JP2004332030A - Method of producing transparent electroconductive film - Google Patents

Method of producing transparent electroconductive film Download PDF

Info

Publication number
JP2004332030A
JP2004332030A JP2003127721A JP2003127721A JP2004332030A JP 2004332030 A JP2004332030 A JP 2004332030A JP 2003127721 A JP2003127721 A JP 2003127721A JP 2003127721 A JP2003127721 A JP 2003127721A JP 2004332030 A JP2004332030 A JP 2004332030A
Authority
JP
Japan
Prior art keywords
film
substrate
transparent
conductive film
transparent conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003127721A
Other languages
Japanese (ja)
Inventor
Tomohiko Maeda
智彦 前田
Kazuaki Sasa
和明 佐々
Kazunori Kawamura
和典 河村
Keiko Toyosawa
圭子 豊澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2003127721A priority Critical patent/JP2004332030A/en
Publication of JP2004332030A publication Critical patent/JP2004332030A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a transparent electroconductive film of low resistance by effectively reducing high energy particles made incident on a substrate and a film without requiring the remarkable reconstruction of a device. <P>SOLUTION: In the method of producing a transparent electroconductive film, a transparent electrically conductive film is formed on a transparent substrate 2 by a sputtering method. A box type shield wall 7 confining a plasma region on a cathode electrode 5 mounted with a target 4 and a meshy intermediate anode electrode 6 located at the opening part 8 on the side of the transparent substrate 2 of the shield wall 7 are arranged inside a film formation chamber 1, and discharge is generated among the cathode electrode 5, meshy intermediate anode electrode 6 and box type shield wall 7, so that the target 4 is sputtered. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、透明基板上にスパッタリング法により透明導電膜を製膜する透明導電膜の製造方法に関するものである。
【0002】
【従来の技術】
透明基板上にSnを添加したInや、ZnO、SnOなどの導電材料を製膜した透明導電膜は、液晶ディスプレイ、OLED、太陽電池などにおける透明電極などの分野に広く用いられている。透明導電膜はその膜の持つ比抵抗値が重要視され、とくにTFT(薄型トランジスタ)などの液晶ディスプレイや有機LED用透明電極などにおいて、大面積化や表示密度の向上などのため低抵抗化が望まれており、種々の試みがなされている。
【0003】
この透明導電膜は、真空蒸着法、イオンプレーティング法、スパッタリング法、スプレー法などにより製造されているが、量産や制御性の観点から、スパッタリング法が主流となっている。また、透明基板に関しては、現在、ガラス基板が汎用されており、ガラスの高い耐熱性を利用して、透明導電膜の結晶化温度以上の比較的高温で製膜するという低抵抗化の手段がとられてきた。
【0004】
しかしながら、上記の方法は耐熱性の低い高分子基板などには使用できない。また、ガラス基板を用いても、液晶ディスプレイなどに使用される下地CF(カラーフィルタ)などは耐熱性が低く、200℃以下の低温での製膜および処理が必要とされている。このような観点から、低温でのスパッタリング製膜における透明導電膜の低抵抗化の検討がなされてきた。
【0005】
低温でのスパッタリング製膜による膜の低抵抗化の方法として、主にスパッタ放電中に発生したイオンによる基板や膜の損傷を低減またはなくして、膜の不連続性や格子欠陥などによる抵抗値の上昇を防ぐことにより、低抵抗な膜を得る試みがなされている。たとえば、特開平3−249171号公報には、スパッタ放電中に発生した高エネルギー粒子の運動エネルギーを低減させ、基板や膜の損傷を抑制する低電圧スパッタリング法が開示されている。
【0006】
また、特開2002−129319号公報には、基板や膜に損傷を与えると考えられる高エネルギーイオンの垂直入射を妨げるため、2つのまたは2分割したターゲットを用いて傾けるまたは平行に対向させたターゲット間でスパッタ放電させ、ターゲットを基板に対してある一定の角度傾けるまたは垂直に配置することで損傷を低減する方法が開示されている。
【0007】
しかし、前者の方法は、低電圧化するためにかなり高磁場な磁石や電源設備などが必要で、取り扱いが容易でないなどの問題がある。また、後者の方法も設備や装置改造などの面で容易でないことや、ターゲットに対して基板が垂直または傾いて配置されているため、製膜速度が遅くなるなどの問題がある。とくに両法ともにスパッタ装置の大幅な改造が必要であり、好ましくない。
【0008】
また、これらの方法とは異なる方法として、基板とターゲットとの間にアノード電極を設けて、膜に損傷を与える酸素負イオンを吸い取ることにより、装置を複雑化することなく、膜の低抵抗化をはかる試みもなされている(特許文献1参照)。この方法は、装置構成上、比較的有利な方法といえるが、低抵抗化の点でなお十分に満足できるものではなかった。
【0009】
【特許文献1】
特開平6−330310号公報(第2〜3頁)
【0010】
【発明が解決しようとする課題】
本発明は、このような事情に照らし、装置の大幅な改造を必要とせずに、透明基板や透明導電膜に入射する高エネルギー粒子を効果的に低減して、低抵抗な透明導電膜を得ることを目的としている。
【0011】
【課題を解決するための手段】
本発明者らは、スパッタリング法による透明導電膜の製膜方法について、鋭意検討した結果、スパッタ放電によるプラズマ領域を接地した箱型シールド壁で覆い、このシールド壁の透明基板側の開口部にメッシュ状中間アノード電極を設けて、プラズマ領域で発生したマイナスイオンや電子などの高エネルギー粒子を、箱型シールド壁と中間アノード電極で覆い込んで、基板や膜に到達するのを防ぎ、これにより基板や製膜中の膜に与える損傷や不純物の混入を減らすようにすると、透明導電膜の抵抗値を効果的に低下できることがわかった。
また、この方法による抵抗値の低下と合わせて、透明基板上に製膜した透明導電膜の全体を後加熱処理することにより、透明導電膜の抵抗値をより一段と低下できることを知り、本発明を完成するに至った。
【0012】
本発明は、透明基板上にスパッタリング法により透明導電膜を製膜する透明導電膜の製造方法において、製膜室内に、ターゲットを装着したカソード電極上のプラズマ領域を閉じ込める箱型シールド壁と、このシールド壁の透明基板側の開口部に位置するメッシュ状中間アノード電極を配設し、上記カソード電極とメッシュ状中間アノード電極および箱型シールド壁間で放電させて、ターゲットをスパッタリングすることを特徴とする透明導電膜の製造方法に係るものである。
