【0001】
【発明の属する技術分野】
本発明は温度による粘度変化が小さい(高粘度指数)ポリオルガノシロキサンにカルボキシエチル基を有するジアルキルジチオフォスフェートを配合して潤滑性を向上させた潤滑油組成物、さらには、焼結金属軸受の含浸油やオイルダンパーとして用いる潤滑油組成物に関する。
【0002】
【従来の技術】
近年、航空機用潤滑油などの特殊用途に限らず、車両用エンジン油、自動変速機油、油圧作動油、工作機械油、コンプレッサー油、精密機械油などでも、低温運転での始動性、高温域での油膜形成能が高いことが望まれ、幅広い温度範囲で安定した潤滑性能、粘度特性を発揮しうる潤滑油が求められている。このような潤滑油は高い粘度指数を有する必要がある。
【0003】
従来、高い粘度指数を有する基材としてポリオルガノシロキサン(シリコーン油)、フッ素化エーテル油、ポリアルキレングリコール類などが知られている。しかし、フッ素化エーテル油は非常に高価で特殊用途に限られており、又ポリアルキレングリコールは吸湿性の問題がある。
【0004】
一方、ポリオルガノシロキサンは、高粘度指数、低流動点、化学的安定性、コスト面で非常にバランスがとれている合成油である。しかし、ポリオルガノシロキサンは潤滑性が低く、しかも添加剤が溶けにくいため摩耗防止剤などの配合による潤滑性の改良も難しく、特に鋼対鋼の潤滑摺動面への適用は困難であった。
【0005】
このポリオルガノシロキサンの潤滑性を改良する手段として、フロロクロロエチレンオリゴマー(特許文献1参照)やジチオりん酸エステル(特許文献2参照)を配合することが提案されている。
【0006】
しかしながら、前者の塩素系添加剤は近年、環境に与える影響が懸念されるため使用は好ましくなく、可能な限り非塩素系添加剤の使用が望まれている。一方、後者のジチオりん酸エステルは、潤滑性の向上が不十分であり、さらなる潤滑性の向上が望まれている。
【0007】
【特許文献1】
特許第3247507号公報
【特許文献2】
特開平8−183984号公報
【0008】
【発明が解決しようとする課題】
本発明者は、上記課題を解決するために鋭意研究を進めた結果、驚くべきことに、カルボキシエチル基を有するジチオフォスフェートを配合することにより、ポリオルガノシロキサンの基油としての優れた粘度特性を変えることなく、金属対金属における潤滑性を著しく向上できることを見いだした。
【0009】
本発明はかかる知見に基づきなされたもので、本発明の目的は粘度指数が高く、しかも金属対金属における潤滑性に優れた潤滑油組成物を提供することである。
【0010】
【課題を解決するための手段】
本発明は、ポリオルガノシロキサン基油に下記一般式(1)
【化2】
(上記式中、R1、R2は炭素数2〜10のアルキル基で、ともに同じであっても異なってもよい)で示されるジアルキルジチオフォスフェートを組成物全量基準で0.01〜3質量%配合したことからなる潤滑油組成物で、特にはこの潤滑油組成物を焼結金属含油軸受の含浸油やオイルダンパー用圧力媒体に用いる潤滑油組成物にかかるものである。
【0011】
【発明の実施の形態】
本発明のポリオルガノシロキサン基油は、下記の一般式(2)で表されるシロキサンの重合体である。
【化3】
【0012】
ここで、R3及びR4は炭素数1〜6のアルキル基、シクロヘキシル基又はフェニル基、トリル基、キシリル基等のアリール基で、互いに同じでも異なっていても良い。また隣り合うシロキサン単位ごとにR3とR4はそれぞれ異なっていても良い。nは重合度を表す整数であり、特に限定されないが、1〜2000の間にあることが望ましい。重合度が大きすぎると低温粘度が高くなりすぎるなど、目的の性能が得られない場合がある。
【0013】
また、このポリシロキサン分子の末端は、Si原子に最大3つの置換基が付くことになるが、これらの置換基も炭素数1〜6のアルキル基、シクロヘキシル基又はアリール基のいずれでも良い。しかし、シロキサン分子の安定性の点で、メチル基が3個結合しているものが好適に使用できる。
【0014】
