
(Preparation of slurry containing fine bubbles)
The slurry containing fine bubbles is prepared by supplying fine bubbles to the slurry obtained by the above method. The stirring tank used in the preparation of the slurry containing fine bubbles is not particularly limited. For example, a stirring tank provided with a fine bubble supply means attached to the bottom of the tank and a stirring means having a mechanical stirring blade is preferable. The fine bubble supply means is further connected to a fine bubble generation means provided outside the stirring tank via a bubble introduction pipe. The fine bubble supply means spreads the fine bubbles generated by the fine bubble generation means throughout the inside of the stirring tank. The fine bubble supply means is not particularly limited. For example, the fine bubble supply means is a flat box having a cavity therein, and the top plate of the box has a large number of holes through which water or slurry containing bubbles can be discharged. Can be used.
[0016]
The fine bubble generating means generates fine bubbles in the slurry. The microbubbles have, for example, a mode diameter of 10 to 50 μm, preferably 10 to 20 μm at the mode, and a maximum bubble diameter of 80 μm, preferably 50 μm. The fine bubble generating means is not particularly limited, and includes, for example, a known microbubble generating device and a known ultrasonic oscillator. The micro-bubble generator is a device that sucks gas on the primary side of the cavitation pump, generates fine bubbles by the shearing force of the disperser attached to the tip of the pipe at a stable mixing ratio with the swirl accelerator attached to the pump outlet, Alternatively, a microbubble discharge nozzle described in JP-A-2001-58142 may be used. The microbubble generating means may or may not require an air compressor. Of these, it is preferable to use an air compressor that does not require an air compressor because the operation of the apparatus can be reduced in cost. Further, the microbubble generator may be of any type such as a submersible pump type and a land pump type. The diameter and distribution of the microbubbles can be confirmed by, for example, providing a glass window in the tank and performing close-up photography of about 200 times with a video camera.
[0017]
The slurry put in the stirring tank may be prepared in the stirring tank, or may be prepared by a separate mixer and then supplied to the stirring tank. The supply amount of the fine bubbles supplied from the bottom of the slurry is not particularly limited and is appropriately determined. However, when the fine bubbles appear on the upper surface of the slurry in the stirring tank, the supply of the fine bubbles may be stopped. This is preferable in that it is possible to reliably confirm that fine bubbles have been supplied to the whole. In addition, since the fine bubbles supplied from the bottom of the slurry are supplied together with water, the amount of water in the slurry containing fine bubbles is equal to the amount of water in the slurry before the fine bubbles are supplied. It is the total amount of water supplied along with the bubbles. When the bubble supply step is completed, the fine-grained material and the fine air bubbles are uniformly dispersed in the slurry, and the fine-grained material is at least in the slurry due to the thickening effect of the thickener and the dispersion effect of the buoyancy of the fine air bubbles. For 2 hours, it is in a uniformly dispersed state.
[0018]
(Pressure feeding of slurry containing fine bubbles)
Although the slurry containing fine bubbles does not immediately cause the separation of the fine-grained material, it is preferable that the slurry be rapidly pressed into the ground. The pump used for pumping is not particularly limited, but a grout pump usually used for pumping cement slurry or the like can be applied. This grout pump is preferably a pump in which a nozzle for supplying fine bubbles is connected to the pump suction side. The number of the nozzles is one or more, and is usually one or two. When one nozzle is installed, the nozzle is located at the lowermost surface of the pump suction pipe. Even when a plurality of nozzles are installed, it is preferable to install the nozzle on the lower surface of the pump suction pipe because fine bubbles can be supplied to the entire slurry. . By further supplying fine bubbles to the slurry containing fine bubbles from this nozzle, the effect of reducing friction of the fine bubbles can be more reliably exerted. The effect of reducing the friction of the fine bubbles refers to an effect in which the fine water bubbles are collected in a boundary layer along the inner surface of the liquid transfer pipe and distributed in a layered manner, so that the friction of water is cut off and reduced accordingly.