また、本発明は、上記の方法により透明基板上に製膜した透明導電膜の全体を150〜180℃の比較的低い温度で後加熱して、その抵抗値をさらに低下させる透明導電膜の製造方法に係るものである。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参考にして説明する。
図1は、本発明の透明導電膜の製造方法を適用した製膜装置の一例を示す概略断面図である。
図において、真空ポンプなどの真空排気手段を付設した製膜室1内に、加熱機構を有する基板ホルダー3に保持した透明基板2と、これに対向配置されたマグネットを有するカソード電極5上に装着したターゲット4が、設けられている。このカソード電極5およびターゲット4は、透明基板側に開口部8を有する箱型シールド壁7により覆い囲まれる形に配設されている。
【0014】
箱型シールド壁7は、外部に接地(アース)接続されており、開口部8には、全面を覆った同じくアースされたメッシュ状中間アノード電極6が設けられている。これらの箱型シールド壁7とメッシュ状中間アノード電極6により、ターゲット4を装着したカソード電極5上で発生させるプラズマ領域を、メッシュ状中間アノード電極6および箱型シールド壁7内に閉じ込める構成になっている。また、9は、基板2の製膜領域を規制する防着シールド壁である。
【0015】
このようにスパッタカソード部を接地した箱型シールド壁7およびメッシュ状中間アノード電極6で覆い込むことで、カソード電極5とメッシュ状中間アノード電極6および箱型シールド壁7間でプラズマを放電させる。つまり、プラズマ領域を覆い囲み、プラズマ中に発生した製膜中の膜に損傷を与えるマイナスイオンや電子、キャリアガスなどの高エネルギー粒子の基板側への飛来を低減し、抑制することで、基板の損傷による膜の不連続性や、膜中の格子欠陥、不純物の混入といった様々な弊害を低減できる。これらの基板や製膜中の膜への損傷による膜の不連続性や膜中の格子欠陥などが、膜の抵抗値の上昇に起因しているため、これらの原因を低減することで、膜の抵抗値を低下できる。
【0016】
箱型シールド壁7は、スパッタカソード部全体を覆うように設けられる。このシールド壁7には、慣用の導電性の物質として、たとえば、SUS、W、Cu、Moなどの金属や炭素などが用いられる。シールド壁7にはプラズマ領域を覆い囲むため、水冷ポンプが配設されていることが好ましい。
【0017】
メッシュ状中間アノード電極6は、基板2とターゲット4との間に、基板2面に対し平行に設けられる。とくに基板2から20mm以上、好ましくは30mm以上離した位置に設けると、効果がより有効に得られるので、好ましい。メッシュ状中間アノード電極6には、慣用の電極材料として、たとえば、Cu、W、SUSなどの金属や、炭素などの導電性の物質が用いられる。
メッシュ形状は、開口部8の前面を覆うものであればよく、メッシュワイヤの大きさ、間隔や形状はとくに限定されない。開口率を80%以下、より好ましくは60%以下とすると、低抵抗化の効果が得られる。開口率が大きすぎると、プラズマ領域のトラップによる高エネルギー粒子の衝突を低減する効果が得られにくい。開口率が小さいほど効果が得られやすいが、小さすぎると製膜速度が遅くなるため、適宜の開口率に設定するのが望ましい。
【0018】
本発明においては、上記の方法により透明基板上に製膜した透明導電膜の全体を、さらに150〜180℃の比較的低い温度で、30分〜8時間、より好ましくは1〜4時間、後加熱処理することにより、透明導電膜の抵抗値をより一段と低下させることができる。後加熱処理により抵抗値が低下する原因については明確ではないが、つぎのように推測される。
【0019】
スパッタリング法などによる物理蒸着法により、透明基板上に透明導電膜を製膜する場合、基板表面の劣化などの影響から膜の不連続性による抵抗値の上昇や膜内部に多数の格子欠陥が存在して、抵抗値が上昇する。製膜時または製膜後に200℃以上の熱エネルギーを付与できれば、これらの問題は解決される。しかし、液晶ディスプレイに用いられるカラーフィルタや、使用する基板材料などの耐熱性を考えると、あまり温度は上げられない。そこで、使用する基板材料が耐えうる150〜180℃の比較的低い温度で後加熱処理すると、耐熱性の問題を生じることなく、膜の抵抗値を低下させることができる。
【0020】
本発明における透明基板2としては、可視光領域における透明性を有するものであって、ある程度表面が平滑であれば、使用できる。各種のガラス材はもちろんのこと、各種の高分子フィルム、たとえば、ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル、ポリアミド、ポリ塩化ビニル、ポリカーボネート、ポリスチレン、ポリプロピレン、ポリエチレンなどからなるフィルムが用いられる。これらは、単独フィルムであっても積層フィルムであってもよい。透明基板2の厚さは、用途目的に応じて適宜設定でき、とくに制限はない。また、可視光の色調整のための色素を、透明な高分子フィルム中に混入させてもよく、透明基板上に塗布してもよい。
【0021】
ターゲット4の材料には、Sn、In、Cd、Zn、Tiなどの金属、InとSnの合金、InとSbの合金、InとAlの合金などの合金、これらの金属や合金の酸化物をはじめとした各種の化合物が用いられる。スパッタ成膜により、透明導電膜として、透明導電性を有する金属化合物、たとえば金属酸化物膜や金属窒化物膜などを付与するものであれば、広く使用できる。
上記ターゲットを用いて透明基板上にスパッタリング成膜される透明導電膜には、SnO、In、CdO、ZnO、Snを添加したIn(通常、ITOという)、Znを添加したIn、Sbを添加したIn、Alを添加したIn(通常、ATOという)などの金属酸化膜や、TiN、ZrNなどの金属窒化物膜などの金属化合物膜が挙げられる。
これら透明導電膜のスパッタリング製膜には、直流スパッタリング法、高周波スパッタリング法などの任意のスパッタリング法が用いられる。
【0022】
製膜室1に導入する反応ガスは、金属酸化物膜を成膜する場合は酸素、金属窒化物膜を成膜する場合は窒素などがあり、これらのガスは適宣混合してもよく、また、これらのガス以外に亜鉛化窒素ガス、水蒸気などのほかのガスを使用することもできる。また、導入するスパッタガスには、Ar、He、Ne、Kr、Xeなどの不活性ガスが挙げられ、これらのガスは単独で用いても混合して用いてもよい。このスパッタガスおよび反応性ガスからなるガス雰囲気のカソード電極上での圧力は、0.1〜1.0Paとするのがよい。
【0023】
【実施例】
つぎに、本発明を実施例により具体的に説明するが、本発明は以下の実施例のみに限定するものではない。
【0024】
実施例1
透明基板として、厚さが75μmの透明ポリエチレンテレフタレートフィルム(三菱化学社製の「T609フィルム」)を、ターゲット材料には、In−10重量%SnOの焼結体(三井金属社製)を、それぞれ使用し、DCマグネトロンスパッタリング法により、製膜を行った。
その際、放電させるスパッタリングカソード電極を箱型シールド壁で囲い、その透明基板側の開口部にメッシュ状中間アノード電極を配置した。このアノード電極と箱型シールド壁はアースされている。このアノード電極は、箱型シールド壁の開口部全面を覆い、基板から35mmの位置に平行して配設され、直径0.4mmのCu線、網目上の間隔1.5mm、開口率約60%からなる。
【0025】
その他のスパッタ条件としては、以下のとおりとした。このような条件下で、膜厚1,000ÅのITO膜を製膜した。
初期真空度:3×10−5Pa以下、ガス種:不活性ガスAr+反応性ガスO(300SCCM+任意)、ガス圧:3.2×10−1Pa、ターゲット印加電力:3.3W/cm、基板−ターゲット距離:75mm、ターゲット上漏洩磁束密度:600ガウス、基板の製膜中加熱温度:100℃。
【0026】
つぎに、このように透明基板上にスパッタリング製膜した透明導電膜に対し、180℃で1時間の後加熱処理を施し、この加熱前後の特性(抵抗値)を測定した。その結果を表1に示す。
なお、膜厚の測定は、蛍光X線装置によるIn発光強度測定による製膜速度の検量線と透過型電子顕微鏡による精密測定により、行った。抵抗値の測定は、三菱油化製(LoresterSP)を用いて、行った。
【0027】
比較例1
メッシュ状中間アノード電極を設けなかった以外は、実施例1と同様にして、スパッタリング法により、ITO膜を製膜した。このように製膜した膜に対し、180℃で1時間の後加熱処理を施し、この加熱前後の特性(抵抗値)を測定した。その結果を同じく表1に示す。
【0028】
比較例2
箱型シールド壁を設けなかった以外は、実施例1と同様にして、スパッタリング法により、ITO膜を製膜した。このように製膜した膜に対して、180℃で1時間の後加熱処理を施し、この加熱前後の特性(抵抗値)を測定した。その結果を同じく表1に示す。
【0029】