本発明においては、特にR3、R4がそれぞれメチル基からなり、分子量が1000〜100000で、40℃での動粘度が5〜1000000mm2/sのジメチルシリコーンと称されるポリジメチルシロキサンを基油として用いることが好ましい。これより分子量が小さく動粘度が低いポリジメチルシロキサンは引火点が低く、また耐蒸発性が低下するため、好ましくない。またこれより分子量が大きく動粘度が高いポリジメチルシロキサンは流動性が低いため、好ましくない。なお、上記範囲のポリジメチルシロキサンの粘度指数は400〜600を示し、かつ流動点も−50℃以下である。
【0015】
本発明は、上記ポリオルガノシロキサン基油に上記一般式(1)のジアルキルジチオフォスフェートを配合するもので、上記式中のR1、R2は炭素数2〜10のアルキル基で、ともに同じであっても異なってもよいが、特にはR1、R2がともにイソブチル基のものが好ましい。このジアルキルジチオフォスフェートは、ポリオルガノシロキサンに対して、組成物全量基準で0.01〜3質量%、好ましくは0.1〜2質量%の割合で配合する。この配合割合が少なすぎると、潤滑性を十分に向上させることができず、また多すぎると溶解が困難となり、未溶解物のため油が白濁するとともに、析出や閉塞の原因となるので好ましくない。
【0016】
本発明の潤滑油組成物には、必須成分である上記ジアルキルジチオフォスフェート以外に、一般的に使用されている潤滑油添加剤をポリジメチルシロキサンに溶解する範囲内で適宜配合することができる。具体的には酸化防止剤、摩耗防止剤、腐食防止剤、金属不活性化剤などの各種添加剤を配合することができる。
【0017】
酸化防止剤としては、例えば、フェノール系(ジ−t−ブチルパラクレゾール、(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)−プロピオン酸エステル系、ビスフェノール系など)、アミン系(アルキル化ジフェニルアミン、フェニルαナフチルアミン、アルキル化フェニルαナフチルアミンなど)、リン系(亜リン酸エステルなど)などの添加剤を挙げることができる。
【0018】
また、摩耗防止剤としては、ジアルキルジチオフォスフェートの潤滑性を低下させないものであり、溶解性の点から、例えば、ジベンジルサルファイド、チアジアゾール、硫化油脂などのイオウ系、リン酸エステル、チオリン酸エステル、リン酸エステルアミン塩などのリン系の添加剤を挙げることができる。
【0019】
上記本発明の潤滑油組成物は、粘度指数が400以上と極めて高く、しかも金属対金属における潤滑性に優れているため、幅広い温度範囲において安定な潤滑性能が求められる様々な用途への適用が期待される。特には、自動車、自動二輪車、建設機械、航空機、鉄道などの輸送車両、空調システム、冷蔵庫などの家庭電化製品、ビデオ、カメラ、プリンター、コンピュータなどの情報機器などに使用される焼結金属含油軸受用の含浸油として好適である。また自動車、自動二輪車、建設機械、航空機、鉄道などの輸送車両、工作機械、油圧機器などに使用される液圧緩衝器の作動流体としての適用も挙げられる。さらには、飲料物、タバコなどの自動販売機の取り出し口、自動車の計装品などに使用されているロータリーダンパー用の作動流体としても好適である。
【0020】
【実施例】
以下、実施例に基づいて本発明をより詳細に説明するが、本発明は実施例に限定されるものではない。
【0021】
(実施例1〜3、比較例1〜7)
基油としては、次のポリオルガノシロキサンを用いた。また比較のため溶剤精製により得られたパラフィン系鉱物油を用いた。
A−l:ポリジメチルシロキサン
動粘度(40℃):98.18mm2/s
動粘度(100℃):40.12mm2/s
粘度指数:417
流動点:−50℃以下
A−2:ポリジメチルシロキサン
動粘度(40℃):379.5mm2/s
動粘度(100℃):157.9mm2/s
粘度指数:450
流動点:−50℃以下
A−3:ポリジメチルシロキサン
動粘度(40℃):754.6mm2/s
動粘度(100℃):302.1mm2/s
粘度指数:472
流動点:−50℃以下
A−4:パラフィン系鉱物油
動粘度(40℃):97.98mm2/s
動粘度(100℃):10.97mm2/s
粘度指数:97
流動点:−12.5℃
【0022】
添加剤として、一般式(1)で示したジアルキルジチオフォスフェート(B−1)、および比較として一般式(1)のカルボキシル基(−COOH)がエステル化(−COOR)されたジアルキルジチオりん酸エステル(B−2)、リン系摩耗防止剤(B−3、4)、硫黄系摩耗防止剤(B5)として次のものを用いた。