[0019]
The method for pressure-feeding fine-grained materials of the present invention can be applied to an in-situ mixing and stirring method, an injection method, an underground purification body construction method, and the like.
[0020]
【Example】
Next, the present invention will be described in more detail with reference to examples. However, this is merely an example and does not limit the present invention.
Example 1
20 parts by weight of fine sand, 0.2 parts by weight of CMC as a thickener and 16.7 parts by weight of water were supplied to a mixer and stirred for 10 minutes to prepare a uniform slurry. Next, the slurry was transferred to an agitator having a fine bubble supply means (a swirler type; manufactured by Kyowa Engineering Co., Ltd.) below. The microbubble supply means was driven at a rate of 11 liters / minute with bubbles mixed. After 0.3 minutes, fine bubbles appeared on the surface of the slurry, and the driving of the fine bubble supply means was stopped to obtain a slurry containing fine bubbles. The microbubbles in the slurry had a mode diameter of 20 μm and a maximum bubble diameter of 50 μm in the mode by close-up photography of about 200 times with a video camera. A part of the obtained slurry containing microbubbles was transferred to a 1-liter graduated cylinder, allowed to stand at room temperature, and the state of separation of the fine particles was observed. Was.
[0021]
Comparative Example 1
The procedure was performed in the same manner as in Example 1 except that fine bubbles were not supplied to the slurry. Even if fine bubbles are not supplied, bubbles entrained by stirring during slurry preparation are present in the slurry. The bubbles in the slurry were 500 μm in mode at the most frequent value and 1000 μm in maximum bubble diameter by close-up photography of about 200 times with a video camera. A part of the obtained slurry was transferred to a 1-liter graduated cylinder, allowed to stand at room temperature, and the state of separation of the fine particles was observed. After 30 minutes, fine sand was separated.
[0022]
Example 2 and Example 3
The same procedure as in Example 1 was carried out except that 0.16 parts by weight of CMC (Example 2) and 0.10 parts by weight of CMC (Example 3) were used instead of 0.2 parts by weight of CMC. The microbubbles, that is, Example 2 was performed by reducing the CMC amount of Example 1 by 20%, and Example 3 was performed by reducing the CMC amount of Example 1 by half. The diameter of the microbubbles of the slurry containing microbubbles obtained in both Examples 2 and 3 was almost the same as that of Example 1. Further, a part was transferred to a 1-liter graduated cylinder, left at room temperature, and the separated state of the fine-grained material was observed. In Example 2, the fine-grained material was uniformly dispersed even after 2 hours. In Example 3, the tendency of the fine-grained material to separate was observed after about 2 hours. The slurry prepared on the ground by the in-situ stirring mixing method or the like is usually pumped underground in about one hour, so that separation in two hours does not pose a problem.
[0023]
【The invention's effect】
According to the present invention, because the fine-grained material is pumped into the ground as a slurry containing fine bubbles, the compounding ratio of the thickener is reduced by the effect of preventing the fine-grained materials from separating due to the buoyancy of the fine bubbles and the effect of reducing the friction of the fine bubbles. In addition, the separation of the fine particles can be prevented and the flow resistance of the slurry can be reduced, so that energy can be saved and the cost can be reduced. Further, according to the present invention, in order to further supply the fine bubbles immediately before the slurry containing the fine bubbles is pressure-fed by the pump, it is possible to more reliably exert the effect of reducing the friction of the fine bubbles in the liquid delivery pipe on the pump discharge side. Can be. INDUSTRIAL APPLICABILITY The present invention is useful in a soil improvement method using sand or silt, or a contaminated ground purification method using a metal-based reducing material or an iron oxide-based decomposition material.