Figure 2004332030
【0030】
上記の表1の結果から明らかなように、本発明の実施例1の方法によれば、比較例1,2の方法に比べ、スパッタリング製膜直後の透明導電膜の抵抗値を低下させることができるとともに、その後の加熱処理により、上記の抵抗値をさらに一段と低下できるものであることがわかる。
【0031】
【発明の効果】
以上のように、本発明は、透明基板上に透明導電膜をスパッタリング製膜するにあたり、スパッタリングカソード電極上のプラズマ領域を箱型シールド壁で囲い、その透明基板側の開口部をメッシュ状中間アノード電極で覆うことにより、基板や膜へのダメージを低減して、透明導電膜の抵抗値を効果的に低下でき、またこのように製膜した透明導電膜をさらに150〜180℃の温度で後加熱することで、上記抵抗値をより低下させることができる。
【図面の簡単な説明】
【図1】本発明の透明導電膜の製造方法を適用した製膜装置の一例を示す概略断面図である。
【符号の説明】
1 製膜室
2 透明基板
3 基板ホルダー
4 ターゲット
5 カソード電極
6 メッシュ状中間アノード電極
7 箱型シールド壁
8 開口部
9 防着シールド壁[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a transparent conductive film by forming a transparent conductive film on a transparent substrate by a sputtering method.
[0002]
[Prior art]
BACKGROUND ART A transparent conductive film formed of a conductive material such as In 2 O 3 added with Sn, ZnO, and SnO 2 on a transparent substrate is widely used in fields such as a transparent electrode in a liquid crystal display, an OLED, and a solar cell. I have. As for the transparent conductive film, the specific resistance value of the film is regarded as important, and in particular, in a liquid crystal display such as a TFT (thin transistor) or a transparent electrode for an organic LED, the resistance is reduced due to a large area and an improvement in display density. It has been desired and various attempts have been made.
[0003]
This transparent conductive film is manufactured by a vacuum evaporation method, an ion plating method, a sputtering method, a spray method, or the like, but the sputtering method is mainly used from the viewpoint of mass production and controllability. As for the transparent substrate, a glass substrate is currently widely used, and there is a means of reducing the resistance by forming a film at a relatively high temperature equal to or higher than the crystallization temperature of the transparent conductive film by utilizing the high heat resistance of the glass. Has been taken.
[0004]
However, the above method cannot be used for a polymer substrate having low heat resistance. Further, even when a glass substrate is used, a base CF (color filter) used for a liquid crystal display or the like has low heat resistance, and requires film formation and processing at a low temperature of 200 ° C. or lower. From such a viewpoint, studies have been made on lowering the resistance of the transparent conductive film in sputtering film formation at a low temperature.
[0005]
As a method of lowering the resistance of a film by sputtering film formation at a low temperature, a method of reducing or eliminating damage to a substrate or a film mainly due to ions generated during sputter discharge and reducing a resistance value due to discontinuity or lattice defects of the film. Attempts have been made to obtain low-resistance films by preventing the rise. For example, Japanese Patent Application Laid-Open No. 3-249171 discloses a low-voltage sputtering method in which kinetic energy of high-energy particles generated during sputter discharge is reduced and damage to a substrate or a film is suppressed.
[0006]
Japanese Patent Application Laid-Open No. 2002-129319 discloses a target tilted or opposed in parallel using two or two divided targets in order to prevent vertical incidence of high-energy ions considered to damage the substrate or the film. Disclosed is a method of reducing damage by causing a sputter discharge between the substrates and placing the target at a certain angle or perpendicular to the substrate.
[0007]
However, the former method requires a magnet with a considerably high magnetic field and power supply equipment in order to reduce the voltage, and has a problem that handling is not easy. In addition, the latter method has problems that it is not easy in terms of equipment and equipment modification, and that the film formation speed is slow because the substrate is arranged vertically or inclined with respect to the target. In particular, both methods require a large modification of the sputtering apparatus, which is not preferable.
[0008]
Also, as a method different from these methods, an anode electrode is provided between the substrate and the target to absorb oxygen negative ions that damage the film, thereby reducing the resistance of the film without complicating the apparatus. (See Patent Document 1). Although this method can be said to be a relatively advantageous method in terms of the device configuration, it has not been sufficiently satisfactory in terms of lowering the resistance.
[0009]
[Patent Document 1]
JP-A-6-330310 (pages 2-3)
[0010]
[Problems to be solved by the invention]
In view of such circumstances, the present invention effectively reduces high-energy particles incident on a transparent substrate or a transparent conductive film without requiring a large modification of the device, and obtains a low-resistance transparent conductive film. It is aimed at.
[0011]
[Means for Solving the Problems]
The present inventors have conducted intensive studies on a method for forming a transparent conductive film by a sputtering method, and as a result, covered a plasma region formed by sputtering discharge with a box-shaped shield wall that was grounded. A high-energy particle such as negative ions and electrons generated in the plasma region is covered with a box-shaped shield wall and an intermediate anode electrode to prevent it from reaching the substrate or film. It has been found that the resistance value of the transparent conductive film can be effectively reduced by reducing the damage to the film during film formation and mixing of impurities.
Further, in addition to the reduction of the resistance value by this method, it was found that the post-heating treatment of the entire transparent conductive film formed on the transparent substrate can further reduce the resistance value of the transparent conductive film. It was completed.
[0012]
The present invention relates to a method for producing a transparent conductive film by sputtering a transparent conductive film on a transparent substrate, wherein a box-shaped shield wall for confining a plasma region on a cathode electrode with a target mounted therein, Disposing a mesh-shaped intermediate anode electrode located at the opening of the shield wall on the transparent substrate side, discharging between the cathode electrode and the mesh-shaped intermediate anode electrode and the box-shaped shield wall, and sputtering the target. The present invention relates to a method for producing a transparent conductive film.
In addition, the present invention provides a method for producing a transparent conductive film in which the whole of the transparent conductive film formed on the transparent substrate by the above method is post-heated at a relatively low temperature of 150 to 180 ° C. to further reduce the resistance value. Pertains to the method.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic sectional view showing an example of a film forming apparatus to which the method for manufacturing a transparent conductive film of the present invention is applied.
In the drawing, a transparent substrate 2 held by a substrate holder 3 having a heating mechanism and a cathode electrode 5 having a magnet opposed thereto are installed in a film forming chamber 1 provided with vacuum evacuation means such as a vacuum pump. A target 4 is provided. The cathode electrode 5 and the target 4 are arranged so as to be surrounded by a box-shaped shield wall 7 having an opening 8 on the transparent substrate side.
[0014]
The box-shaped shield wall 7 is externally grounded (earthed), and the opening 8 is provided with a similarly grounded mesh-like intermediate anode electrode 6 covering the entire surface. With the box-shaped shield wall 7 and the mesh-shaped intermediate anode electrode 6, a plasma region generated on the cathode electrode 5 on which the target 4 is mounted is confined in the mesh-shaped intermediate anode electrode 6 and the box-shaped shield wall 7. ing. Reference numeral 9 denotes a deposition-inhibiting shield wall that regulates a film formation region of the substrate 2.
[0015]
By covering the sputter cathode portion with the grounded box-shaped shield wall 7 and the mesh-shaped intermediate anode electrode 6, plasma is discharged between the cathode electrode 5 and the mesh-shaped intermediate anode electrode 6 and the box-shaped shield wall 7. In other words, by enclosing the plasma region and reducing and suppressing high-energy particles, such as negative ions, electrons, and carrier gas, that are generated in the plasma and damage the film during film formation, the substrate is reduced. Various adverse effects such as discontinuity of the film due to damage of the film, lattice defects in the film, and contamination of impurities can be reduced. Discontinuities in the film due to damage to the substrate and the film during film formation and lattice defects in the film are caused by an increase in the resistance value of the film. Can be reduced.
[0016]
The box-shaped shield wall 7 is provided so as to cover the entire sputter cathode portion. The shield wall 7 is made of, for example, a metal such as SUS, W, Cu, or Mo, or carbon as a commonly used conductive material. Preferably, a water-cooled pump is provided on the shield wall 7 to cover the plasma region.
[0017]
The mesh-shaped intermediate anode electrode 6 is provided between the substrate 2 and the target 4 in parallel with the surface of the substrate 2. In particular, it is preferable to provide the substrate at a position separated from the substrate 2 by 20 mm or more, preferably 30 mm or more, since the effect can be more effectively obtained. For the mesh-shaped intermediate anode electrode 6, a metal such as Cu, W or SUS, or a conductive substance such as carbon is used as a conventional electrode material.
The mesh shape may be any shape as long as it covers the front surface of the opening 8, and the size, interval, and shape of the mesh wire are not particularly limited. When the aperture ratio is 80% or less, more preferably 60% or less, the effect of reducing the resistance can be obtained. If the aperture ratio is too large, it is difficult to obtain the effect of reducing collision of high energy particles due to traps in the plasma region. The effect is more likely to be obtained as the aperture ratio is smaller, but if the aperture ratio is too small, the film forming speed becomes slower. Therefore, it is desirable to set an appropriate aperture ratio.
[0018]
In the present invention, the whole of the transparent conductive film formed on the transparent substrate by the above method is further heated at a relatively low temperature of 150 to 180 ° C. for 30 minutes to 8 hours, more preferably 1 to 4 hours, By performing the heat treatment, the resistance value of the transparent conductive film can be further reduced. Although the cause of the decrease in the resistance value due to the post-heating treatment is not clear, it is supposed as follows.
[0019]
When a transparent conductive film is formed on a transparent substrate by a physical vapor deposition method such as a sputtering method, the resistance value increases due to the discontinuity of the film due to the influence of the deterioration of the substrate surface, etc., and many lattice defects exist inside the film. Then, the resistance value increases. These problems can be solved if heat energy of 200 ° C. or more can be applied during or after film formation. However, considering the heat resistance of the color filter used for the liquid crystal display and the substrate material used, the temperature cannot be raised much. Therefore, when post-heating is performed at a relatively low temperature of 150 to 180 ° C., which can withstand the substrate material to be used, the resistance value of the film can be reduced without causing a problem of heat resistance.
[0020]
The transparent substrate 2 in the present invention has transparency in the visible light region and can be used as long as its surface is somewhat smooth. Not only various glass materials, but also various polymer films, for example, films made of polyester such as polyethylene terephthalate and polybutylene terephthalate, polyamide, polyvinyl chloride, polycarbonate, polystyrene, polypropylene, polyethylene and the like are used. These may be a single film or a laminated film. The thickness of the transparent substrate 2 can be appropriately set according to the purpose of use, and is not particularly limited. Further, a dye for adjusting the color of visible light may be mixed in a transparent polymer film, or may be applied on a transparent substrate.