B−1:0,0−ジイソブチル−S−カルボキシエチルジチオフォスフェート
B−2:0,0−ジイソプロピル−S−エトキシカルボニルエチルジチオフォスフェート
B−3:トリクレジルフォスフェート
B−4:ハイドロジェンフォスファイト
B−5:チアジアゾール
【0023】
(試験方法)
上記の基油及び添加剤を、表1の上部に示す割合で配合し、60℃の加温条件下で十分に撹拌溶解し、実施例、比較例の潤滑油組成物を調製した。これら調製した潤滑油組成物について、粘度特性、外観、潤滑性について試験を行った。
【0024】
(粘度特性)
40℃および100℃の動粘度、粘度指数は、JIS K2283に従って測定、算出した。
【0025】
(外観)
各基油に所定の添加剤を調整した後、室温(25℃)にて1日静置し、目視観察した。
【0026】
(シェル4球耐摩耗性試験)
机上潤滑性試験として、シェル4球耐摩耗性試験(ASTM D4172)を行った。試験条件は、1200rpm、40kgf/cm2、50℃、60minとし、試験終了後の摩耗痕径を測定した。
【0027】
(SRV摩擦試験)
ポリオルガノシロキサンは粘度指数400と高く、高温域での油膜形成能に優れると期待される。そこで、高温域での潤滑性をSRV試験により評価した。評価はVG100の実施例1[ポリジメチルシロキサン、粘度指数油417]、および比較として比較例7[パラフィン系鉱物油、粘度指数97]で行った。なお、添加剤組成は同じとした。
【0028】
評価は、以下の条件にてシリンダー/ディスク型SRV試験機を用いて摩擦特性(摩擦係数)を測定した。
荷重:100N
振動数:50Hz
振幅:1.5mm
温度:100℃
時間:15min
測定項目:15min経過時の摩擦係数
これらの結果を表1にまとめて示した。
【0029】
【表1】
【0030】
この結果から明らかなように、本発明のカルボキシエチル基を有するジチオフォスフェートを適量配合したポリジメチルシロキサンは、添加しない場合に比べ格段に耐摩耗性が向上し、比較のため用いたジアルキルジチオりん酸エステル、トリクレジルフォスフェート、ハイドロジェンフォスファイト、チアジアゾールに比べても耐摩耗性への効果が極めて高いことがわかる。さらに、粘度指数が低いパラフィン系鉱物油に比べて、高粘度指数のポリジメチルシロキサンを基油に用いることによって、同じ添加剤組成であっても、高温域における摩擦係数が低い結果が得られた。これは高粘度指数基油の油膜形成能に起因するものである。
【0031】
このように高粘度指数油の特長を変えることなく、従来から課題であった耐摩耗性を向上させるため、本発明のカルボキシエチル基を有するジチオフォスフェートを適量配合した潤滑油組成物を得ることができた。この潤滑油組成物は、特には幅広い温度領域で安定した潤滑性が求められる用途、例えば金属焼結含油軸受用の含浸油、オイルダンパー(液圧緩衝器)の作動流体などに好適である。
【0032】
【発明の効果】
本発明の潤滑油組成物は、高い粘度指数を有し、潤滑性に優れ、特に金属焼結含油軸受にこれら潤滑油組成物を含浸させることにより、低温から高温まで広い温度範囲にわたって安定した摺動特性を得ることができる。またオイルダンパー、(液圧緩衝器)の作動流体としても幅広い温度領域にわたり安定した流体特性、潤滑性が得られる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a lubricating oil composition in which a dialkyldithiophosphate having a carboxyethyl group is blended with a polyorganosiloxane having a small viscosity change due to temperature (high viscosity index) to improve lubricity, and further a sintered metal bearing. The present invention relates to a lubricating oil composition used as an impregnating oil or an oil damper.
[0002]
[Prior art]
In recent years, not only for special applications such as aircraft lubricants, but also for engine oils for vehicles, automatic transmission oils, hydraulic oils, machine tool oils, compressor oils, precision machine oils, etc. Is desired to have high oil film forming ability, and a lubricating oil capable of exhibiting stable lubricating performance and viscosity characteristics in a wide temperature range is required. Such lubricating oils need to have a high viscosity index.
[0003]
Conventionally, as a substrate having a high viscosity index, polyorganosiloxane (silicone oil), fluorinated ether oil, polyalkylene glycols and the like are known. However, fluorinated ether oils are very expensive and limited to special applications, and polyalkylene glycols have a problem of hygroscopicity.
[0004]
On the other hand, polyorganosiloxane is a synthetic oil that has a very good balance in terms of high viscosity index, low pour point, chemical stability and cost. However, since polyorganosiloxane has low lubricity and the additive is hardly soluble, it is difficult to improve the lubricity by blending an antiwear agent and the like, and it is particularly difficult to apply it to a lubricating sliding surface of steel to steel.
[0005]
As means for improving the lubricity of the polyorganosiloxane, it has been proposed to blend a fluorochloroethylene oligomer (see Patent Document 1) or a dithiophosphate (see Patent Document 2).
[0006]
However, in recent years, the former chlorine-based additive is not preferable to be used because there is a concern about its influence on the environment, and it is desired to use a non-chlorine-based additive as much as possible. On the other hand, the latter dithiophosphate ester has insufficient lubricity, and further lubricity is desired.
[0007]
[Patent Document 1]
Japanese Patent No. 3247507 [Patent Document 2]
JP-A-8-183984
[Problems to be solved by the invention]
The present inventors have made intensive studies to solve the above-mentioned problems, and as a result, surprisingly, by blending dithiophosphate having a carboxyethyl group, excellent viscosity characteristics as a base oil of polyorganosiloxane. It has been found that it is possible to significantly improve the lubricity between metal and metal without changing the lubrication.
[0009]
The present invention has been made based on such findings, and an object of the present invention is to provide a lubricating oil composition having a high viscosity index and excellent metal-to-metal lubricity.
[0010]
[Means for Solving the Problems]
The present invention provides a polyorganosiloxane base oil having the following general formula (1)
Embedded image
(Wherein R 1 and R 2 are alkyl groups having 2 to 10 carbon atoms, which may be the same or different from each other) in an amount of from 0.01 to 3 based on the total amount of the composition. It is a lubricating oil composition which is blended by mass%, and particularly relates to a lubricating oil composition used as an impregnating oil for a sintered metal oil-impregnated bearing or a pressure medium for an oil damper.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
The polyorganosiloxane base oil of the present invention is a siloxane polymer represented by the following general formula (2).
Embedded image
[0012]
Here, R 3 and R 4 are an alkyl group having 1 to 6 carbon atoms, a cyclohexyl group or an aryl group such as a phenyl group, a tolyl group, and a xylyl group, which may be the same or different. R 3 and R 4 may be different for each adjacent siloxane unit. n is an integer indicating the degree of polymerization, and is not particularly limited, but is preferably between 1 and 2000. If the degree of polymerization is too large, the desired performance may not be obtained, for example, the low-temperature viscosity becomes too high.
[0013]
At the end of the polysiloxane molecule, up to three substituents are attached to the Si atom, and these substituents may be any of an alkyl group having 1 to 6 carbon atoms, a cyclohexyl group, or an aryl group. However, from the viewpoint of the stability of the siloxane molecule, those having three methyl groups bonded can be suitably used.
[0014]
In the present invention, in particular, R 3 and R 4 each comprise a methyl group, have a molecular weight of 1,000 to 100,000 and a kinematic viscosity at 40 ° C. of 5 to 1,000,000 mm 2 / s. It is preferably used as an oil. Polydimethylsiloxane having a smaller molecular weight and a lower kinematic viscosity than this is not preferred because it has a low flash point and a low evaporation resistance. Polydimethylsiloxane having a higher molecular weight and a higher kinematic viscosity is not preferred because of its low fluidity. The viscosity index of the polydimethylsiloxane in the above range is 400 to 600, and the pour point is -50C or less.
[0015]
In the present invention, the dialkyldithiophosphate of the general formula (1) is blended with the polyorganosiloxane base oil, wherein R 1 and R 2 in the above formula are alkyl groups having 2 to 10 carbon atoms, and are the same. Or R 2, but R 1 and R 2 are particularly preferably both isobutyl groups. The dialkyldithiophosphate is blended with the polyorganosiloxane at a ratio of 0.01 to 3% by mass, preferably 0.1 to 2% by mass, based on the total amount of the composition. If the compounding ratio is too small, the lubricity cannot be sufficiently improved, and if it is too large, dissolution becomes difficult, and the oil becomes cloudy due to undissolved matter, which is not preferable because it causes precipitation or blockage. .
[0016]
In addition to the above-mentioned dialkyldithiophosphate, which is an essential component, the lubricating oil composition of the present invention can be appropriately blended with a commonly used lubricating oil additive within a range that dissolves the polydimethylsiloxane. Specifically, various additives such as an antioxidant, an antiwear agent, a corrosion inhibitor, and a metal deactivator can be blended.
[0017]
Examples of the antioxidant include phenol-based (di-t-butylparacresol, (3,5-di-t-butyl-4-hydroxyphenyl) -propionate, bisphenol-based, etc.), amine-based (alkyl Examples include additives such as diphenylamine hydride, phenyl α-naphthylamine, alkylated phenyl α-naphthylamine, and phosphorus-based (phosphite).
[0018]
Further, as the wear inhibitor, those which do not reduce the lubricity of the dialkyl dithiophosphate, from the viewpoint of solubility, for example, dibenzyl sulfide, thiadiazole, sulfur-based oils such as sulfurized oils, phosphate esters, thiophosphate esters And phosphorus-based additives such as phosphate ester amine salts.
[0019]
The lubricating oil composition of the present invention has an extremely high viscosity index of 400 or more, and is excellent in lubricating property between metal and metal, so that it can be applied to various applications requiring stable lubricating performance in a wide temperature range. Be expected. In particular, sintered metal oil-impregnated bearings used in transportation vehicles such as automobiles, motorcycles, construction machinery, aircraft, railways, etc., home appliances such as air conditioning systems and refrigerators, and information equipment such as videos, cameras, printers, and computers. Suitable as an impregnating oil for use. In addition, application as a working fluid of a hydraulic shock absorber used for automobiles, motorcycles, construction machines, aircraft, transportation vehicles such as railways, machine tools, hydraulic equipment, and the like is also included. Further, it is also suitable as a working fluid for a rotary damper used for an outlet of a vending machine for beverages, cigarettes, etc., instrumentation of automobiles, and the like.
[0020]
【Example】
Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to the examples.
[0021]
(Examples 1-3, Comparative Examples 1-7)
The following polyorganosiloxane was used as the base oil. For comparison, a paraffinic mineral oil obtained by solvent refining was used.
A-1: polydimethylsiloxane kinematic viscosity (40 ° C.): 98.18 mm 2 / s
Kinematic viscosity (100 ° C.): 40.12 mm 2 / s
Viscosity index: 417
Pour point: -50 ° C or less A-2: Kinematic viscosity of polydimethylsiloxane (40 ° C): 379.5 mm 2 / s
Kinematic viscosity (100 ° C.): 157.9 mm 2 / s
Viscosity index: 450
Pour point: -50 ° C or less A-3: Kinematic viscosity of polydimethylsiloxane (40 ° C): 754.6 mm 2 / s
Kinematic viscosity (100 ° C.): 302.1 mm 2 / s
Viscosity index: 472
Pour point: -50 ° C or less A-4: Kinematic viscosity of paraffinic mineral oil (40 ° C): 97.98 mm 2 / s
Kinematic viscosity (100 ° C): 10.97 mm 2 / s
Viscosity index: 97
Pour point: -12.5 ° C
[0022]
As an additive, a dialkyldithiophosphate (B-1) represented by the general formula (1) and, as a comparison, a dialkyldithiophosphate in which a carboxyl group (—COOH) of the general formula (1) is esterified (—COOR). The following were used as the ester (B-2), the phosphorus-based antiwear agent (B-3, 4), and the sulfur-based antiwear agent (B5).
B-1: 0,0-diisobutyl-S-carboxyethyl dithiophosphate B-2: 0,0-diisopropyl-S-ethoxycarbonylethyl dithiophosphate B-3: tricresyl phosphate B-4: hydrogen Phosphite B-5: thiadiazole
(Test method)
The above base oils and additives were blended in the proportions shown in the upper part of Table 1 and sufficiently stirred and dissolved under heating conditions of 60 ° C. to prepare lubricating oil compositions of Examples and Comparative Examples. These prepared lubricating oil compositions were tested for viscosity characteristics, appearance, and lubricity.
[0024]
(Viscosity characteristics)
The kinematic viscosities at 40 ° C. and 100 ° C. and the viscosity index were measured and calculated according to JIS K2283.
[0025]
(appearance)
After adjusting a predetermined additive to each base oil, the mixture was allowed to stand at room temperature (25 ° C.) for one day and visually observed.
[0026]
(Shell 4 ball wear resistance test)
As a desk lubrication test, a shell 4-ball wear resistance test (ASTM D4172) was performed. The test conditions were 1200 rpm, 40 kgf / cm 2 , 50 ° C., and 60 minutes, and the wear scar diameter after the test was measured.
[0027]
(SRV friction test)
Polyorganosiloxane has a high viscosity index of 400 and is expected to have excellent oil film forming ability in a high temperature range. Therefore, the lubricity in a high temperature range was evaluated by an SRV test. The evaluation was carried out in Example 1 [polydimethylsiloxane, viscosity index oil 417] of VG100 and Comparative Example 7 [paraffinic mineral oil, viscosity index 97] as a comparison. The additive composition was the same.
[0028]
In the evaluation, a friction characteristic (friction coefficient) was measured using a cylinder / disk type SRV tester under the following conditions.
Load: 100N
Frequency: 50Hz
Amplitude: 1.5mm
Temperature: 100 ° C
Time: 15min
Measurement item: Coefficient of friction at the lapse of 15 minutes These results are summarized in Table 1.
[0029]
[Table 1]
[0030]
As is clear from these results, the polydimethylsiloxane of the present invention in which a suitable amount of dithiophosphate having a carboxyethyl group is blended has remarkably improved abrasion resistance as compared with the case where no dithiophosphate is added, and the dialkyldithiophosphorus used for comparison was used. It can be seen that the effect on abrasion resistance is extremely high as compared with acid esters, tricresyl phosphate, hydrogen phosphite, and thiadiazole. Furthermore, by using polydimethylsiloxane having a high viscosity index as a base oil compared to a paraffinic mineral oil having a low viscosity index, a low friction coefficient in a high temperature range was obtained even with the same additive composition. . This is due to the oil film forming ability of the high viscosity index base oil.
[0031]
To improve the abrasion resistance, which has been a problem in the past, without changing the characteristics of the high viscosity index oil, to obtain a lubricating oil composition containing a suitable amount of the dithiophosphate having a carboxyethyl group of the present invention. Was completed. This lubricating oil composition is particularly suitable for applications requiring stable lubrication in a wide temperature range, for example, impregnating oil for metal-impregnated oil-impregnated bearings, working fluid for oil dampers (hydraulic shock absorbers), and the like.
[0032]
【The invention's effect】
The lubricating oil composition of the present invention has a high viscosity index, is excellent in lubricating properties, and is particularly suitable for a metal-sintered oil-impregnated bearing that is impregnated with these lubricating oil compositions to provide a stable sliding over a wide temperature range from low to high temperatures. Dynamic characteristics can be obtained. In addition, stable fluid characteristics and lubricity can be obtained over a wide temperature range as a working fluid for an oil damper and a (hydraulic shock absorber).