Claims (4)

細粒材、増粘材及び水を含有するスラリーを調製し、攪拌槽内の該スラリーの底部から微細気泡を供給して微細気泡入りスラリーを得、次いで該微細気泡入りスラリーをポンプにて地中に圧送することを特徴とする細粒材の圧送方法。A slurry containing a fine-grained material, a thickener and water is prepared, and fine bubbles are supplied from the bottom of the slurry in a stirring tank to obtain a slurry containing fine bubbles. A method for pumping fine-grained material, wherein the method is carried out by pumping inside. 前記ポンプにて地中に圧送する際、ポンプ吸引側から微細気泡を更に供給することを特徴とする請求項1記載の細粒材の圧送方法。2. The method according to claim 1, further comprising supplying fine air bubbles from the pump suction side when the pump is pumped into the ground. 前記細粒材が、砂、シルト、金属系還元材及び酸化鉄系分解材から選ばれる1種又は2種以上であることを特徴とする請求項1又は2記載の細粒材の圧送方法。3. The method according to claim 1, wherein the fine-grained material is at least one selected from sand, silt, a metal-based reducing material, and an iron oxide-based decomposed material. 前記増粘材が、生分解性ポリマーであることを特徴とする請求項1〜3のいずれか1項記載の細粒材の圧送方法。The method according to any one of claims 1 to 3, wherein the thickener is a biodegradable polymer.
JP2003125387A 2003-04-30 2003-04-30 Fine grain pressure feeding method Expired - Fee Related JP4052970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003125387A JP4052970B2 (en) 2003-04-30 2003-04-30 Fine grain pressure feeding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003125387A JP4052970B2 (en) 2003-04-30 2003-04-30 Fine grain pressure feeding method

Publications (2)

Publication Number Publication Date
JP2004332230A true JP2004332230A (en) 2004-11-25
JP4052970B2 JP4052970B2 (en) 2008-02-27

Family

ID=33502668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003125387A Expired - Fee Related JP4052970B2 (en) 2003-04-30 2003-04-30 Fine grain pressure feeding method

Country Status (1)

Country Link
JP (1) JP4052970B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241777A (en) * 2005-03-02 2006-09-14 Shimizu Corp Chemical feeding method
JP2006272286A (en) * 2005-03-30 2006-10-12 Sumitomo Osaka Cement Co Ltd Grouting material for soil improvement and insolubilization method of soil contaminant using the same
JP2006336218A (en) * 2005-05-31 2006-12-14 Shimizu Corp Chemical grouting method and chemical grouting device
JP2007009422A (en) * 2005-06-28 2007-01-18 Shimizu Corp Chemical injection construction method and chemical injector
JP2007023496A (en) * 2005-07-12 2007-02-01 Shimizu Corp Chemical injection construction method, and chemical injection system
JP2010163619A (en) * 2010-02-15 2010-07-29 Sumitomo Osaka Cement Co Ltd Soil amelioration grouting material and method for insolubilizing soil pollutant using the grouting material
JP2014213250A (en) * 2013-04-24 2014-11-17 株式会社大林組 In-situ purification method and system for contaminated soil using air bubble and iron powder slurry
JP2015188773A (en) * 2014-03-27 2015-11-02 株式会社大林組 Method for forming underground purifying wall
JP5878972B1 (en) * 2014-12-24 2016-03-08 あおみ建設株式会社 Ground improvement method
JP2016121235A (en) * 2014-12-24 2016-07-07 あおみ建設株式会社 Grout used for ground improvement method
JP2017105909A (en) * 2015-12-09 2017-06-15 Kyb株式会社 Clarifier of organic contaminant, clarification method of organic contaminant and manufacturing method of clarifier of organic contaminant
JP2019104805A (en) * 2017-12-12 2019-06-27 ケミカルグラウト株式会社 Filling material
JP7418818B2 (en) 2020-06-22 2024-01-22 エースコン工業株式会社 Method of pumping washed sand