[0021]
Materials of the target 4 include metals such as Sn, In, Cd, Zn, and Ti, alloys of In and Sn, alloys of In and Sb, alloys of In and Al, and oxides of these metals and alloys. Various compounds including the above are used. As long as a metal compound having a transparent conductivity, for example, a metal oxide film or a metal nitride film is provided as a transparent conductive film by sputtering film formation, it can be widely used.
To a transparent conductive film formed by sputtering on a transparent substrate using the above target, SnO 2 , In 2 O 3 , CdO, ZnO, In 2 O 3 (normally referred to as ITO) to which Sn is added, and Zn are added. was in 2 O 3, in 2 was added Sb O 3, an in was added Al 2 O 3 (usually called ATO) or a metal oxide film such as, TiN, a metal compound such as a metal nitride films, such as ZrN film Is mentioned.
An arbitrary sputtering method such as a direct current sputtering method or a high frequency sputtering method is used for sputtering the transparent conductive film.
[0022]
The reaction gas introduced into the film forming chamber 1 includes oxygen when forming a metal oxide film and nitrogen when forming a metal nitride film, and these gases may be mixed appropriately. In addition to these gases, other gases such as a zinc zinc gas and water vapor can also be used. Examples of the sputtering gas to be introduced include inert gases such as Ar, He, Ne, Kr, and Xe, and these gases may be used alone or as a mixture. The pressure on the cathode electrode in a gas atmosphere composed of the sputtering gas and the reactive gas is preferably 0.1 to 1.0 Pa.
[0023]
【Example】
Next, the present invention will be specifically described with reference to examples, but the present invention is not limited to only the following examples.
[0024]
Example 1
A 75 μm-thick transparent polyethylene terephthalate film (“T609 film”, manufactured by Mitsubishi Chemical Corporation) was used as the transparent substrate, and a sintered body of In 2 O 3 -10 wt% SnO (manufactured by Mitsui Kinzoku Co., Ltd.) was used as the target material. Were used, and a film was formed by a DC magnetron sputtering method.
At that time, a sputtering cathode electrode to be discharged was surrounded by a box-shaped shield wall, and a mesh-shaped intermediate anode electrode was arranged in the opening on the transparent substrate side. The anode electrode and the box-shaped shield wall are grounded. The anode electrode covers the entire opening of the box-shaped shield wall, is disposed parallel to a position 35 mm from the substrate, a Cu wire having a diameter of 0.4 mm, an interval of 1.5 mm on the mesh, and an aperture ratio of about 60%. Consists of
[0025]
Other sputtering conditions were as follows. Under these conditions, an ITO film having a thickness of 1,000 Å was formed.
Initial vacuum degree: 3 × 10 −5 Pa or less, gas type: inert gas Ar + reactive gas O 2 (300 SCCM + arbitrary), gas pressure: 3.2 × 10 −1 Pa, target applied power: 3.3 W / cm 2. The distance between the substrate and the target: 75 mm, the leakage magnetic flux density on the target: 600 Gauss, and the heating temperature during film formation of the substrate: 100 ° C.
[0026]
Next, the transparent conductive film formed by sputtering on the transparent substrate was subjected to a post-heating treatment at 180 ° C. for 1 hour, and the characteristics (resistance value) before and after the heating were measured. Table 1 shows the results.
The film thickness was measured by a calibration curve of the film formation rate obtained by measuring the In emission intensity using a fluorescent X-ray apparatus and by a precise measurement using a transmission electron microscope. The measurement of the resistance value was performed using Mitsubishi Yuka (Lorester SP).
[0027]
Comparative Example 1
An ITO film was formed by a sputtering method in the same manner as in Example 1 except that the mesh-shaped intermediate anode electrode was not provided. The film thus formed was subjected to a post-heating treatment at 180 ° C. for 1 hour, and the characteristics (resistance value) before and after the heating were measured. Table 1 also shows the results.
[0028]
Comparative Example 2
An ITO film was formed by a sputtering method in the same manner as in Example 1 except that no box-shaped shield wall was provided. The film thus formed was subjected to a post-heating treatment at 180 ° C. for 1 hour, and the characteristics (resistance value) before and after the heating were measured. Table 1 also shows the results.
[0029]
Figure 2004332030
[0030]
As is evident from the results in Table 1 above, according to the method of Example 1 of the present invention, the resistance value of the transparent conductive film immediately after sputtering film formation can be reduced as compared with the methods of Comparative Examples 1 and 2. It can be seen that the resistance value can be further reduced by the subsequent heat treatment.
[0031]
【The invention's effect】
As described above, according to the present invention, when a transparent conductive film is formed on a transparent substrate by sputtering, the plasma region on the sputtering cathode electrode is surrounded by a box-shaped shield wall, and the opening on the transparent substrate side is a mesh intermediate anode. By covering with an electrode, the damage to the substrate and the film can be reduced, and the resistance value of the transparent conductive film can be effectively reduced. Further, the transparent conductive film thus formed is further subjected to a temperature of 150 to 180 ° C. By heating, the resistance value can be further reduced.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view showing an example of a film forming apparatus to which a method for manufacturing a transparent conductive film of the present invention is applied.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Film-forming chamber 2 Transparent substrate 3 Substrate holder 4 Target 5 Cathode electrode 6 Mesh-shaped intermediate anode electrode 7 Box-shaped shield wall 8 Opening 9 Shield wall

Claims (3)

透明基板上にスパッタリング法により透明導電膜を製膜する透明導電膜の製造方法において、製膜室内に、ターゲットを装着したカソード電極上のプラズマ領域を閉じ込める箱型シールド壁と、このシールド壁の透明基板側の開口部に位置するメッシュ状中間アノード電極を配設し、上記カソード電極とメッシュ状中間アノード電極および箱型シールド壁間で放電させて、ターゲットをスパッタリングすることを特徴とする透明導電膜の製造方法。In a method for producing a transparent conductive film by sputtering a transparent conductive film on a transparent substrate, a box-shaped shield wall for confining a plasma region on a cathode electrode on which a target is mounted in a film forming chamber; A transparent conductive film, comprising: disposing a mesh-shaped intermediate anode electrode located at an opening on the substrate side, discharging between the cathode electrode, the mesh-shaped intermediate anode electrode, and the box-shaped shield wall, and sputtering a target. Manufacturing method. 透明基板が高分子基板からなる請求項1に記載の透明導電膜の製造方法。2. The method according to claim 1, wherein the transparent substrate is a polymer substrate. 透明基板上に請求項1または2の方法で製膜した透明導電膜の全体を、150〜180℃の温度で後加熱して、その抵抗値を低下させる透明導電膜の製造方法。A method for producing a transparent conductive film, wherein the whole of the transparent conductive film formed on the transparent substrate by the method according to claim 1 or 2 is post-heated at a temperature of 150 to 180 ° C. to reduce its resistance value.
JP2003127721A 2003-05-06 2003-05-06 Method of producing transparent electroconductive film Pending JP2004332030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003127721A JP2004332030A (en) 2003-05-06 2003-05-06 Method of producing transparent electroconductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003127721A JP2004332030A (en) 2003-05-06 2003-05-06 Method of producing transparent electroconductive film

Publications (1)

Publication Number Publication Date
JP2004332030A true JP2004332030A (en) 2004-11-25

Family

ID=33504121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003127721A Pending JP2004332030A (en) 2003-05-06 2003-05-06 Method of producing transparent electroconductive film

Country Status (1)

Country Link
JP (1) JP2004332030A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008007812A (en) * 2006-06-29 2008-01-17 Hitachi High-Tech Science Systems Corp Ion sputtering apparatus
JP2008171642A (en) * 2007-01-10 2008-07-24 Nitto Denko Corp Transparent conductive film and its manufacturing method
JP2008192460A (en) * 2007-02-05 2008-08-21 Nitto Denko Corp Transparent conductive film and its manufacturing method
JP2009144192A (en) * 2007-12-13 2009-07-02 Fujifilm Corp Reactive sputtering apparatus, and reactive sputtering method
JP2010037566A (en) * 2008-07-31 2010-02-18 Fujifilm Corp Film-forming apparatus, film forming method, piezoelectric film, and liquid discharge device
WO2014034575A1 (en) * 2012-08-31 2014-03-06 株式会社カネカ Method for producing substrate with transparent electrode, and substrate with transparent electrode
CN103814430A (en) * 2011-08-17 2014-05-21 三星电子株式会社 Sputtering apparatus and method for forming a transmissive conductive layer of a light emitting device
JP2017122282A (en) * 2011-11-28 2017-07-13 日東電工株式会社 Production of transparent conductive film
CN113913775A (en) * 2021-09-30 2022-01-11 浙江师范大学 Opposite target magnetron sputtering nondestructive film deposition system

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008007812A (en) * 2006-06-29 2008-01-17 Hitachi High-Tech Science Systems Corp Ion sputtering apparatus
JP2008171642A (en) * 2007-01-10 2008-07-24 Nitto Denko Corp Transparent conductive film and its manufacturing method
JP2008192460A (en) * 2007-02-05 2008-08-21 Nitto Denko Corp Transparent conductive film and its manufacturing method
JP2009144192A (en) * 2007-12-13 2009-07-02 Fujifilm Corp Reactive sputtering apparatus, and reactive sputtering method
JP2010037566A (en) * 2008-07-31 2010-02-18 Fujifilm Corp Film-forming apparatus, film forming method, piezoelectric film, and liquid discharge device
US20100090154A1 (en) * 2008-07-31 2010-04-15 Takayuki Naono Film depositing apparatus, a film depositing method, a piezoelectric film, and a liquid ejecting apparatus
CN103814430A (en) * 2011-08-17 2014-05-21 三星电子株式会社 Sputtering apparatus and method for forming a transmissive conductive layer of a light emitting device
US20140197026A1 (en) * 2011-08-17 2014-07-17 Samsung Electronics Co., Ltd. Sputtering apparatus and method for forming a transmissive conductive layer of a light emitting device
JP2017122282A (en) * 2011-11-28 2017-07-13 日東電工株式会社 Production of transparent conductive film
WO2014034575A1 (en) * 2012-08-31 2014-03-06 株式会社カネカ Method for producing substrate with transparent electrode, and substrate with transparent electrode
JPWO2014034575A1 (en) * 2012-08-31 2016-08-08 株式会社カネカ Manufacturing method of substrate with transparent electrode, and substrate with transparent electrode
CN104603320B (en) * 2012-08-31 2017-04-05 株式会社钟化 The manufacture method of the substrate with transparency electrode and the substrate with transparency electrode
CN104603320A (en) * 2012-08-31 2015-05-06 株式会社钟化 Method for producing substrate with transparent electrode, and substrate with transparent electrode
US10138541B2 (en) 2012-08-31 2018-11-27 Kaneka Corporation Method for producing substrate with transparent electrode, and substrate with transparent electrode
CN113913775A (en) * 2021-09-30 2022-01-11 浙江师范大学 Opposite target magnetron sputtering nondestructive film deposition system

Similar Documents

Publication Publication Date Title
US7294852B2 (en) Transparent conductive films and processes for forming them
US8845866B2 (en) Optoelectronic devices having electrode films and methods and system for manufacturing the same
JP2004332030A (en) Method of producing transparent electroconductive film
US6787441B1 (en) Method for pretreating a polymer substrate using an ion beam for subsequent deposition of indium oxide or indium tin oxide
JP4475209B2 (en) Oxide sintered tablet for deposition
JP4599595B2 (en) Method and apparatus for producing transparent conductive film
JPH02232358A (en) Production of transparent conductive film and apparatus for producing such film
JP2018083971A (en) Magnetron sputtering device, and method for forming a transparent electrically conductive oxide film
US20070170865A1 (en) Plasma display panel, method for producing the plasma display panel, protective layer of the plasma display panel, and method for forming the proctective layer
TWI632246B (en) Chamber pasting method in a pvd chamber for reactive re-sputtering dielectric material
JPWO2009028372A1 (en) Method for forming transparent conductive film
JP2012138228A (en) Transparent conductive thin film and method for manufacturing the same
JP4229803B2 (en) Method for producing transparent conductive film
JP3615647B2 (en) Method for producing transparent conductive film and transparent conductive film
JP3562595B2 (en) Sputtering equipment
CN108385073B (en) Method for manufacturing ITO film
JPH0639707B2 (en) Thin film forming equipment
JPH0329216A (en) Formation of transparent conductive film
JPH056286B2 (en)
TW200937661A (en) Solar cell manufacturing method
JPH11279756A (en) Formation of transparent conductive film
JPH10158830A (en) Film forming method by sputtering
JP3040432B2 (en) Sputtering target
JPH11157924A (en) Ito sputtering target
KR20240042662A (en) Method for depositing material on a substrate, and system configured to deposit material on a substrate using opposing sputter targets

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A02 Decision of refusal

Effective date: 20090113

Free format text: JAPANESE INTERMEDIATE CODE: A02