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241777A (en) * 2005-03-02 2006-09-14 Shimizu Corp Chemical feeding method
JP4512897B2 (en) * 2005-03-02 2010-07-28 清水建設株式会社 Chemical injection method
JP2006272286A (en) * 2005-03-30 2006-10-12 Sumitomo Osaka Cement Co Ltd Grouting material for soil improvement and insolubilization method of soil contaminant using the same
JP4588512B2 (en) * 2005-03-30 2010-12-01 住友大阪セメント株式会社 Soil-improving injection material and method for insolubilizing soil contaminants using the injection material
JP2006336218A (en) * 2005-05-31 2006-12-14 Shimizu Corp Chemical grouting method and chemical grouting device
JP4587039B2 (en) * 2005-06-28 2010-11-24 清水建設株式会社 Chemical injection method and chemical injection device
JP2007009422A (en) * 2005-06-28 2007-01-18 Shimizu Corp Chemical injection construction method and chemical injector
JP2007023496A (en) * 2005-07-12 2007-02-01 Shimizu Corp Chemical injection construction method, and chemical injection system
JP2010163619A (en) * 2010-02-15 2010-07-29 Sumitomo Osaka Cement Co Ltd Soil amelioration grouting material and method for insolubilizing soil pollutant using the grouting material
JP2014213250A (en) * 2013-04-24 2014-11-17 株式会社大林組 In-situ purification method and system for contaminated soil using air bubble and iron powder slurry
JP2015188773A (en) * 2014-03-27 2015-11-02 株式会社大林組 Method for forming underground purifying wall
JP5878972B1 (en) * 2014-12-24 2016-03-08 あおみ建設株式会社 Ground improvement method
JP2016121449A (en) * 2014-12-24 2016-07-07 あおみ建設株式会社 Ground improvement method
JP2016121235A (en) * 2014-12-24 2016-07-07 あおみ建設株式会社 Grout used for ground improvement method
JP2017105909A (en) * 2015-12-09 2017-06-15 Kyb株式会社 Clarifier of organic contaminant, clarification method of organic contaminant and manufacturing method of clarifier of organic contaminant
JP2019104805A (en) * 2017-12-12 2019-06-27 ケミカルグラウト株式会社 Filling material
JP7418818B2 (en) 2020-06-22 2024-01-22 エースコン工業株式会社 Method of pumping washed sand

Also Published As

Publication number Publication date
JP4052970B2 (en) 2008-02-27

Similar Documents

Publication Publication Date Title
JP2004332230A (en) Method for force-feeding fine grain material
CN100535257C (en) Jetting and agitating construction method and jetting and agitating device
CN108661703A (en) coarse fraction tailing paste filling method and filling system
CN204898647U (en) Multi -functional silt normal position solidification mixer
CN104446252A (en) Coal mine cemented filling material and filling method thereof
CN109019819A (en) For the reduction medicament of chlorohydrocarbon polluted underground water in-situ immobilization and its preparation and application method
CN101314244A (en) Vibration assisted mixer
JP4574640B2 (en) Paint waste liquid separation device and paint waste liquid separation method
JP5754882B2 (en) Ground improvement method
JP3201292B2 (en) Ground injection material injection method and ground injection material injection device
RU2206706C2 (en) Method of density control of grounting mortars and flushing fluids and device for method embodiment
JP3336448B2 (en) Lightweight soil production equipment for civil engineering
JP4592016B2 (en) Powder body injection method
JP4052987B2 (en) Construction method for lightweight solidified soil
JP6363988B2 (en) Cement milk manufacturing method and manufacturing apparatus
JP2007186364A (en) Method of producing hard-to-cake granulated blast furnace slag
JP2001079827A (en) In-pipeline mixing apparatus
JP4583108B2 (en) Soil improvement method
JP4341884B2 (en) Foundation pile forming composition, manufacturing method thereof, and foundation pile forming method
JPH0696940B2 (en) Viscosity-imparting material for earth pressure type shield construction method and earth pressure type shield construction method
JP2019157564A (en) Spray method of mortar or concrete, and spray device of the same
JP4321715B2 (en) Ground improvement method
JP2004044179A (en) Fluidized soil and manufacturing method for fluidized soil
JP2024051561A (en) Drilling mud, mud treatment equipment, drilling equipment, mud treatment method, drilling method
JP2000008773A (en) Method for propelling muddy water pressurizing buried pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees